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The classification of fresh fruits according to their ripeness is typically a subjective and

tedious task; consequently, there is growing interest in the use of non-contact techniques

such as those based on computer vision and machine learning. In this paper, we propose

the use of non-intrusive techniques for the classification of Cape gooseberry fruits. The

proposal is based on the use of machine learning techniques combined with different color

spaces. Given the success of techniques such as artificial neural networks,support vector

machines, decision trees, and K-nearest neighbors in addressing classification problems,

we decided to use these approaches in this research work. A sample of 926 Cape

gooseberry fruits was obtained, and fruits were classified manually according to their level

of ripeness into seven different classes. Images of each fruit were acquired in the RGB

format through a system developed for this purpose. These images were preprocessed,

filtered and segmented until the fruits were identified. For each piece of fruit, the median

color parameter values in the RGB space were obtained, and these results were

subsequently transformed into the HSV and L*a*b* color spaces. The values of each piece

of fruit in the three color spaces and their corresponding degrees of ripeness were

arranged for use in the creation, testing, and comparison of the developed classification

models. The classification of gooseberry fruits by ripening level was found to be sensitive

to both the color space used and the classification technique, e.g., the models based on

decision trees are the most accurate, and the models based on the L*a*b* color space

obtain the best mean accuracy. However, the model that best classifies the cape

gooseberry fruits based on ripeness level is that resulting from the combination of the SVM

technique and the RGB color space.
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ABSTRACT

The classification of fresh fruits according to their ripeness is typically a subjective and tedious task;

consequently, there is growing interest in the use of non-contact techniques such as those based on

computer vision and machine learning. In this paper, we propose the use of non-intrusive techniques

for the classification of Cape gooseberry fruits. The proposal is based on the use of machine learning

techniques combined with different color spaces. Given the success of techniques such as artificial neural

networks, support vector machines, decision trees, and K-nearest neighbors in addressing classification

problems, we decided to use these approaches in this research work. A sample of 926 Cape gooseberry

fruits was obtained, and fruits were classified manually according to their level of ripeness into seven

different classes. Images of each fruit were acquired in the RGB format through a system developed for

this purpose. These images were preprocessed, filtered and segmented until the fruits were identified.

For each piece of fruit, the median color parameter values in the RGB space were obtained, and these

results were subsequently transformed into the HSV and L*a*b* color spaces. The values of each piece

of fruit in the three color spaces and their corresponding degrees of ripeness were arranged for use in the

creation, testing, and comparison of the developed classification models. The classification of gooseberry

fruits by ripening level was found to be sensitive to both the color space used and the classification

technique, e.g., the models based on decision trees are the most accurate, and the models based on

the L*a*b* color space obtain the best mean accuracy. However, the model that best classifies the cape

gooseberry fruits based on ripeness level is that resulting from the combination of the SVM technique

and the RGB color space.

Keywords: Cape gooseberry, artificial neural networks, support vector machines, decision trees,

K-nearest neighbors

INTRODUCTION1

The Cape gooseberry (Physalis peruviana L.), known as the goldenberry in English-speaking countries2

and as aguaymanto in Peru, is a plant native to the South American Andes (Salazar et al., 2008; Luchese3

et al., 2015). This plant has attracted the interest of functional food markets (emerging markets of growing4

economic importance) due to its medicinal, nutritious, and pharmaceutical properties (Erkaya et al., 2012;5

Ramı́rez et al., 2013; Vásquez-Parra et al., 2013). The food industry needs to provide fruits of high and6

homogeneous quality, being necessary to improving their production methods to ensure high quality7

during manufacturing and commercialization (Benedito et al., 2006).8
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For fresh fruits, such as the Cape gooseberry, an important step in ensuring high quality is sorting,9

which is currently based on the visual inspection of color, size, and shape parameters (Zhang et al., 2014).10

However, visual inspection has certain disadvantages, as it is subjective, variable, tedious, laborious,11

inconsistent and easily influenced by the environment (Arakeri and Laksmana, 2016). Consequently, there12

is growing interest in reducing this subjectivity using innovative and non-contact measurements such13

as artificial vision systems. These types of systems measure the entire surface of the sample, making14

them more representative than colorimeters, which are based on point-to-point measurements (Chen et al.,15

