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ABSTRACT

Random forest and similar Machine Learning techniques are already used to generate spatial predictions,
but spatial location of points (geography) is often ignored in the modeling process. Spatial auto-correlation,
especially if still existent in the cross-validation residuals, indicates that the predictions are maybe biased, and
this is suboptimal. This paper presents a random forest for spatial predictions framework (“RFsp”) where
buffer distances from observation points are used as explanatory variables, thus incorporating geographical
proximity effects into the prediction process. The “RFsp” framework is illustrated with examples that
use textbook datasets and apply spatial and spatio-temporal prediction to numeric, binary, categorical,
multivariate and spatiotemporal variables. Performance of the RFsp framework is compared with the
state-of-the-art kriging techniques using 5—fold cross-validation with refitting. The results show that RFsp
can obtain equally accurate and unbiased predictions as different versions of kriging. Advantages of using
RFsp over kriging are that it needs no rigid statistical assumptions about the distribution and stationarity
of the target variable, it is more flexible towards incorporating, combining and extending covariates of
different types, and it possibly yields more informative maps characterizing the prediction error. RFsp
appears to be especially attractive for building multivariate spatial prediction models that can be used as
‘knowledge engines’ in various geoscience fields. Some disadvantages of RFsp are the exponentially growing
computational intensity with increase of calibration data and covariates and the high sensitivity of predictions
to input data quality. For many data sets, especially those with lower number of points and covariates and

close-to-linear relationships, model-based geostatistics can still lead to more accurate predictions than RFsp.
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INTRODUCTION

Kriging and its many variants have been used for spatial interpolation since the 1960’s (Isaaks and
Srivastava, 1989; Cressie, 1990; Goovaerts, 1997) and have proven on numerous occasions to be superior
to more simplistic deterministic interpolation techniques. The number of published applications on
kriging has steadily increased since 1980 and the technique is now used in a variety of fields, ranging from
physical geography (Oliver and Webster, 1990), geology and soil science (Goovaerts, 1999; Minasny and
McBratney, 2007), hydrology (Skgien et al., 2005), epidemiology (Moore and Carpenter, 1999; Graham
et al., 2004), natural hazard monitoring (Dubois, 2005) and climatology (Hudson and Wackernagel, 1994;
Hartkamp et al., 1999). One of the reasons why kriging has been used so widely is its accessibility to
researchers, especially thanks to the makers of gslib (Deutsch and Journel, 1998), ESRI’s Geostatistical
Analyst (www.esri.com), ISATIS (www.geovariances.com) and developers of the gstat (Pebesma,
2004; Bivand et al., 2008), geoR (Diggle and Ribeiro Jr, 2007) and geostatsp (Brown, 2015) packages for
R.

Since the start of the 21st century, however, there has been an increasing interest in using more
computationally intensive and primarily data-driven algorithms. These techniques are also known under
the name “machine learning”, and are applicable for various data mining, pattern recognition, regression
and classification problems. One of the machine learning algorithms (MLA) that has recently proven to
be efficient for producing spatial predictions is the random forest algorithm, first described in Breiman
(2001), and now available also in a fast scalable implementation through the ranger package for R (Wright
and Ziegler, 2017). Several studies (Prasad et al., 2006; Hengl et al., 2015; Vaysse and Lagacherie, 2015;
Nussbaum et al., 2017a) have already shown that random forest is a promising technique for spatial
prediction. Random forest, however, ignores the spatial locations of the observations and hence any
spatial autocorrelation in the data not accounted for by the covariates. Modeling the relationship with
covariates and spatial autocorrelation jointly using machine learning techniques is relatively novel and
not entirely worked out. Using northing and easting as covariates in a random forest model may not
help the prediction process as it leads to linear features and discrete boundaries (obvious artifacts) which
are directly related to the configuration of the sampling plan. A more sensible and worked-out use of
geographical space is needed.

In this paper we describe a generic framework for spatial and spatiotemporal prediction that is based
on random forest and which we refer to as “RFsp”. With this framework we aim at including information
derived from the observation locations and their spatial distribution into predictive modeling. We test
whether RFsp, and potentially other tree-based machine learning algorithms, can be used as a replacement
for geostatistical interpolation techniques such as ordinary and regression-kriging, i.e., kriging with
external drift. We explain in detail (using standard data sets) how to extend machine learning to general
spatial prediction, and compare the prediction efficiency of random forest with that of state-of-the-art
kriging methods using 5—fold cross-validation with refitting the model in each subset.

A complete benchmarking of the prediction efficiency is documented in R code and can be obtained

via the GitHub repository at https://github.com/thengl/GeoMLA. All datasets used in this paper
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are either part of an existing R package or can be obtained from the GitHub repository.

METHODS AND MATERIALS

Spatial Prediction
Spatial prediction is concerned with the prediction of the occurence, quantity and/or state of geographical
phenomena, usually based on training data, e.g., ground measurements or samples y(s;),i = 1...n, where
si € D is a spatial coordinate (i.e., easting and northing), # is the number of observed locations and D is
the geographical domain. Spatial prediction typically results in gridded maps or, in case of space-time
prediction, animated visualizations of spatiotemporal phenomena.

Model-based spatial prediction algorithms commonly aim to minimize the prediction error variance
o2 (so) at a prediction location sy under the constraint of unbiasedness (Christensen, 2001). Unbiasedness
and prediction error variance are defined in terms of a statistical model ¥ = {Y(s),s € D} of y. In

mathematical terms, the prediction error variance:

62(so) = E { (7 (s0) fy(s()))z} 1)

is to be minimized while satisfying the (unbiasedness) constraint:

E{Y(s0)—Y(s0)} =0 2)

The predictor ¥ (sg) of Y (so) is typically taken as a function of covariates and the ¥ (s;) which, upon
substitution of the observations y(s;), yields a (deterministic) prediction $(sp).
The spatial prediction process is repeated at all nodes of a grid covering D (or a space-time domain in

case of spatio-temporal prediction) and produces three main outputs:

1. Estimates of the model parameters (e.g., regression coefficients and variogram parameters), i.e., the

model;
2. Predictions at new locations, i.e., a prediction map;
3. Estimate of uncertainty associated with the predictions, i.e., a prediction error variance map.

In the case of multiple linear regression (MLR), model assumptions state that at any location in D the
dependent variable is the sum of a linear combination of the covariates at that location and a zero-mean

normally distributed residual. Thus, at the n observation locations we have:

Y=X"B+e, 3)

where Y is a vector of the target variable at the n observation locations, X is an n X p matrix of covariates

at the same locations and f3 is a vector of p regression coefficients. The stochastic residual € is assumed to
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be independently and identically distributed. The paired observations of the target variable and covariates
(y and X)) are used to estimate the regression coefficients using, e.g., Ordinary Least Squares (Kutner

et al., 2004):

-1

B=x"x) -xT.y (4)

once the coefficients are estimated these can be used to generate a prediction at s:

$(s0) =xo" - B )

with associated prediction error variance:

0%(so) = var(e(s0)) - [ 1455 - (XT-X) " xa) )

here, x¢ is a vector with covariates at the prediction location and var(€(sp)) is the variance of the stochastic

residual. The latter is usually estimated by the mean squared error (MSE):

1

MSE = = (7

The prediction error variance given by Eq. (6) is smallest at prediction points where the covariate
values are in the center of the covariate (‘feature’) space and increases as predictions are made further
away from the center. They are particularly large in case of extrapolation in feature space (Kutner et al.,
2004). Note that the model defined in Eq. (3) is basically a non-spatial model because the observation

locations and spatial-autocorrelation of the dependent variable are not taken into account.

Kriging

Kriging is a technique developed specifically to employ knowledge about spatial autocorrelation in mod-
eling and prediction (Matheron, 1969; Christensen, 2001; Oliver and Webster, 2014). Most geostatistical
models assume that the target variable Y at some geographic location s can be modeled as the sum of a

deterministic mean (1) and a stochastic residual (€) (Goovaerts, 1997; Cressie, 2015):

Y(s) = u(s) +e(s) ®

Assuming a constant trend (i (s) = p for all s € D), the best linear unbiased prediction (BLUP) of
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ur y(sp) is given by the ordinary kriging (OK) prediction (Goovaerts, 1997):

-

Il
—_

)701((50) = W(S())T -y with W(So)T 1= W,‘(So) =1, )

1

us  where w(so)” is a vector of kriging weights w;(so). These are obtained by solving a linear set of equations
1o (Goovaerts, 1997; Cressie, 2015):

C(si,81) - C(s1,80) 1 wi(so) C(so,s1)
Sl : _ : (10)
C(sp,81) -+ C(sp,sp) 1 wn(S0) C(so,Sn)
1 e 1 0 [0) 1
10 where C(s;,s;) = cov(Y(s;),Y(s;)) and ¢ is a Lagrange multiplier.
121 The associated prediction error variance, i.e., the OK variance, is given by (Webster and Oliver, 2001,
122 p.183)1
Gy (s0) = var(Y (so) — ¥ (s0)) = C(s0,80) —w(si)" -Co— 9, 1D
13 where Cy is an n-vector of covariances between Y (so) and the Y (s;).
124 If the distribution of the target variable is not Gaussian, a transformed Gaussian approach (Diggle and

s Ribeiro Jr, 2007, §3.8) and/or generalized linear geostatistical model approach (Brown, 2015) is required.
e For example, the Box-Cox family of transformations is often recommended for skewed data (Diggle and
12z Ribeiro Jr, 2007):

. |
oL n=nmo it mzo )

log(Y) if n=0,

s where 1 is the Box-Cox transformation parameter and Yr is the transformed target variable. The
19 prediction and prediction error variance for log-normal OK (1 = 0) are back-transformed using (Diggle
1o and Ribeiro Jr, 2007, p.61):

$(s0) = exp [$r(s0) +0.5- 67 (s0)] (13)
6%(so) = exp [2-Fr(s0) + 67 (s0)] - (exp [07(s0)] — 1) (14)
131 where G% (so) is the kriging variance on the transformed scale.