2010; Romano et al., 2012; Sozer, 2016; Brosnan and Sun, 2004).16

Computer vision systems (CVSs) are currently employed in the classification of horticultural prod-17

ucts and in monitoring such products for defects and bruising (Romano et al., 2012). At present, the18

development of computer vision systems is focused on defining new methods for the evaluation of19

color and shape parameters. In this context, color receives special interest because it is an important20

sensory attribute providing necessary quality information for human perception. Consumers tend to prefer21

products that have a uniform appearance and vivid colors. Color has been closely associated with quality22

factors (ripeness, variety, and desirability) and food safety. Therefore, color is an essential element of23

classification for most food products (Castro et al., 2017; Oliveira et al., 2016; Avila et al., 2015; Wu and24

Sun, 2013).25

Each color that humans can recognize in an image is a combination of the so-called primary colors,26

red, green, and blue, which can be arranged in a color space to facilitate the specification of colors27

in a standardized and widely accepted form. In essence, a color space is the specification of a three-28

dimensional coordinate system and a subspace of this scheme in which a single point represents each29

color. Nevertheless, there is more than one color space, and each color space can be classified into30

hardware-orientated spaces, human-orientated spaces, and instrumental spaces, as proposed by Wu and31

Sun (2013).32

• Hardware-orientated spaces. These color spaces were defined based on the properties of the33

hardware devices used to reproduce the colors. In this category, the most popular color spaces are34

RGB, YIQ, and CMYK.35

• Human-orientated spaces. These color spaces are based on hue-saturation. The most popular color36

spaces in this category are HSI, HSL, HSV and HSB. These spaces correspond to the concepts37

of tint, shade, and tone, which are specified by an artist based on inherent color characteristics.38

However, as with human vision, human-orientated spaces are not sensitive to small variations in39

color and are therefore not suitable for evaluating changes in product color during processing.40

• Instrumental spaces. Color spaces such as XYZ, L*a*b*, and L*u*v* are used for color instruments.41

Unlike hardware-oriented spaces, which have different coordinates for the same color for various42

output media, the color coordinates of an instrumental space are the same on all output media.43

The main features of the color parameters based on the works in Leon et al. (2006) and Zakaluk and44

Ranjan (2006) are detailed in Table 1. As can be seen, each color space was developed for a particular45

purpose; each color space has certain advantages when used in classification and identification problems.46

Table 1. Color parameters used for classification.

Space Parameter Description

RGB

R Red measured in digital image [0, 255]

G Green measured in digital image [0, 255]

B Blue measured in digital image [0, 255]

HSV

H Hue derived from RGB [0, 360]

S Saturation derived from RGB [0, 100]

V Value derived from RGB [0, 100]

L*a*b*

L* Luminosity derived from RGB [0, 100]

a* Red/green opponent colors [-128, 127]

b* Yellow/blue opponent colors [-128, 127]
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Thus, although the systems directly provide information in the RGB space, some works, such as47

that realized by Du and Sun (2008), have aimed to determine whether there is any difference in the48

classification caused by the selected color space or by the utilized segmentation technique.49

According to Wu and Sun (2013), “In the color measurement of food, the L*a*b* color space is the50

most commonly used due to the uniform distribution of colors and because it is perceptually uniform.”51

In the image analysis process, pattern recognition is a qualitative analysis method, of which the52

supervised methods are most commonly used. Supervised learning is an automatic learning task that infers53

a function given labeled training data. In the fruit inspection industry, the support vector machine (SVM),54

k-nearest neighbor (KNN), artificial neural network (ANN), and decision tree (DT) pattern classification55

methods are the most commonly used (Arabasadi et al., 2013; Vithu and Moses, 2016).56

The use of computer vision systems to determine ripeness level has been studied for a variety of fruits,57

including apples, bananas, blueberries, dates, mangoes, and tomatoes. Table 2 summarizes the main58

studies on fruit ripening using computer vision systems. However, for the Cape gooseberry, there are no59

reports about the use of image analysis for ripeness stage classification.60

Table 2. Fruit/Vegetable ripening evaluation using expert system techniques in different color spaces.

Item Color space Processing method Accuracy Ref.

Apple HSI SVM 95 Xiaobo et al. (2007)

Apple L*a*b* MDA 100 Cárdenas-Pérez et al. (2017)

Avocado RGB K-Means 82.22 Roa Guerrero and Meneses Benavides (2014)

Banana L*a*b* LDA 98 Mendoza and Aguilera (2004)

Banana RGB ANN 96 Paulraj et al. (2009)

Blueberry RGB KNN and SK-Means 85-98 Li et al. (2014)

Date RGB K-Means 99.6 Pourdarbani et al. (2015)

Lime RGB ANN 100 Damiri and Slamet (2012)

Mango RGB SVM 96 Nandi et al. (2014)

Mango L*a*b* and HSB MDA 90 Vélez-Rivera et al. (2014)

Mango L*a*b* LS-SVM 88 Zheng and Lu (2012)

Oil palm L*a*b* ANN 91.67 Fadilah et al. (2012)

Pepper HSV SVM 93.89 Elhariri et al. (2014)

Persimmon RGB + L*a*b* QDA 90.24 Mohammadi et al. (2015)

Tomato HSV SVM 90.8 El-Bendary et al. (2015)

Tomato RGB DT 94.29 Goel and Sehgal (2015)

Tomato RGB LDA 81 Polder et al. (2002)

Tomato L*a*b* ANN 96 Rafiq et al. (2016)

Watermelon YCbCr ANN 86.51 Shah Rizam et al. (2009)

Thus, we present a novel study classifying Cape gooseberry fruits using different color spaces and61

four of the leading supervised learning techniques. The principal objective is to determine which color62

space and which method of classification are the most appropriate for classifying Cape gooseberry fruits63

according to their level of ripeness.64

MATERIALS AND METHODS65

Cape gooseberry fruit samples66

A sample of gooseberry fruits from a plantation located in El Faro village, Celendin Province, Cajamarca,67

Peru [UTM: -6.906469, -78.257071] was collected. This sample consisted of 926 Cape gooseberry fruits68

at different ripeness levels.69

Computer vision system for grading Cape gooseberries70

The hardware and software that constitute this system are described below.71

• Conveyor belt. The conveyor belt is 160 cm long, 25 cm wide, and 80 cm high. The speed is72

adjustable, and the conveyor is operated by an EPLI motor (MS 632-4 60 Hz, 0.18 KW, 0.25 HP,73

220 V, 1570 RPM).74
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• VGA webcam. The utilized webcam has the following specifications:75

– Trademark: Halion76

– Model: HA-41177

– Resolution: 1280x720 pixels78

This webcam was located 35 cm above the sample.79

The internal walls of the CVS were painted black to avoid light leakage and exterior reflections of80

the room in a method similar to that realized by Pedreschi et al. (2006).81

• Lightning source. A directional lighting system composed of two long fluorescent tubes (Philips82

TL-D Super, cold daylight, 80 cm, 36 W) was distributed symmetrically on both sides of the sample,83

and a circular fluorescent tube (Philips GX23 PH-T9, cold daylight, 21.6 cm, 22W) was located at84

the top.85

• Computer. We used a laptop (Intel(R) Pentium(R) Dual-Core CPU T4200 @ 2.00 GHz and 3.0 GB86

RAM).87

• Informatics tool for data acquisition. A computer tool was developed to control the acquisition of88

the images and their subsequent analysis. This tool was implemented using MATLAB.89

Methodology90

In subsequent sections, this methodology is described in detail.91

Data extraction92

In this step, information on the color parameters in three color spaces was collected from each fruit in the93

sample, and the sample was classified according to its ripeness grade.94

Visual classification by color. Fruits in the samples were classified according to the ripening stage in95

seven states, similar to the method used by Bravo and Osorio (2016), using the surface color as indicated96

by the NTC 4580 sensor (Colombian Technical Normative) for Cape gooseberry and the visual scale97

proposed by Fischer et al. (2005); see Figure 1.98

Figure 1. Ripeness states of Cape gooseberry.

Image acquisition and pre-processing. The steps in this stage, based partially on the methodology99

proposed by Arakeri and Laksmana (2016), are detailed below:100
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Figure 2. Images of acquisition and preprocessing stages.