132 The advantages of kriging are (Webster and Oliver, 2001; Christensen, 2001; Oliver and Webster,
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2014):

* it takes a comprehensive statistical model as a starting point and derives the optimal prediction for

this assumed model in a theoretically sound way;
* it exploits spatial autocorrelation in the variable of interest;

* it provides a spatially explicit measure of prediction uncertainty.

A natural extension of MLR and OK is to combine the two approaches and allow that the MLR
residual of Eq. (3) is spatially correlated. This boils down to “Regression-Kriging” (RK) also known
under names “Universal Kriging” (UK) and/or “Kriging with External Drift” (KED) (Goldberger, 1962;
Goovaerts, 1997; Christensen, 2001; Hengl et al., 2007a). UK/KED implementations are available in most
geostatistical software packages (e.g., geoR and gstat), while the RK approach implies that regression
and kriging are done separately. Both paths are mathematically equivalent i.e. they lead to the same

predictions assuming the same settings are used. The main steps of RK are:

1. Select and prepare candidate covariates, i.e., maps of environmental and other variables that are

expected to be correlated with the target variable.

2. Fit a multiple linear regression model using common procedures, while avoiding collinearity and
ensuring that the MLR residuals are sufficiently normal. If required use different type of GLM
(Generalized Linear Model) to account for distribution of the target variable. If covariates are

strongly correlated it may be advisable to convert these first to principal components.
3. Derive regression residuals at observation locations and fit a (residual) variogram.
4. Apply the MLR model at all prediction locations.
5. Krige the MLR residuals to all prediction locations.

6. Add up the results of steps 4 and 5.

~

. Apply a back-transformation if needed.

The RK algorithm has been very successful over the past decades and is still the mainstream geostatis-
tical technique for generating spatial predictions (Li and Heap, 2011). However, there are five serious

limitations of ordinary and/or regression-kriging:

1. Kriging assumes that the residuals are normally distributed. This can often be resolved with a
transformation and back-tranformation, but not always. Model-based geostatistics has, at the
moment, only limited solutions for zero-inflated, Poisson, binomial and other distributions that

cannot easily be transformed to normality.

2. Kriging assumes that the residuals are stationary, meaning that these must have a constant mean

(i.e. zero), constant variance and spatial autocorrelation that only depends on distance.
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3. Kriging also assumes that the variogram is known without error, i.e. it ignores variogram estimation
errors (Christensen, 2001, p.286-287). This can be avoided by taking a Bayesian geostatistical
approach, but this complicates the analysis considerably (Diggle and Ribeiro Jr, 2007).

4. Most versions of kriging assume that the relation between dependent and covariates is linear,

although some flexibility is offered by including transformed covariates.

5. In case of numerous possibly correlated covariates, it is very tedious to find a plausible trend
model (see, e.g. Nussbaum et al. (2017b)). Interactions among covariates are often difficult to

accommodate, and usually lead to an explosion of the number of model parameters.

6. Kriging can, in the end, be computationally demanding, especially if the number of observations

and/or the number of prediction locations is large.

Random forest

Random forest (RF) (Breiman, 2001; Prasad et al., 2006; Biau and Scornet, 2016) is an extension of
bagged trees. It has been primarily used for classification problems and several benchmarking studies
have proven that it is one of the best machine learning techniques currently available (Cutler et al., 2007;
Boulesteix et al., 2012; Olson et al., 2017).

In essence, RF is a data-driven statistical method. The mathematical formulation of the method is
rather simple and instead of putting emphasis on formulating a statistical model (Fig. 1), emphasis is
put on iteratively training the algorithm, using techniques such as bagging, until a “strong learner” is
produced.

Predictions in RF are generated as an ensemble estimate from a number of decision trees based on
bootstrap samples (bagging). The final predictions are the average of predictions of individual trees

(Breiman, 2001; Prasad et al., 2006; Biau and Scornet, 2016):

B
DIACH (15)

where b is the individual bootstrap sample, B is the total number of trees, and t;j is the individual learner,

i.e., the individual decision tree:

th(x) =125, ZpK)s (16)

where zj;, (k= 1...K) is the k-th training sample with pairs of values for the target variable (y) and
covariates (x): zj,; = (Xk, Yk)-
RF, as implemented in the ranger package, has several parameters that can be fine-tuned. The most

important parameters are (Probst and Boulesteix, 2017):

* mtry — number of variables to possibly split at in each node.
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Figure 1. Schematic difference between (a) Krigin

Prediction
error map

g with External Drift as implemented in the geoR

package, and (b) random forest for spatial prediction. Being a mainly data-driven algorithm, random
forest requires only limited input from the user, while model-based geostatistics requires variogram
modeling, anisotropy modeling, possibly transformation of the target variable and covariates and choice

of a link function.
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* min.node.size — minimal terminal node size.
* sample.fraction — fraction of observations to sample in each tree.
* num.trees — number of trees.

The number of trees in RF does not really need to be fine-tuned, it is recommended to set it to a

computationally feasible large number (Lopes, 2015; Probst and Boulesteix, 2017).

Uncertainty of predictions in random forest
The uncertainty of the predictions of random forest for regression-type problems can be estimated using

several approaches:
* The Jackknife-after-Bootstrap method (see e.g. Wager et al. (2014)).
» The U-statistics approach of Mentch and Hooker (2016).

* The Monte Carlo simulations (both target variable and covariates) approach of Coulston et al.

(2016).
* The Quantile Regression Forests (QRF) method (Meinshausen, 2006).

The approaches by Wager et al. (2014) and Mentch and Hooker (2016) estimate standard errors of the
expected values of predictions, used to construct confidence intervals, while the approaches of Coulston
et al. (2016) and Meinshausen (2006) estimate prediction intervals. Our primary interest in this article is
in the uncertainty of single predictions, and thus we focus on the approach of Meinshausen (2006).

The Quantile Regression Forests (QRF) algorithm estimates the quantiles of the distribution of the
target variable at prediction points. Thus, the 0.025 and 0.975 quantile may be used to derive the lower
and upper limits of a symmetric 95 % prediction interval. It does so by first deriving the random forest
prediction algorithm in the usual way. While this is done with decision trees, as explained above, it

ultimately boils down to a weighed linear combination of the observations:

$(s0) = ¥ au(s0) y(s:) am
i=1

in QREF, this equation is used to estimate the cumulative distribution Fg, of Y (so), conditional to the

covariates, simply by replacing the observations y(s;) by an indicator transform:

n

Fo(6) =} ai(s0) - 1y(s)<i (18)

i=1
where 1)<, is the indicator function (i.e., it is 1 if the condition is true and 0 otherwise). Any quantile ¢
of the distribution can then be derived by iterating towards the threshold ¢ for which ﬁso (1) = g. Since the
entire conditional distribution can be derived in this way, it is also easy to compute the prediction error

variance. For details of the algorithm, and a proof of the consistency, see Meinshausen (2006).
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Note that in RF and QREF the prediction and associated prediction interval are derived purely using
feature space and bootstrap samples. Geographical space is not included in the model as in ordinary and

regression-kriging.

Random forest for spatial data (RFsp)

RF is in essence a non-spatial approach to spatial prediction in a sense that sampling locations and general
sampling pattern are ignored during the estimation of MLA model parameters. This can potentially
lead to sub-optimal predictions and possibly systematic over- or underprediction, especially where the
spatial autocorrelation in the target variable is high and where point patterns show clear sampling bias. To

overcome this problem we propose the following generic “RFsp” system:

Y(s) = f (Xg, Xr, Xp) (19)

where X¢ are covariates accounting for geographical proximity and spatial relations between observations
(to mimic spatial correlation used in kriging), Xg are surface reflectance covariates, i.e., usually spectral
bands of remote sensing images, and Xp are process-based covariates. For example, the Landsat infrared
band is a surface reflectance covariate, while the topographic wetness index and soil weathering index
are process-based covariates. Assuming that the RFsp is fitted only using the Xg, the predictions will
likely look similar to OK. If all covariates are used (Eq.19), RFsp will likely produce similar results as

regression-kriging.