• Location of samples. Fruits for each class, determined in the previous steep, were placed on the101

conveyor belt; these fruits were arranged in matrixial dispositions of four rows and between five to102

seven columns. The fruits were successively displayed on the conveyor belt until the entire class of103

fruits was completed.104

• Image acquisition. Fruits were conveyed to the corresponding area for image acquisition. The105

software component discussed in Section was used to capture the images, and each image was106

stored (see Figure 2(a)) according to the corresponding class.107

• Image enhancement. The images were enhanced by a Gaussian filter; the function shown in Eq. 1108

was used for this purpose.109

g(x,y) =
1

2πσ

e
−(x2+y2)

2σ
2 (1)

where110

g = Filtered image111

x, y = Position of pixel112

σ = Standard deviation of Gaussian filter.113

• Segmentation. The images were converted to grayscale, shown in Figure 2(c), and thresholding114

segmentation based on Eq. 2 was used. The results were images for which samples are isolated115

from background and their pixels identified, as shown in Figure 2(d).116

h(x,y) =

{

1 if g(x,y)≥ T

0 if g(x,y)< T
(2)

where117

h= Segmented image118

x, y = Position of pixel119

T = Threshold value.120
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Obtaining space color parameters. From each fruit in the segmented images, shown in Figure 2(d),121

the median values of the color parameters in the RGB color space were determined similarly to the work122

of Blasco et al. (2007). Then, these median values were converted to HSV and L*a*b* color spaces using123

the rgb2hsv and rgb2lab functions of the MATLAB software. All these values, linked to each fruit in the124

different classes, were stored in a database for the subsequent modeling stage.125

Modeling and validation126

The dataset obtained from the 926 fruits evaluated was used for the construction of the models and their127

subsequent validation. Then, to perform this stage, the dataset was divided into 70 percent (649 fruits) for128

modeling and 30 percent (277 fruits) for validation.129

Modeling. In this stage, four supervised machine learning techniques were used for modeling; these130

techniques consider the categorical labels when data entries x1,x2, . . . ,xn must be assigned to predefined131

classes C1,C2, . . ., Cm. In multi-class classification, the input is to be classified into only one of n132

non-overlapping classes. In the following paragraphs, each technique is detailed.133

• ANN. This non-linear supervised classification method uses mathematical models to simulate134

biological neural networks. A common type of ANN is the radial basis function ANN (RBF-ANN),135

which is used for classifying into different classes by finding common features between samples of136

the known feature class. This type of network has nonlinearity embedded in the transfer functions137

of its hidden-layer neurons, making the optimization of tunable parameters a linear search (Dash138

et al., 2000; Kong et al., 2016). Figure 3a shows a schematic representation of this type of ANN,139

which was proposed by Beale et al. (2012).140

The Neural Network Toolbox in MATLAB was used for the implementation of the sorting models141

based on the ANN technique. Specifically, we used the newpnn function to create and train the142

RBF-ANN, and the sim function was used for the simulation stage.143

• DT. This technique is a tree-based exemplification of the knowledge used to represent the classifica-144

tion rules. The internal nodes of a tree represent tests of an attribute; each branch represents the145

outcome of the test, and leaf nodes represent class labels. Traversing the branch from root to leaf146

node decodes the information enclosed in the form of if-then statements, and each branch leads to a147

single rule. Figure 3b shows a schematic of this technique, which was proposed by Safavian and148

Landgrebe (1991). Therefore, DT can be exploited to automatically generate the rules without the149

need of a human expert (Goel and Sehgal, 2015; Safavian and Landgrebe, 1991).150

For fitting and applying, the multi-class classifier function fitctree and predict from Matlab’s151

Machine Learning Toolbox were used.152

• SVM. SVM is a supervised non-parametric statistical learning technique that is widely used for153

classification by constructing a hyperplane or a set of hyperplanes in a high-dimensional space154

(Xiaobo et al., 2007; Nandi et al., 2014). Figure 3c shows the support vectors and the hyperplane155

separating the two classes, which are defined by squares and triangles.156

In this case, we use the fitcecoc function to fit models and the predict function to predict labels;157

both function are also implemented into Matlab’s Machine Learning Toolbox158

• KNN. KNN is a non-parametric classification technique cache of all the training data that predicts159

the response of the new sample by analyzing a certain number of the nearest neighbors in the feature160

space of the sample (Unay and Gosselin, 2007; Pourdarbani et al., 2015).161

Figure 3d shows an example of this technique. The element to be classified is the sun symbol. For162

k = 3, this object is classified as the triangle class since there is only one square and two triangles163

inside the circle that contains them. If k = 9, this object is classified as the square class since there164

are four triangles and five squares inside the outer circle.165

Again, we used MATLAB’s Machine Learning Toolbox, where the fitcknn function was used to166

train the model and the predict function was used to predict the labels.167

Validation. After obtaining the class for each fruit in the validation sample, the performance of each168

classifier and color space was determined using the confusion matrix. This technique is one of the most169
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(a) (b)

(c) (d)

Figure 3. Four supervised machine learning techniques used in this work for modeling. (a) Generalized

RBF-ANN structure; (b) Generalized DT structure; (c) SVM example; and (d) KNN example.

commonly used techniques in the machine learning community and contains information about the actual170

and predicted ratings obtained by a classification system.171

A confusion matrix has two dimensions (real and predicted). Each row represents the instances of a172

real class, while each column represents the cases of a predicted class. Table 3 shows the basic form of173

the confusion matrix for a multi-class classification problem, where Ni j represents the number of samples174

that belong to class Ci but that are classified as class C j.175

Table 3. Generalized confusion matrix for several classes.

Predicted class (C j)

C1 . . . C j . . . Cn

A
ct

u
al

cl
as

s
(C

i) C1 N1,1 . . . N1, j . . . N1,n

...
...

...
...

...
...

Ci Ni,1 . . . Ni, j . . . Ni,n

...
...

...
...

...
...

Cn Nn,1 . . . Nn, j . . . Nn,n

From the information contained in a confusion matrix, some performance measures can be defined,176

among them accuracy, precision, recall and f-measure. These measures are determined by classification177

errors made by the classifier. The terms true positive (TP), true negative (TN), false positive (FP) and178

false negative (FN) are counters used to contrast the class indicated by the classifier and the actual class,179

which are defined by Eqs. 3-6. The positive and negative terms refer to the classification produced by the180

classifier, while the expressions true and false refer to whether the classification is consistent with the181

actual value of the label.182

According to Deng et al. (2016), accuracy is the proportion of the total number of predictions that183

7/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26691v1 | CC BY 4.0 Open Access | rec: 14 Mar 2018, publ: 14 Mar 2018



were correct and is defined by Eq. 7; precision is a measure of the accuracy provided that a specific class184

has been predicted and is defined by Eq. 8; recall is a measure of the ability of a prediction model to185

select instances of a certain class from a data set and is defined by Eq. 9; and f-measure is the harmonic186

mean of precision and recall and is defined by the Eq. 10.187

T Pi = Nii (3)

FNi = ∑k = 1nNik −T Pi (4)

FPi =
n

∑
k=1

Nki −T Pi (5)

T Ni = FNi +FPi (6)

Accuracy =

n

∑
i=1

T Pi

n

∑
i=1

n

∑
j=1

Ni j

(7)

Precisioni =
T Pi

T Pi +FPi

(8)

Recalli =
T Pi

T Pi +FNi

(9)

F-Measurei = 2×
Precisioni ×Recalli

Precisioni +Recalli
(10)

To measure the influence that color space may have on the results of a classification technique, exten-188

sive experimentation was carried out, in which the general precision obtained by the degree of ripening189

for Cape gooseberry fruits was compared for each combination of color parameters and classification190

techniques. For each of the twelve combinations of the proposed machine learning techniques (ANN, DT,191

SVM, and KNN) and the selected color spaces (RGB, HSV, and L*a*b*), the performance measures were192

determined using Eqs. 7-10. In this work, we take the f-measure as the main measure for analysis.193