Geographical covariates

One of the key principles of geography is that “everything is related to everything else, but near things
are more related than distant things” (Miller, 2004). This principle froms the basis of geostatistics, which
converts this rule into a mathematical model, i.e., through spatial autocorrelation functions or variograms.
The key to making RF applicable to spatial statistics problems hence lies also in preparing geographical
measures of proximity and connectivity between observations, so that spatial autocorrelation is accounted

for. There are multiple options for quantifying proximity and geographical connection (Fig. 2):

1. Geographical coordinates s; and sy, i.e., easting and northing.

2. Euclidean distances to reference points in the study area. For example, distance to the center and

edges of the study area, etc.

3. Euclidean distances to sampling locations, i.e., distances from observation locations. Here one
buffer distance map can be generated per observation point or group of points. These are also

distance measures used in geostatistics.

4. Visibility distances or indices: for each sampling point one can derive the visibility distance and or
index (0—100 %) given a Digital Elevation Model (DEM) of the study area. In a highly dissected
terrain, points that fall in steep valleys will thus not be visible from all other locations. Visibility

distances can be derived using, e.g., SAGA GIS via the Visibility module (Conrad et al., 2015).
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5. Downslope distances, i.e., distances within a watershed: for each sampling point one can derive
upslope/downslope distances to the ridges and hydrological network. This requires, on top of using

a Digital Elevation Model, a hydrological analysis of the terrain.

6. Resistence distances or weighted buffer distances, i.e., distances of the cumulative effort.

The package gdistance, for example, provides a framework to derive complex distances based on terrain
complexity (van Etten, 2017). Here additional input to compute complex distances are the Digital
Elevation Model (DEM) and DEM-derivatives, such as slope (Fig. 2).

(a) (b)

M

Figure 2. Examples of distance maps based on different derivation algorithms: (a) simple Euclidean
distances, (b) complex speed-based distances based on the gdistance package and Digital Elevation
Model (DEM) (van Etten, 2017), and (c) visibility distance based on the DEM derived in SAGA GIS
(Conrad et al., 2015).

In this paper we only use geographical coordinates and buffer distances to all sampling points to
improve RFsp predictions, but the code we provide could be easily adopted to include other families of

geographical covariates, although this would further increase the computational complexity.

Model performance criteria

When comparing performance of RFsp vs. OK and RK, we use the following performance criteria (Fig. 3):

1. Average RMSE based on cross-validation (CV) and model R-square — this quantifies the average

accuracy of predictions i.e. amount of variation explained.
2. Average ME based on CV — this quantifies average bias in predictions.

3. Spatial autocorrelation in CV residuals, i.e., the ratio between nugget and sill variance in the

residuals — this quantifies local spatial bias in predictions.

4. Standard deviation of z-scores — this quantifies the reliability of estimated prediction error vari-

ances.

The RMSE and ME are derived as:
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Figure 3. Schematic examples of standard mapping performance criteria used for evaluation of spatial
prediction algorithms and their interpretation: (a) predicted vs. observed plot, (b) standardized accuracy
vs. standard deviation of the z-scores, (c) “accuracy plots” (after Goovaerts (1999)), and (d) variogram of
the target variable and the cross-validation residuals. In principle, all plots and statistics reported in this
paper are based on the results of n—fold cross-validation.

RMSE =, |~} (3(s;) —¥(s)))?
=1
ME = (5(5))~3(5)
£

zs where J(s;) is the predicted value of y at cross-validation location s;, and m is the total number of

cross-validation points. The amount of variation explained by the model is derived as:

(20)
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where SSE is the sum of squared errors at cross-validation points (i.e. MSE - n) and SST is the total sum
of squares. A coefficient of determination close to 1 indicates a perfect model, i.e., 100 % of variation has
been explained by the model.

The error of estimating the variance of prediction errors can likewise be quantified via the z-score
(Bivand et al., 2008):

(i) —y(sj)

21
o(s;) D

Zscore (Sj ) =
the z-score are expected to have a mean equal to 0 and variance equal to 1. If the z-score variance is
substantially smaller than 1 then the model overestimates the actual prediction uncertainty. If the z-score
variance is substantially greater than 1 then the model underestimates the prediction uncertainty.

Note that, in the case of QRF, the method does not produce o (s;) but quantiles of the conditional
distribution. As indicated before, the variance could be computed from the quantiles. However, since
this would require computation of all quantiles at a sufficiently high discretization level, prediction error
standard deviation o (s;) can also be estimated from the lower and upper limits of a 68.27 % prediction

interval:

_ Vq=0841(8;) — Vg=0.159(S,)
2

OQrF(S;) (22)

this however assumes that the prediction errors are symmetrical, which might not always be the case.

RESULTS

Meuse data set (regression, 2D, no covariates)

In the first example, we compare the performance of a state-of-the-art model-based geostatistical model,
based on the implementation in the geoR package (Diggle and Ribeiro Jr, 2007), with the RFsp model as
implemented in the ranger package (Wright and Ziegler, 2017). For this we consider the Meuse data set
available in the sp package:

> library(sp)
> demo (meuse, echo=FALSE)

We focus on mapping zinc (Zn) concentrations using ordinary kriging (OK) and RFsp. To produce
model and predictions using OK we use the package geoR. First, we fit the variogram model using the

1ikfit function:

> library(geoR)

Analysis of Geostatistical Data
For an Introduction to geoR go to http://www.leg.ufpr.br/geoR
geoR version 1.7-5.2 (built on 2016-05-02) is now loaded
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> zinc.geo <- as.geodata(meuse["zinc"])
> ini.v <- c(var(loglp(zinc.geo$data)),500)

> zinc.vgm <- likfit(zinc.geo, lambda=0, ini=ini.v, cov.model="exponential")

kappa not used for the exponential correlation function

likfit: likelihood maximisation using the function optim.
likfit: Use control() to pass additional
arguments for the maximisation function.
For further details see documentation for optim.
likfit: It is highly advisable to run this function several
times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

1likfit: end of numerical maximisation.

which shows that the variogram is fitted using the maximum likelihood (ML) method, 1ambda=0 indicates
transformation by natural logarithm (positively skewed response). Note that this is the Universal Kriging
approach to modeling where transformation of the variable is set prior to variogram modeling; in the
case of the RK approach, transformation is set through fitting of a GLM. Once we have estimated the

variogram model, we can generate predictions, i.e., the prediction map using (Eq.13):

> locs <- meuse.grid@coords

> zinc.ok <- krige.conv(zinc.geo, locations=locs, krige=krige.control(obj.m=zinc.vgm))

krige.conv: model with constant mean
krige.conv: performing the Box-Cox data transformation
krige.conv: back-transforming the predicted mean and variance

krige.conv: Kriging performed using global neighbourhood

note here that geoR back-transforms the values automatically (Eq.13) preventing the user from having to
find the correct unbiased back-transformation (Diggle and Ribeiro Jr, 2007), which is a recommended
approach for less experienced users.

We compare the results of OK with geoR vs. RFsp. Since no other covariates are available, we
use only geographical (buffer) distances to observation points. We first derive buffer distances for each

individual point, using the buffer function in the raster package (Hijmans and van Etten, 2017):
> grid.dist0 <- GSIF::buffer.dist(meuse["zinc"], meuse.grid[1], as.factor(l:nrow(meuse)))

which derives a raster map for each observation point. The spatial prediction model is defined as:

> dn0 <- paste(names(grid.dist0), collapse="+")

> fm0 <- as.formula(paste("zinc ~ ", dn0))

i.e., in the formula zinc ~ layer.1 + layer.2 + ... + layer.155 which means that the target
variable is a function of 155 covariates. Next, we overlay points and covariates to create a regression

matrix, so that we can tune and fit a ranger model, and generate predictions:
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Figure 4. Comparison of predictions based on OK as implemented in the geoR package (left) and
random forest (right) for zinc concentrations of the Meuse dataset: predicted concentrations in log-scale
(first row), standard deviation of the prediction errors for OK and RF methods (second row, for RF based
on the ranger package) and correlation plots based on the 5—fold cross-validation for OK and RFsp (last
row, solid line: lowess scatterplot smoother).
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> ov.zinc <- over(meuse["zinc"], grid.dist0)

> rm.zinc <- cbind(meuse@data["zinc"], ov.zinc)

> m.zinc <- ranger (fm0, rm.zinc, quantreg=TRUE, num.trees=150)
>

m.zinc

Ranger result

Type: Regression
Number of trees: 150

Sample size: 155

Number of independent variables: 155

Mtry: 98

Target node size: 4

Variable importance mode: none

00B prediction error (MSE): 64129.11

R squared (00B): 0.5240641

> zinc.rfd <- predict(m.zinc, grid.distO@data)

quantreg=TRUE allows to derive the lower and upper quantiles i.e. standard error of the predictions
(Eq. 22). The out-of-bag validation R squared (00B), indicates that the buffer distances explain about

52 % of the variation in the response.