RESULTS194

Cape gooseberry color during ripening195

The color parameter values for each color space are shown in Figure 4. As observed in Figure 4a, the196

parameter R presents an upward trend throughout the ripening process, starting at 75 and increasing to a197

maximum value of 150. In contrast, the parameter G begins at 89 and ends at 63, and the parameter B198

shows some variation between 0 and 45.199

For the HSV color space, Figure 4b shows that the parameter H exhibits a downward trend starting200

at 0.19 and ending at 0.07. The parameter S shows a little variability, with median values fluctuating201

between 0.98 and 1. Finally, the parameter V exhibits an upward trend throughout the maturation process,202

with a minimum value of 0.35 and maximum of 0.60.203

Concerning the L*a*b* color space, Figure 4c shows that the parameter L* presents slight variability,204

oscillating between 36.5 and 45.3. The parameter a* has an upward trend that starts at -17.37 and reaches205

a maximum of 32.39. Finally, the parameter b* fluctuates between 41.48 and 51.53.206

8/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26691v1 | CC BY 4.0 Open Access | rec: 14 Mar 2018, publ: 14 Mar 2018



(a) (b) (c)

Figure 4. Color spaces for Cape gooseberry at different ripeness levels. (a) RGB; (b) SV M; and (c)

L∗a∗b∗.

Table 4. Color parameters in L*a*b* space in ripeness stage.

Parameter Obtained
Source

Vásquez-Parra et al. (2013) Puente et al. (2011)

L* 38.11 ± 3.89 54.04 ± 0.34 71.37 ± 1.10

a* 32.40 ± 3.89 23.67 ± 0.30 15.20 ± 0.48

b* 48.05 ± 3.81 59.85 ± 0.29 61.76 ± 1.34

Mean ± standard deviation.

Model evaluation207

The results of the twelve classification models proposed in this research are shown in Tables 5-8, where208

each table groups the results by machine learning techniques.209

Table 5 shows the results of the evaluation of the models based on the ANN technique; obtaining210

accuracy between 50.18% and 75.75% for L*a*b* and HSV color-based models.211

Table 5. Confusion matrix for ANN model using three color spaces.

RGB Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Metrics

Class 1 30 1 0 0 0 0 0 Precision 69,97 %

Class 2 13 17 5 0 0 0 0 Recall 74,97 %

Class 3 10 3 18 2 1 0 0 Specificity 76,67 %

Class 4 5 0 3 19 5 0 0 F-Measure 76,44 %

Class 5 8 0 0 3 33 6 0

Class 6 3 0 0 0 11 27 2

Class 7 6 0 0 0 0 12 34

HSV

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 3 19 10 1 2 0 0 Precision 51,21 %

Class 3 0 4 10 2 16 0 2 Recall 44,55 %

Class 4 0 4 0 14 5 0 9 Specificity 49,38 %

Class 5 0 0 0 0 34 0 16 F-Measure 56,38 %

Class 6 0 1 0 0 28 0 14

Class 7 0 0 0 2 19 0 31

L*a*b*

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 0 23 11 1 0 0 0 Precision 76,73 %

Class 3 0 2 28 4 0 0 0 Recall 73,37 %

Class 4 0 0 6 18 7 1 0 Specificity 69,65 %

Class 5 1 0 2 3 37 7 0 F-Measure 72,17 %

Class 6 0 0 0 2 9 28 4

Class 7 0 0 0 1 0 7 44

Table 6 shows the results obtained by the DT technique. The DT model based on the L*a*b* color212

space achieves better accuracy (75.09%). Although, the results of the models based on the RGB and SVM213

color spaces achieved accuracies very close to those obtained by the model based on the L*a*b* color214
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space (RGB = 72.92 and HSV = 74.37).215

Table 6. Confusion matrix for DT model using three color spaces.

RGB Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 1 26 8 0 0 0 0 Precision 74,45 %

Class 3 0 4 26 3 1 0 0 Recall 70,71 %

Class 4 0 0 6 21 3 2 0 Specificity 73,40 %

Class 5 0 1 3 7 27 12 0 F-Measure 78,36 %

Class 6 0 0 1 1 6 30 5

Class 7 0 0 0 1 0 10 41

HSV

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 0 24 11 0 0 0 0 Precision 76,00 %

Class 3 0 3 27 3 1 0 0 Recall 72,00 %

Class 4 0 0 5 19 7 1 0 Specificity 73,85 %

Class 5 0 0 1 2 40 7 0 F-Measure 79,56 %

Class 6 0 0 0 1 10 21 11

Class 7 0 0 0 0 0 8 44

L*a*b*

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 0 22 12 0 1 0 0 Precision 77,35 %