Random Forest (RF) covs only Random Forest (RF) covs + buffer dist.
i
— 1635 — 1635
- 664 — 664
- 298 - 298
- 121 - 121

\\Q;. +
+
ot

Figure 5. Comparison of predictions produced using random forest and covariates only (left), and
random forest with covariates and buffer distances combined (right). Compare with Fig. 4.

Given the different approaches, the overall pattern of the spatial predictions (maps) by OK and RFsp
are surprisingly similar (Fig. 4). RFsp seems to smooth the spatial pattern more than OK, which is
possibly a result of the averaging of trees in random forest. Still, overall correlation between OK and
RFsp maps is high (r = 0.97). Compared to OK, RFsp generates a more contrasting map of standard
errors with clear hotspots. Note in Fig. 4, for example, how the single isolated outlier in the lower right
corner is depicted by the RFsp prediction error map. Also note that, using only coordinates as predictors

results in blocky artifacts (Fig. 4; right) and is probably not recommended for mapping purposes.
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The CV results show that OK is more accurate than RFsp: R-square based on 5—fold cross-validation
is about 0.60 for OK and about 0.45 for RFsp. Further analysis shows that in both cases there is no
remaining spatial autocorrelation in the residuals (Fig. 6). Hence, both methods have fully accounted for
the spatial structure in the data. Both RFsp and OK seem to under-estimate the actual prediction error
(0(z) =1.48 vs. 6(z) =1.28); in this case OK yields slightly more accurate estimates of prediction error
standard deviations.

Extension of RFsp with additional covariates means just adding further rasters to the buffer distances.
For example, for the Meuse data set we may add global surface water occurrence (Pekel et al., 2016) and
the LiDAR-based digital elevation model (DEM, http://ahn.nl) as potential covariates explaining

zinc concentration:

> meuse.grid$SWO <- readGDAL ("Meuse_GlobalSurfaceWater_occurrence.tif")$bandl [meuse.grid@grid.index]
> meuse.grid$AHN <- readGDAL("ahn.asc")$bandl[meuse.grid@grid.index]
> grids.spc <- spc(meuse.grid, as.formula("~ SWO + AHN + ffreq + dist"))

Converting ffreq to indicators...

Converting covariates to principal components...

next, we fit the model using both thematic covariates and buffer distances:

> fml <- as.formula(paste("zinc ~ ", dn0O, " + ", paste(names(grids.spc@predicted), collapse = "+")))
> ov.zincl <- over(meuse["zinc"], grids.spc@predicted)

> rm.zincl <- cbind(meuse@data["zinc"], ov.zinc, ov.zincl)

> ml.zinc <- ranger(fml, rm.zincl, mtry=130)

ml.zinc

Ranger result

Type: Regression
Number of trees: 500

Sample size: 155

Number of independent variables: 161

Mtry: 130

Target node size: 2

Variable importance mode: impurity
00B prediction error (MSE): 48124.16

R squared (0O0B): 0.6428452

RFsp including additional covariates results in somewhat smaller MSE than RFsp with buffer distances
only. There is indeed a small difference in spatial patterns between RFsp spatial predictions derived using
buffer distances only (Fig. 4) and all covariates (Fig. 5): some covariates, especially flooding frequency
class and distance to the river, help with predicting zinc concentrations. Nevertheless, it seems that buffer
distances are most important for mapping zinc i.e. more important than surface water occurrence, flood
frequency, distance to river and elevation for producing the final predictions. This is also confirmed by

the variable importance table below:

> x1 <- as.list(ranger::importance(ml.zinc))

> print (t(data.frame(x1[order (unlist(x1), decreasing=TRUE)[1:10]1])))
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PC1 2171942.4
layer.54  835541.1
PC3 545576.9
layer.53  468480.8
PC2 428862.0
layer.118 424518.0
PC4 385037.8
layer.55  368511.7
layer.155 340373.8
layer.56  330771.0

[,1]

which shows that, for example, points 54 and 53 are the two most influential observations, even more

important than covariates (PC2-PC4) for predicting zinc concentration.

While the performance indicators show that the RFsp predictions are nearly as good as those of OK

and RK, it is important to note the advantages of RFsp vs. traditional regression-kriging:

. Spatial autocorrelation and correlation with spatial environmental factors is dealt with at once

(single model in comparison with RK where regression and variogram models are often fitted

separately), so that also their interactions can be modeled at once.

. Trend model building, which is mostly done manually for kriging, is dealt with automatically in the

case of RFsp. Interactions in the covariates are dealt with naturally in a tree-based method and do

not need to be manually included in the linear trend as in kriging.

. There are no 1st and 2nd order stationarity requirements (Goovaerts, 1997).

. There is no need to fit a variogram of residuals, except to check that cross-validation residuals show

no spatial autocorrelation.

. Variable importance statistics show which individual observations and which covariates are most

influential. Decomposition of R? as often used for linear models (Groemping, 2006) neglects model

selection and does not straightforwardly apply to kriging.
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data set (below, see Fig. 3 for explanation of plots).
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10 Swiss rainfall dataset data set (regression, 2D, with covariates)

0 Another interesting dataset for comparison of RFsp with linear geostatistical modeling is the Swiss rainfall
ss1  dataset used in the Spatial Interpolation Comparison (SIC 1997) exercise, described in detail in Dubois
s2 et al. (2003). This dataset contains 467 measurements of daily rainfall in Switzerland on the 8th of May
33 1986. Possible covariates include elevation (DEM) and the long term mean monthly precipitation for May
34 based on the CHELSA climatic images (Karger et al., 2017) at 1 km.

365 Using geoR, we can fit an RK model:

> 51c97.sp = readRDS("sic97.rds")

> swisslkm = readRDS("swisslkm.rds")

> ov2 = over(y=swisslkm, x=sic97.sp)

> sel.d = which(!is.na(ov2$DEM))

5ic97.geo <- as.geodata(sic97.sp[sel.d,"rainfall"])

5ic97.geo$covariate = ov2[sel.d,c("CHELSA_rainfall","DEM")]

> sic.t = 7 CHELSA_rainfall + DEM

> rain.vgm <- likfit(sic97.geo, trend = sic.t, ini=c(var(loglp(sic97.geo$data)),8000),
fix.psiA = FALSE, fix.psiR = FALSE)

likfit: likelihood maximisation using the function optim.
likfit: Use control() to pass additional
arguments for the maximisation function.
For further details see documentation for optim.
likfit: It is highly advisable to run this function several
times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

1likfit: end of numerical maximisation.
> rain.vgm

likfit: estimated model parameters:

betal betal beta2 tausq sigmasq phi psiA psiR
" 166.7679" "  0.5368" " -0.0430" " 277.3047" "5338.1627" "8000.0022" "  0.7796" "  5.6204"
Practical Range with cor=0.05 for asymptotic range: 23965.86

likfit: maximised log-likelihood = -2462

6 where 1ikfit is the geoR function for fitting residual variograms and:

sic.t = ~ CHELSA_rainfall + DEM

s7  defines covariate variables. This produces a total of 8 model parameters including regression coefficients
w8 beta, nugget and sill, anisotropy ratio and range. The rainfall data is highly anisotropic so optimizing
w0 variogram modeling through 1ikfit is important (by default, geoR implements the Restricted Maximum
s Likelihood approach for estimation of variogram parameters, which is often considered the most reliable
sn  estimate of variogram parameters; see, e.g., Lark et al. (2006)). The final RK predictions can be generated

sz by using the krige. conv function:
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> locs2 = swisslkm@coords

> KC = krige.control(trend.d = sic.t,
trend.l = ~ swisslkm$CHELSA_rainfall + swiss1km$DEM,
obj.model = rain.vgm)

> rain.uk <- krige.conv(sic97.geo, locations=locs2, krige=KC)

krige.conv: model with mean defined by covariates provided by the user
krige.conv: anisotropy correction performed

krige.conv: Kriging performed using global neighbourhood

The results of spatial prediction using RK and RFsp are shown in Fig. 7. The cross-validation results
show that in this case RFsp is nearly as accurate as RK with a cross-validation R-square of 0.78 vs. 0.82.
What is striking from the Fig. 7, however, is the RFsp prediction error standard deviation map, which
shows a positive correlation with the values (errors are higher in areas where rainfall values are higher),
but then also depicts specific areas where it seems that the RF continuously produces higher OOB errors.
The RK prediction error standard deviation map is much more homogeneous, mainly because of the
stationarity assumption. This indicates that the RF prediction error map could potentially be used to
depict local areas that are significantly more heterogeneous and complex and that require, either, denser
sampling networks or covariates that better represent local processes in these areas.