Class 3 0 1 24 5 4 0 0 Recall 73,58 %

Class 4 0 0 5 21 6 0 0 Specificity 69,16 %

Class 5 0 0 5 4 34 7 0 F-Measure 73,41 %

Class 6 0 0 0 0 9 28 6

Class 7 0 0 0 0 0 4 48

Table 7 presents the results of the SVM models In this the SVM model based on the RGB color space216

obtained the best accuracy (79.42%). The model based on the L*a*b* color space obtained an accuracy217

of 77.62%, which is very close to that achieved by the model based on RGB. However, the model based218

on the HSV color space yielded poor results (accuracy = 33.57%).219

Table 7. Confusion matrix for SVM model using three color spaces.

RGB Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 0 24 11 0 0 0 0 Precision 80,82 %

Class 3 0 1 28 4 1 0 0 Recall 77,62 %

Class 4 0 0 6 22 3 1 0 Specificity 78,29 %

Class 5 0 0 1 6 39 4 0 F-Measure 76,47 %

Class 6 0 0 0 0 7 31 5

Class 7 0 0 0 0 0 7 45

HSV

Class 1 18 13 0 0 0 0 0 Metrics

Class 2 0 23 0 0 0 0 12 Precision 24,93 %

Class 3 0 4 0 0 1 0 29 Recall 12,42 %

Class 4 0 6 0 0 0 0 26 Specificity 20,75 %

Class 5 0 0 0 0 0 0 50 F-Measure 36,19 %

Class 6 0 0 0 0 0 0 43

Class 7 0 0 0 0 0 0 52

L*a*b*

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 0 25 10 0 0 0 0 Precision 79,06 %

Class 3 0 2 28 4 0 0 0 Recall 75,57 %

Class 4 0 0 6 19 4 3 0 Specificity 72,17 %

Class 5 0 0 1 4 39 6 0 F-Measure 74,66 %

Class 6 0 0 0 0 7 30 6

Class 7 0 0 0 0 0 9 43
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As seen in Table 8, the model based on the L*a*b* color space obtained the best accuracy (75.81).220

However, the results of the models based on the RGB and SVM color spaces reported accuracy results very221

close to those obtained by the model based on the L*a*b* color space (RGB = 72.56 and HSV = 72.92).222

Table 8. Confusion matrix for KNN model using three color spaces.

RGB Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 30 1 0 0 0 0 0 Metrics

Class 2 2 22 10 1 0 0 0 Precision 74,66 %

Class 3 0 4 25 3 2 0 0 Recall 71,47 %

Class 4 0 1 4 21 6 0 0 Specificity 74,52 %

Class 5 0 0 0 3 40 7 0 F-Measure 76,86 %

Class 6 0 0 0 1 12 28 2

Class 7 0 0 0 1 0 16 35

HSV

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 1 25 9 0 0 0 0 Precision 74,08 %

Class 3 0 7 21 2 4 0 0 Recall 70,28 %

Class 4 0 0 4 22 5 1 0 Specificity 73,93 %

Class 5 0 0 0 4 39 7 0 F-Measure 78,97 %

Class 6 0 0 0 1 13 23 6

Class 7 0 0 0 0 0 11 41

L*a*b*

Class 1 31 0 0 0 0 0 0 Metrics

Class 2 0 23 11 1 0 0 0 Precision 77,26 %

Class 3 0 2 28 4 0 0 0 Recall 73,47 %

Class 4 0 0 6 18 7 1 0 Specificity 69,76 %

Class 5 0 0 2 3 38 7 0 F-Measure 72,31 %

Class 6 0 0 0 2 9 28 4

Class 7 0 0 0 1 0 7 44

In Figure 5, a summary of the results of this research work is shown, primarily using the f-measure223

for analysis. Each of the twelve proposed classification models obtained different f-measures. The SVM224

model with the HSV color space exhibited the worst results (f-measure = 24.24%). The models based on225

the KNN and DT techniques yielded good results regardless of the color space used (f-measure > 73%);226

between these two techniques, the DT model obtained slightly better results. Additionally, the models227

based on the L*a*b* color space give good results (f-measure > 75%).228

Figure 5. F-measure analysis.

Finally, for the classification of Cape gooseberry fruits by level of ripeness, the best model is that229

based on the SVM technique and the RGB color space. This model obtains an f-measure = 79.58%.230
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DISCUSSION231

As explained in Itle and Kabelka (2009) and Cárdenas-Pérez et al. (2017), changes in the parameters L*,232

a* and b* are associated with increases in carotenoid levels and a loss of chlorophyll in the pericarp. In233

this sense Table 4 compares the median values for the L*a*b* space obtained in this work against Puente234

et al. (2011) and Vásquez-Parra et al. (2013).The differences in the L*a*b* parameters obtained in this235

research and previous reports are because the cultivar, ripeness stage or cultivation procedure for each236

sample was different in each study, as suggested by Oliveira et al. (2016).237

Understanding that changes in the different color parameters are related to ripening stage is needy to238

evaluate the accuracy of each technique according to color space used for a classifier, so:239

• ANN. This technique has already been successfully used to classify fruits according to their level of240

ripeness. Some examples of the use of this technique can be found in the following works: Paulraj241

et al. (2009), Damiri and Slamet (2012), Fadilah et al. (2012), and Shah Rizam et al. (2009). As can242

be seen in Table 5, the accuracy of the ANN models is significantly influenced by the chosen color243

space. The ANN model based on the L*a*b* color space obtained suitable accuracy (75.45%) in244

the Cape gooseberry fruit classification, which agrees with the results obtained by Fadilah et al.245

(2012).246

• DT. It was successfully used by Goel and Sehgal (2015) to classify tomatoes according to their247

ripeness level using RGB color space and was capable of classifying the fruits with an accuracy of248

94.29%. In our case, in addition to the RGB color space-based model, we built models for the HSV249

and L*a*b* color spaces, observing that color space slightly influences the quality of the results.250

• SVM. The SVM technique has been used by Xiaobo et al. (2007) to classify apples using the HSI251

color space. In combination with the RGB color space, Nandi et al. (2014) used SVM to classify252

pieces of mango fruit. In both studies, it was possible to classify the fruits with an accuracy greater253

than 95%. In our case the best accuracy was 79.42% for RGB space color model and the poor254

(accuracy = 33.57%) for the HSV color space.255

• KNN. Many studies have achieved results with excellent levels of accuracy; e.g., Unay and Gosselin256

(2007) classified apple stems with an accuracy of up to 99%. Regarding problems related to the257

classification of fruits according to their maturation degree, Li et al. (2014) presented the results of258

their study on identifying blueberries in different stages of growth. Among the classification models259

constructed in their work, the model based on the KNN technique obtained the best accuracy (86%)260

using the RGB color space. Our results using L*a*b* color spaces shown the best accuracy (75.81261

%), and similar results for RGB and SVM (RGB = 72.56 and HSV = 72.92).262

As shown in Tables 5-8, the classification of Cape gooseberry fruits by the degree of ripeness is263

sensitive to both the color space used and the classification technique used. In this sense, the mean264

accuracy obtained for RGB, HSV, and L*a*b* were 72.29%, 57.76%, and 75.99% respectively. These265

results are similar to those reported by Blasco et al. (2007), who used the LDA classifier and found266

that RGB and L*a*b* present similar and slightly higher accuracy values compared to those obtained in267

L*u*v* space.268

CONCLUSIONS269

The purpose of this research was to develop a non-intrusive system for classifying gooseberry fruits270

according to their degree of maturity. Twelve classification models were developed. These models were271

the result of combining four machine learning techniques (ANN, KNN, DT, and SVM) and three color272

spaces (RGB, HSV, and L*a*b*).273

The choice of color space was found to influence the accuracy of the sorting systems, and this dynamic274

is observed mainly in the models based on the ANN and SVM techniques. Meanwhile, the models based275

on the KNN and DT techniques yielded good results regardless of the color space used. On the other hand,276

the models based on the L*a*b* color space produced good results regardless of the machine learning277

technique employed. However, the classifier developed from the SVM technique and RGB color space278

gave the best performance in terms of accuracy and f-measure ratios.279

Future works should evaluate the use of different color spaces associatively to determine whether280

synergies exist in the ripening classification process.281
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