The cross-validation results confirm that the prediction error standard deviations estimated by ranger
and RK are both relatively similar to the actual errors. Both RFsp and RK somewhat under-estimate
actual errors (0(z) =1.16; also visible from Fig. 7 and Fig. 6). In this case, fitting of the variogram and
generation of predictions in geoR takes only a few seconds, but generation of buffer distances is more

computationally intensive and is in this case the bottleneck of RFsp.
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Figure 7. Comparison of predictions and standard errors produced using RK (left) and RFsp (right) for
the Swiss rainfall data set (SIC 1997). Below: correlation plots based on 5—fold cross-validation. For

more details about the dataset refer to Dubois et al. (2003).
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;7 Ebergdtzen data set (binomial and multinomial variables, 2D, with covariates)

s As Random Forest is a generic algorithm, it can also be used to map binomial (occurrence-type) and
;o multinomial (factor-type) responses. These are considered to be “classification-type” problems in
s Machine Learning. Mostly the same algorithms can be applied as to regression-type problems, hence the
s R syntax is almost the same. In traditional model-based geostatistics, factor type variables can potentially
32 be mapped using indicator kriging (Solow, 1986; Hengl et al., 2007b), but the process of fitting variograms
303 per class, and especially for classes with few observations only, is cumbersome and unreliable.

304 Consider for example the Ebergotzen data set which contains 3670 ground observations of soil type,

35 and which is one of the standard datasets used in predictive soil mapping (Bohner et al., 20006):

> library(plotKML)
> data(eberg)

396 We can test predicting the probability of occurrence of soil type “Parabraunerde” (according to the
a7 German soil classification; Chromic Luvisols according to the World Reference Base classification) using

308 a list of covariates and buffer distances:

> eberg$Parabraunerde <- ifelse(eberg$TAXGRSC=="Parabraunerde", "TRUE", "FALSE")
> data(eberg_grid)

> coordinates (eberg) <- “X+Y

>

proj4string(eberg) <- CRS("+init=epsg:31467")

v

gridded(eberg_grid) <- “xty
> proj4string(eberg_grid) <- CRS("+init=epsg:31467")
> eberg_spc <- spc(eberg_grid, ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6)

Converting PRMGEO6 to indicators...

Converting covariates to principal components...

> eberg_grid@data <- cbind(eberg_grid@data, eberg_spc@predicted@data)

309 For ranger, Parabraunerde is a classification-type of problem with only two classes.

400 We next prepare the training data by overlaying points and covariates:

> ov.eberg <- over(eberg, eberg_grid)

> sel <- lis.na(ov.eberg$DEMSRT6)

> eberg.dist0 <- buffer.dist (eberg[sel,"Parabraunerde"], eberg_grid[2], as.factor(1:sum(sel)))

> ov.eberg2 <- over(ebergl[sel, "Parabraunerde"], eberg.dist0)

> eb.dn0 <- paste(names(eberg.dist0), collapse="+")

> eb.fml <- as.formula(paste("Parabraunerde ~ ", eb.dn0, "+", pasteO("PC", 1:10, collapse = "+")))

> ov.eberg3 <- over(eberg[sel, "Parabraunerde"], eberg_grid[paste0("PC", 1:10)])

> rm.eberg2 <- do.call(cbind, list(eberg@datal[sel,c("Parabraunerde","TAXGRSC")], ov.eberg2, ov.eberg3))

s so that predictions can be made from fitting the following model:
> eb.fml

Parabraunerde ~ layer.1l + layer.2 + layer.3 + layer.4 + layer.5 +

layer.912 + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 +
PC9 + PC10
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produced using buffer distances combined with other covariates. Dots indicate observed occurrence
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hybrid spatial pattern that reflects both geographical proximity (samples) and relationship between soil
class and landscape (covariate or feature space).
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Figure 9. Predicted soil type occurrence probabilities (the Ebergdtzen data set; German soil
classification system) using buffer distance to each class and a stack of covariates representing parent
material, hydrology and land cover.
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where layer . * are buffer distances to each individual point, and PC* are principal components based on
gridded covariates. This will become a hyper-parametric model as the total number of covariates exceeds

the number of observations. The fitted RF model shows:

> ml1.Parabraunerde <- ranger(eb.fml, rm.eberg2[complete.cases(rm.eberg2),],
importance = "impurity", probability = TRUE)

> ml.Parabraunerde

Ranger result

Type: Probability estimation
Number of trees: 500
Sample size: 829

Number of independent variables: 922

Mtry: 30
Target node size: 10
Variable importance mode: impurity
00B prediction error: 0.1536716

in this case the Out-of-Bag prediction error indicates a mean squared error of 0.15, which corresponds to a
classification accuracy of >85 %. Note that we specify that we aim at deriving probabilities of the class of
interest by setting probability = TRUE. The output map (Fig. 8) shows again a hybrid pattern: buffer
distances to points have an effect at some locations, but this varies from area to area. Overall the most
important covariates are PCs 1, 7, 8 and 3. Also note that binomial variable can be modeled with ranger as
classification and/or regression-type (0/1 values) of problem — these are mathematically equivalent and
should results in the same predictions i.e. predicted probabilities should matches regression predictions.

In a similar way we can also map all other soil types (Fig. 9). The function GSIF: :autopredict

wraps all steps described previously into a single function:
> soiltype <- GSIF::autopredict(eberg["TAXGRSC"], eberg_grid, auto.plot=FALSE)

Generating buffer distances...

Converting PRMGEO6 to indicators...

Converting LNCCOR6 to indicators...

Converting covariates to principal components...
Fitting a random forest model using 'ranger'...

Generating predictioms...

in this case buffer distances are derived to each class, which is less computationally intensive than deriving
distances to each individual observation locations because there are typically much fewer classes than
observations. Although deriving buffer distances to each individual observation location provides certainly
more detail, in the case of factor-type variables, RF might benefit well from only the distances to classes.

In summary, spatial prediction of binary and factor-type variables is straightforward with ranger,
and buffer distances can be incorporated in the same way as for continuous-numerical variables. In
geostatistics, handling categorical dependent variables is more complex, where the GLGM with link
functions and/or indicator kriging would need to be used, among others requiring that variograms are

fitted per class.
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NRCS data set (weighted regression, 3D)

In many cases training data sets (points) come with variable measurement errors or have been collected
with a sampling bias. If information about the data quality of each individual observation is known, then
it also makes sense to use this information to produce a more balanced spatial prediction model. Package
ranger allows this via the argument case .weights — observations with larger weights will be selected
with higher probability in the bootstrap, so that the output model will be (correctly) more influenced by
observations with higher weights.

Consider for example the soil point data set prepared as a combination of (a) the National Cooperative
Soil Survey (NCSS) Characterization Database, and (b) National Soil Information System (NASIS) points
(Ramcharan et al., 2018). The NCSS soil points contain laboratory measurements of soil clay content,
while the NASIS points contain only soil texture classes determined by hand (from which also clay content

can be derived), hence with much higher measurement error:

> carson <- read.csv(file="data/NRCS/carson_CLYPPT.csv")
> carsonlkm <- readRDS("data/NRCS/carson_covsikm.rds")

> coordinates(carson) <- ~ X +Y

> proj4string(carson) = carsonlkm@projé4string

> carson$DEPTH.f = ifelse(is.na(carson$DEPTH), 20, carson$DEPTH)

The number of NASIS points is much higher (ca. 5x) than that of the NCSS points, but the NCSS
observations are about 3 x more accurate. We take a pragmatic approach and take the weights in the

modeling procedure proportional to the quality of data:

> str(carson@data)

'data.frame': 3418 obs. of 8 variables:

$ X.1 :int 1234568910 11 ...

$ SOURCEID : Factor w/ 3230 levels "OOCA693X017jbf",..: 1392 1393 3101 3102 ...

$ pscs : Factor w/ 25 levels "ASHY","ASHY OVER CLAYEY",..: 19 7 16 16 16 16 16 7 20 20 ...
$ CLYPPT : int 20 64 27 27 27 27 27 64 20 20 ...

$ CLYPPT.sd: int 8 16 6 6 6 6 6 16 8 8 ...

$ SOURCEDB : Factor w/ 2 levels "NASIS","NCSS": 1111111111 ...

$ DEPTH : int NA NA NA NA NA NA NA NA NA NA ...

$ DEPTH.f : num 20 20 20 20 20 20 20 20 20 20 ...

where CLYPPT is the estimated clay fraction (m%) of the fine earth, and CLYPPT.sd is the reported
measurement error standard deviation associated to each individual point (in this case soil horizon). We

can build a weighted RF spatial prediction model using:

> rm.carson <- cbind(as.data.frame(carson), over(carson["CLYPPT"], carsonlkm))
> fm.clay <- as.formula(paste("CLYPPT ~ DEPTH.f + ", paste(names(carsonlkm), collapse = "+")))
> pars.carson <- list(num.trees=150, mtry=25, case.weights=1/(rm.carson.s$CLYPPT.sd"2))

> m.clay <- ranger(fm.clay, rm.carson, unlist(pars.carson))

in this case we used 1/ AG2Z, i.e., inverse measurement variance as case.wei ghts so that points that were

measured in the lab will receive much higher weights.
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Figure 10. RF predictions and prediction error standard deviations for clay content with and without
using measurement errors as weights. Study area around Lake Tahoe, California USA. Point data sources:
National Cooperative Soil Survey (NCSS) Characterization Database and National Soil Information
System (NASIS) (Ramcharan et al., 2018).

a3 Fig. 10 shows that, in this specific case, the model without weights seems to predict somewhat higher
as  values, especially in the extrapolation areas. Also the prediction error standard deviations seems to be
as  somewhat smaller (ca. 10 %) for the unweighted regression model. This indicates that using measurement
a6 errors in model calibration is important and one should not avoid specifying this in the model, especially

w7 if the training data is heterogeneous.

wus  The National Geochemical Survey data set, multivariate case (regression, 2D)
4o Because RF is a decision tree-based method, this opens a possibility to model multiple variables within a
«s0 - single model, i.e., by using type of variable as a covariate. This means that prediction values will show

st discrete jumps, depending on which variable type is used. The general form of such model is:

Y(5) =  { Yiype, Cupe. X, X, X } @3)
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where Yiype is the variable type, i.e., chemical element, Cyyp specifies the sampling or laboratory method
used, and X are the covariates from Eq.(19).

Consider for example the National Geochemical Survey database that contains over 70,000 sampling
points spread over the USA (Grossman et al., 2004). Here we use a subset of this dataset with 2858
points with measurements of Pb, Cu, K and Mg covering the US states Illinois and Indiana. Some useful
covariates to help explain the distribution of elements in stream sediments and soils have been previously

prepared (Hengl, 2009) and include:

> geochem <- readRDS("geochem.rds")
> usabkm <- readRDS("usaSkm.rds")

> str(usabkm@data)

'data.frame': 16000 obs. of 6 variables:

$ geomap : Factor w/ 17 levels "6","7","8","13",..: 9999999999 ...
$ globedem : num 266 269 279 269 269 271 284 255 253 285 ...

$ dTRI : num 0.007 0.007 0.008 0.008 0.009 ...

$ nlights03: num 6 505 015 1355 ...

$ dairp : num 0.035 0.034 0.035 0.036 0.038 ...

$ sdroads : num 0 0 5679 0 O ...

where geomap is the geological map of the USA, globeden is elevation, dTRI is the density of industrial
pollutants (based on the the pan-American Environmental Atlas of pollutants), n1ights03 is the lights at
night image from 2003, dairp is the density of traffic based on main roads and railroads and sdroads is
distance to main roads and railroads.

Since the task is to build a single model using a list of chemical elements, we need to combine all

target variables into a single regression matrix. In R this can be achieved by using:

> geochem <- spTransform(geochem, CRS(proj4string(usabkm)))
> usabkm.spc <- spc(usabkm, ~geomaptglobedem+dTRI+nlights03+dairp+sdroads)

Converting geomap to indicators...

Converting covariates to principal components...

> ov.geochem <- over(x=geochem, y=usabkm.spc@predicted)
> df.1lst <- lapply(c("PB_ICP40","CU_ICP40","K_ICP40","MG_ICP40"),
function(i){cbind(geochem@datal[,c (i, "TYPEDESC")], ov.geochem)})

Next, we rename columns that contain the target variable:

> t.vars = c("PB_ICP40", "CU_ICP40","K_ICP40","MG_ICP40")
df.1lst = lapply(t.vars, function(i){cbind(geochem@datal,c(i,"TYPEDESC")], ov.geochem)})

v

v

names (df.1st) = t.vars
> for(i in t.vars){colnames(df.1lst[[i]])[1] = "Y"}
> for(i in t.vars){df.lst[[i]]$TYPE = i}

so that all variables (now called Y) can be combined into a single regression matrix:

> rm.geochem = do.call(rbind, df.lst)

> str(rm.geochem)
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'data.frame': 11432 obs. of 25 variables:
$Y :num 9 10 10 9 16 14 8 15 11 9 ...
$ TYPE : chr "PB_ICP40" "PB_ICP40" "PB_ICP40" "PB_ICP40"

where the TYPE column carries the information of the type of variable. To this regression matrix we can

fit a RF model of the shape:

> fm.g

Y © PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + PC10 +
PC11 + PC12 + PC13 + PC14 + PC15 + PC16 + PC17 + PC18 + PC19 +
PC20 + PC21 + TYPECU_ICP40 + TYPEK_ICP40 + TYPEMG_ICP40 +
TYPEPB_ICP40 + TYPEDESCSOIL + TYPEDESCSTRM.SED.DRY +
TYPEDESCSTRM.SED.WET + TYPEDESCUNKNOWN

where PCx* are the principal components derived from covariates, TYPECU_ICP40 is an indicator variable
defining whether the variable is Cu, TYPEK_ICP40 is an indicator variable for K, TYPEDESCSOIL is
an indicator variable for soil sample (362 training points in total), and TYPEDESCSTRM. SED.WET is an
indicator variable for stream sediment sample (2233 training points in total).

The REF fitted to these data gives:
> rm.geochem.e <- rm.geochem.e[complete.cases(rm.geochem.e),]

> ml.geochem <- ranger(fm.g, rm.geochem.e, importance = "impurity")

> ml.geochem

Ranger result

Type: Regression
Number of trees: 500

Sample size: 11148
Number of independent variables: 29

Mtry: 5

Target node size: 5

Variable importance mode: impurity
00B prediction error (MSE): 1462.767

R squared (00B): 0.3975704

To predict values and generate maps we need to specify (a) type of chemical element, and (b) type of

sampling medium at the new predictions locations:

> new.usabkm = usabkm.spc@predicted@data

v

new.usabkm$TYPEDESCSOIL = 0
new.usabkm$TYPEDESCSTRM.SED.DRY
new.usabkm$TYPEDESCSTRM. SED. WET
new.usabkm$TYPEDESCUNKNOWN = O

] ]
[

v

> for(i in t.vars){
new.usabkm[,paste0("TYPE",i)] = 1
for(j in t.vars[!t.vars Jinj, i]){ new.usabkm[,pasteO("TYPE",j)] = 0 }
x <- predict(ml.geochem, new.usa5km)

usabkm@datal[,paste0(i,"_rf")] = x$predictions
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Figure 11. Predictions produced for four chemical elements (wet stream sediments) from the National
Geochemical Survey using a single multivariate RF model. The study area covers the US States Illinois
and Indiana. The spatial resolution of predictions is 5 km. Crosses indicate sampling locations.

The results of the prediction are shown in Fig. 11. From the produced maps, we can see that the spatial
patterns of the four elements are relatively independent (apart from Pb and Cu which seem to be highly
cross-correlated), even though they are based on a single RF model. Note also that, just by switching the
TYPEDES we could produce predictions for a variety of combinations of sampling conditions and chemical
elements.

A disadvantage of running multivariate models is that the data size increases rapidly and hence also
the computing intensity. For a comparison, the National Geochemical Survey comprises hundreds of
chemical elements hence the total size of training points could easily exceed several millions. In addition,
computation of model diagnostics such as variable importance becomes difficult as all variables are
included in a single model — ranger indicates an overall R-square of 0.40, but not all chemical elements
can be mapped with the same accuracy. On the other hand, it appears that extension from univariate to
multivariate spatial predictions models is fairly straightforward and can be compared to various co-kriging

techniques used in the traditional geostatistics (Pebesma, 2004).
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ws Daily precipitation Boulder (CO) data set (regression, 2D+T)
wo In the last example we look at extending 2D regression based on RFsp to spatiotemporal data, i.e.,
w1 to a 2D+4T case. For this we use a time series of daily precipitation measurements obtained from

w2 https://www.ncdc.noaa.gov for the period 2014-2017 for the area around Boulder Colorado:

> co_prec = readRDS("data/st_prec/boulder_prcp.rds")

> str(co_prec)

'data.frame': 176467 obs. of 16 variables:

$ STATION : Factor w/ 239 levels "US1COB0O0004",..: 64 64 64 64 64 64 64 64 64 64 ...

$ NAME : Factor w/ 233 levels "ALLENS PARK 1.5 ESE, CO US",..: 96 96 96 96 96 96 96 96 96 96 ...
$ LATITUDE : num 40.1 40.1 40.1 40.1 40.1 ...

$ LONGITUDE: num -105 -105 -105 -105 -105 ...

$ ELEVATION: num 1567 1567 1567 1567 1567 ...

$ DATE : Factor w/ 1462 levels "2014-11-01","2014-11-02",..: 7 13 21 35 46 67 68 69 70 75 ...

$ PRCP :num 0 0.16 0 0 0 0.01 0.02 0.02 0.02 0.01 ...

> co_locs.sp = co_prec[!duplicated(co_prec$STATION),c("STATION", "LATITUDE", "LONGITUDE")]
> coordinates(co_locs.sp) = ~ LONGITUDE + LATITUDE
> proj4string(co_locs.sp) = CRS("+proj=longlat +datum=WGS84")

403 Even though the monitoring network consists of only 225 stations, the total number of observations
sa  exceeds 170,000. Note also that daily precipitation is a zero-inflated variable, hence modeling it using
s standard model-based geostatistics is difficult (Hengl et al., 2010).

406 To represent ‘distance’ in the time domain, we use two numeric variables — cumulative days since

a7 1970 and Day of the Year (DOY):

> co_prec$cdate = floor(unclass(as.P0OSIXct (as.PO0SIXct(paste(co_prec$DATE), format="}Y-Jjm-%d")))/86400)
> co_prec$doy = as.integer(strftime(as.POSIXct (paste(co_prec$DATE), format="}Y-jm-jd"), format = "%j"))

w8 variable doy is important to represent seasonality effects while cumulative days are important to represent
w9 long term trends. We can now prepare a spatiotemporal regression matrix by combining geographical
so0 covariates, including time and additional covariates available for the area (elevation map and the long-term

s precipitation map based on the PRISM project http://www.prism.oregonstate.edu/normals/):

> co_grids <- readRDS("data/st_prec/boulder_grids.rds")

v

co_grids <- as(co_grids, "SpatialPixelsDataFrame")

co_locs.sp <- spTransform(co_locs.sp, co_grids@proj4string)

sel.co <- over(co_locs.sp, co_grids[1])

> co_locs.sp <- co_locs.sp[!is.na(sel.co$elev_1km),]

> grid.distP <- GSIF::buffer.dist(co_locs.sp["STATION"], co_grids[1], as.factor(1:nrow(co_locs.sp)))
> ov.1st <- list(co_locs.sp@data, over(co_locs.sp, grid.distP), over(co_locs.sp, co_grids))

> ov.prec <- do.call(cbind, ov.lst)

> rm.prec <- plyr::join(co_prec, ov.prec)
Joining by: STATION

> rm.prec <- rm.prec[complete.cases(rm.prec[,c("PRCP","elev_1km","cdate")]),]

502 Next, we define a spatiotemporal model as:
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> fmP <- as.formula(paste("PRCP ~ cdate + doy + elev_1lkm + PRISM_prec +", dnP))

In other words, daily precipitation is modeled as a function of the cumulative day, day of the year,
elevation, long-term annual precipitation pattern and geographical distances to stations. Further modeling

of the spatiotemporal RFsp is done the same way as with the 2D models:

> ml.prec <- ranger (fmP, rm.prec, importance = "impurity", num.trees = 150, mtry = 180)

> ml.prec

Ranger result

Type: Regression
Number of trees: 150

Sample size: 157870
Number of independent variables: 229

Mtry: 180

Target node size: 5

Variable importance mode: impurity
00B prediction error (MSE): 0.0052395
R squared (00B): 0.8511794

> x1P.g <- as.list(ml.prec$variable.importance)

> print(t(data.frame(x1P.g[order (unlist (x1P.g), decreasing=TRUE)[1:10]])))

[,1]
cdate 93.736193
doy 87.087606
PRISM_prec 2.604196
elev_1km 2.568251
layer.145 2.029082
layer.219  1.718599
layer.195  1.531632
layer.208 1.517833
layer.88 1.510936
layer.90 1.396900

The results indicate that clearly the most important covariate for predicting daily precipitation from this
study area is: time i.e. cumulative and/or day of the year. Note that, because 1-2 covariates dominate the
model, it is also important to keep mtry high (e.g. > p/2 where p is the number of independent variables),
because a standard value for mtry could result in time being systematically missed from selection and
hence in a very poor fit.

The single spatiotemporal model can now be used to predict anywhere within the spacetime domain,
which typically means producing time series of rasters contains predictions for a series of days (Fig. 12).
Note from Fig. 12 that some hot spots in the prediction error maps from previous days might propagate to
other days, which indicates spatiotemporal connection between values. This shows that RFsp connects

space and time in a similar way as the model-based geostatistics.
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DISCUSSION

Summary results
We have defined a RFsp framework for spatial and spatiotemporal prediction of sampled variables as a

data-driven modeling approach that uses three groups of covariates inside a single method:

1. geographical proximity to and composition of the sampling locations,
2. covariates describing past and current physical, chemical and biological processes,

3. spectral reflectances as direct observation of surface or sub-surface characteristics.

We have tested the RFsp framework on real data. Our tests indicate that RFsp often produces similar
predictions as OK and/or RK and does so consistently, i.e., proven through repeated case studies with
diverse distributions and properties of the target variable. In the case of zinc prediction for the Meuse
data set, the accuracy for RFsp is somewhat smaller than for OK (Fig. 6). In this case, RFsp with buffer
distances as the only covariates evidently smoothed out predictions more distinctly than kriging. As the
data size increases and as more covariate layers are added, RFsp often leads to satisfactory RMSE and
ME at validation points, while showing no spatial autocorrelation in the cross-validation residuals (Fig. 6).
This makes RFsp interesting as a generic predictor for spatial and spatiotemporal data, comparable to
state-of-the-art geostatistical techniques already available in the packages gstat and/or geoR.

Random forest has several advantages over kriging:

* There is no need to define an initial variogram, nor to fit a variogram,
* There is no need to define a search radius for kriging,
* There is no need to specify a transformation of the target variable or do any back-transformation,

e There is no need to deal with all interactions and non-linearities.

Hence, in essence, random forest requires much less expert knowledge, which has its advantages but also
disadvantages as the system can appear to be a black-box without a chance to save outputs that could be

result of artifacts in the data. Other obvious advantages of using random forests are:

* Information overlap (multicollinearity) and over-parameterization, caused by using too many
covariates, is not a problem for RFsp. In the first example we used 155 covariates to model with
155 points, and this did not lead to biased estimation because RF has built-in protections against
overfitting. RF can be used to fit models with large number of covariates, even more covariates

than observations can be used.

* Sub-setting of covariates is mostly not necessary; in the case of model-based geostatistics, over-
parameterization and/or overlap in covariates is a more serious problem as it can lead to biased

predictions.

¢ RF is resistant to noise (Strobl et al., 2007).
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* Geographical distances can be extended to more complex distances such as watershed distance

along slope lines and or visibility indices, as indicated in the Fig. 2.
Some important drawbacks of RF, on the other hand, are:

* Predicting values using RF beyond the range in the training data is not recommended as it can lead

to even poorer results than if simple linear models are used.

RF will lead to biased predictions when trained with data sets that are sampled in a biased way
(Strobl et al., 2007).

* Size of the produced models is much larger than for linear models, hence the output objects are

large.
* Estimating RF model parameters and predictions is computationally intensive.
* Derivation of buffer distances is computationally intensive and storage demanding.

We do not recommend using buffer distances as covariates with RFsp for a large number of training
points e.g. > 1000 since the number of maps that need to be produced could blow up the production
costs, and also computational complexity of such models would become cumbersome.

On the other hand, because exceptionally simple neural networks can be used to represent inherently
complex ecological systems, and because computing costs are exponentially decreasing, it can be said that
most of the generic Machine Learning techniques are in fact ‘cheap’ and have quickly become mainstream
data science methods (Lin et al., 2017). Also, we have shown that buffer distances do not have to be
derived to every single observation point — for factors it turned out that deriving distances per class
worked quite well. For numeric variables, values can be split into 10-15 classes (from low to high) and
then again distances can be only derived to low and high values. In addition, limiting the number and
complexity of trees in the random forest models (Latinne et al., 2001), e.g., from 500 to 80 often leads to
minimum losses in accuracy, so there is certainly room for reducing size and complexity of ML models

without significantly loosing on accuracy.

Is there still need for kriging?

Given the comparison results we have shown previously, we can justifiably ask whether there is still a need
for model-based geostatistics at all? Surely, fitting of spatial autocorrelation functions, i.e., variograms
will remain a valuable tool, but it does appear from the examples above that RFsp is more generic and
more flexible for automation of spatial predictions than any version of kriging. This does not mean that
students should not bother with learning principles of kriging and geostatistics. In fact, with RFsp we need
to know geostatistics more than ever, as these tools will enable us to generate more and more analyses,
and hence we will also need to boost our interpretation skills. So, in short, kriging as a spatial prediction
technique might be redundant, but solid knowledge of geostatistics and statistics in general is important
more than ever. Also with RFsp, we still needed to fit variograms for cross-validation residuals and derive
occurrence probabilities etc. All this would have been impossible without understanding principles of

spatial statistics, i.e., geostatistics.
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While we emphasize that data-driven approaches such as RF are flexible and relatively easy to use
because they need not go through a cumbersome procedure of defining and calibrating a valid geostatistical
model, we should also acknowledge the limitations of data-driven approaches. Because there is no model
one can also not inspect and interpret the calibrated model. Parameter estimation becomes essentially a
heuristic procedure that cannot be optimized, other than through cross-validation. Finally, extrapolation
with data-driven methods is more risky than with model-based approaches, in fact serious extrapolation

with RF models is not recommended at all.

Are geographic covariates needed at all?
The algorithm that is based on deriving buffer distance maps from observation points is not only computa-
tionally intensive, it also results in a large number of maps. One can easily imagine that this approach
would not be ready for operational use where > 1000 as the resources needed to do any analysis would
simply blow up. But are buffer distances needed at all? Can the geographical location and proximity of
points be included in the modeling using something less computationally intensive?

McBratney et al. (2003) have, for example, conceptualized the so-called “scorpan” model in which

soil property is modeled as a function of:
* (auxiliary) soil properties,
e climate,
* oorganisms, vegetation or fauna or human activity,
e relief,
* parent material,
* age i.e. the time factor,
* n space, spatial position,

It appears that also s and n could be represented as a function of other environmental gradients. In
fact, it can be easily shown that, as long as there are enough unique covariates available that explain
the majority of physical and chemical processes (past and current) and enough remote sensing data that
provides spectral information about the object / feature, each point on the Globe can be defined with
an unique ‘signature’, so that there is probably no need for including spatial location in the predictive
mapping at all.

In other words, as long as we are able to prepare, for example, hundreds of covariates that explain in
detail uniqueness of each location (or as long an algorithm can not find many duplicate locations with
unique signature), and as long as there are enough training point to describe spatial relations, there is
probably no need to derive buffer distances to all points at all. In the example by Ramcharan et al. (2018),
almost 400,000 points and over 300 covariates are used for training a MLA-based prediction system:
strikingly the predicted maps show kriging-like pattern with spatial proximity to points included, even

though no buffer distances were ever derived and used. It appears that any tree-based machine learning
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system that can ‘learn’ about the uniqueness of a geographical location will eventually be able to represent
geographical proximity also in the predictions. What might be still useful is to select a smaller subset of
points where hot-spots or points with high CV error appear, then derive buffer distances only to those
points and add them to the bulk of covariates.

Behrens et al. (2018) have recently discovered that, for example, DEM derivatives correlate derived
at coarser scales correlate more with some targeted soil properties than the derivatives derived as fine
scales; in this case, scale was represented through various DEM aggregation levels and filter sizes. Some
physical and chemical processes of soil formation or vegetation distribution might not be visible at finer
aggregation levels, but then become very visible at coarser aggregation levels. In fact, it seems that spatial
dependencies and interactions of the covariates can be explained simply by aggregating DEM and the
derivatives. For long time physical geographers have imagined that climate, vegetation and similar are

non-linear function of longitude and latitude; now appears also that vice versa could be also valid.

Remaining methodological problems and future directions
Even though MLA has proven to be efficient in boosting spatial prediction performance, there still remain

several methodological problems before it can be widely applied, for example:

* How to generate spatial simulations that accurately represents spatial autocorrelation structure using

RF models?

* How to produce predictions at various block support sizes — from point support data to block

support data and vice versa?

* How to account for spatial and spatiotemporal clustering of points?

Meyer et al. (2018) have recently shown that, if repeated spatial observations exist or observations that
are linked to the same location, that RF will also use that knowledge in the training process, which will
then lead to some covariates becoming ‘artificially’ more important that they should be. Consequently,
the overall accuracy estimated by ranger using Out-of-Bag samples becomes over-optimistic. In our
spatio-temporal data, for example, we have ignored the fact that meteo stations have fixed locations, but
in practice Meyer et al. (2018) have shown that this has serious effects on model training. To get a more
realistic measure of the mapping accuracy, cross-validation techniques such as the Leave-Location-Out,
as implemented in the mlr package (Bischl et al., 2016) or similar, would be thus be a better choice for
this purpose.

Although Machine Learning is often very successful in spatial prediction, we should not be over-
relaxed by its flexibility and efficiency of crunching data. Any purely data or pattern driven classifier or
regressor is a rather mechanical approch to problem solving. It ignores all of our knowledge of processes
and relationships that have been documented and proven to work over and over. It does not have an
explicit (geo)statistical model as a starting point, so that no mathematical derivations are possible at all.
Also, just adding more and more data to the system does not necessarily mean that the predictions will
automatically become better (Zhu et al., 2012). In that context, what seems a logical direction for Machine

Learning is development of hybrid use of data and model, i.e., an A.L. systems that not only mechanically
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mines data, but also mines models and knowledge and extends from testing accuracy improvements to
testing more complex measures of modeling success such as model simplicity, importance of models
across various domains of science (even testing mathematical proofs?). Such model would have been at
the order of magnitude more complex than Machine Learning, but, given the exponential growth of the

field of A.L, this might not take decades to achieve.

One model to rule them all
Given that with RF multiple variables can be predicted at once, and given that all global data from some
theme such as soil science, meteorology etc, could be put into a single harmonized and integrated database,
one could argue that, in the near future, a single machine learning model could be fitted to explain all
spatial and/or spatio-temporal patterns within some domain of science such as soil science, meteorology,
biodiversity etc. This is assuming that ALL observations and measurements within that domain have been
integrated and pre-processed / harmonized for use. Such models could potentially be used as ‘knowledge
engines’ for various scientific fields, and could be served on-demand, i.e., they would generate predictions
only if the predictions are required by the users.

These data set and models would be increasingly large. In fact, they would probably require super
computing power to update them and a high capacity network to serve them, hence the current state-of-
the-art data science might gradually move from managing Big Data only, to managing Big Data and Big

Models.

CONCLUSIONS

We have shown that random forest can be used to generate unbiased spatial predictions and model
and map uncertainty. Through several standard textbook datasets, we have shown that the predictions
produced using RFsp are often equally accurate (based on repeated cross-validation) than equivalent linear
geostatistical models. The advantages of random forest vs. linear geostatistical modeling and techniques
such as kriging, however, lies in the fact that no stationarity assumptions need to be followed, nor is there
a need to specify transformation or anisotropy parameters (or to fit variograms at all!).

This makes RF fairly attractive for automated mapping applications, especially where the point
sampling is representative (extrapolation minimized) and where relationship between the target variable,
covariates and spatial dependence structure is complex, non-linear and requires localized solutions. Some
serious disadvantage of using RFsp, on the other hand, is sensitivity to input data quality, extrapolation
problems. For RFsp also training data quality is the key to success, hence ideally samples collected
using objective sampling designs, careful cleaning of data, and exclusion of uncontrolled factors is highly
recommended. Spatial clustering or sampling bias, typos in the data or mismatches in coordinates can
result in non-nonsensical outputs, without the mapper even being aware of it.

Based on discussion above, we can recommend a two-stage framework explained in Fig. 13, as
possibly the shortest path to generating maximum mapping accuracy whilst saving the production costs.
In the first stage, initial samples are used to get an estimate of the model parameters, this initial information
is then used to optimize predictions (the second stage) so that the mapping objectives can be achieved

with minimum additional investments. The framework in Fig. 13, however, assumes that there are
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Figure 13. The recommended two-stage accuracy-driven framework for optimizing spatial predictions
based on RFsp (see also Eq. 19). In the first stage, minimum number of objectively sampled points are
used to get an initial estimate of the model. In the second stage, the exact number of samples and

sampling locations are allocated using the prediction error map, so that the mapping accuracy can be
brought towards the desired or target confidence intervals.

s (just) enough objectively sampled initial samples, that the RF error map is reliable, i.e., accurate, that

e robust cross-validation is used and a reliable RMSE decay function. Simple decay functions could be

eo7 further extended to include also objective ‘cooling’ functions as used for example in Brus and Heuvelink
ss (2007), although these could likely blow-up computational intensity. Two-stage sampling is already quite
e0 known in literature (Hsiao et al., 2000; Meerschman et al., 2011; Knotters and Brus, 2013), and further
70 optimization and automation of two-stage sampling would possibly be quite interesting to reduce mapping
701 COStS.

702 Even though we have provided comprehensive guidelines on how to implement RF for various
703

predictive mapping problems — from continuous to factor-type variables and from purely spatial to
704

spatiotemporal problems with multiple covariates — there are also still many methodological challenges,
705

such as derivation of spatial simulations, derivation of buffer distances for large point data sets etc, to be

76 solved before RFsp can become fully operational for predictive mapping.
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