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Pavocosa sp. (Lycosidae) burrows found in an open sparsely vegetated area on the edge of

the saline lake the <Gran Salitral=, in central Argentina, are described. Burrows were

studied by capturing the occupant and casting them with dental plaster. The hosting

sediments and vegetation were also characterized. Inhabited Pavocosa sp. burrows display

distinctive features as open, cylindrical, nearly vertical, silk lined shafts about 120 mm

long, subcircular entrances, a gradual downward widening, and a particularly distinctive

surface ornamentation in the form of sets of two linear parallel marks at a high angle to

the burrow axis. Instead, casts of vacated Pavocosa sp. burrows showed some

disturbances caused either by the reoccupation by another organism or by predation of

the dweller. Two morphologies are related to reoccupation of burrows: those with a

structure in form of an "umbrella= and another with smaller excavations at the bottom of

the burrow. Predation by armadillos produces funnel-shaped burrows. Both active and

abandoned Pavocosa sp. burrow casts are compared with existing ichnogenera and its

distinction is discussed. It is argued that key features like the presence of a neck, a

downward widening and the surface texture will allow recognition of wolf spider burrows in

the fossil record. Fossil wolf spiders are recorded since the Paleogene (possibly Late

Cretaceous), so Cenozoic continental rocks can contain wolf spider burrows awaiting

recognition. In addition, the particular distribution of Pavocosa sp. in saline lakes may

imply that this type of burrows are linked to saline environments.
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19 ABSTRACT

20 Pavocosa sp. (Lycosidae) burrows found in an open sparsely vegetated area on the edge of the 

21 saline lake the <Gran Salitral=, in central Argentina, are described. Burrows were studied by 

22 capturing the occupant and casting them with dental plaster. The hosting sediments and 

23 vegetation were also characterized. Inhabited Pavocosa sp. burrows display distinctive features 

24 as open, cylindrical, nearly vertical, silk lined shafts about 120 mm long, subcircular entrances, a 

25 gradual downward widening, and a particularly distinctive surface ornamentation in the form of 

26 sets of two linear parallel marks at a high angle to the burrow axis. Instead, casts of vacated 

27 Pavocosa sp. burrows showed some disturbances caused either by the reoccupation by another 

28 organism or by predation of the dweller. Two morphologies are related to reoccupation of 

29 burrows: those with a structure in form of an "umbrella= and another with smaller excavations at 

30 the bottom of the burrow. Predation by armadillos produces funnel-shaped burrows. Both active 

31 and abandoned Pavocosa sp. burrow casts are compared with existing ichnogenera and its 

32 distinction is discussed. It is argued that key features like the presence of a neck, a downward 

33 widening and the surface texture will allow recognition of wolf spider burrows in the fossil 

34 record. Fossil wolf spiders are recorded since the Paleogene (possibly Late Cretaceous), so 

35 Cenozoic continental rocks can contain wolf spider burrows awaiting recognition. In addition, 

36 the particular distribution of Pavocosa sp. in saline lakes may imply that this type of burrows are 

37 linked to saline environments. 

38 Keywords: spider burrow; neoichnology; wolf spiders; predation; burrow reoccupation; 

39 saline lake

40

41 INTRODUCTION
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42 Araneae (recorded since the Devonian) is the most diverse order within arachnids with around 

43 47,000 described extant species (World Spider Catalog, 2017). Due to striking adaptations such 

44 as silk production and a complex behavior (e.g. construction of hunting webs), Araneae has 

45 become a highly successful group that is present in almost all environments (Murphy et al., 

46 2006; Garrison et al., 2016). Burrow construction in spiders is considered a primary adaptation as 

47 a retreat from high temperatures and dry air conditions typical of arid environments (e.g., 

48 Cloudsley-Thompson, 1983; Punzo, 2000). Important functions as dwelling, nesting, mating, 

49 breeding, and foraging are also related to burrows (e.g., Marshall, 1996; Aisenberg, Viera & 

50 Costa, 2007; Hils & Hembree, 2015; Uchman, Vrenozi & Muceku, 2017).

51 In general, modern spider burrows consist of vertical or oblique, simple or branched vertical 

52 forms, sometimes with a terminal chamber, in some cases silk lined, and structures atop as trap 

53 doors or a turret can be found (e.g., Ractliffe & Fagerstrom, 1980; Bryson, 1939; Hils & 

54 Hembree, 2015; Uchman, Vrenozi & Muceku, 2017). Among the burrowing spiders, those of the 

55 wolf spiders (Lycosidae) tend to produce a nearly vertical burrow with or without a terminal 

56 chamber in flat terrain, whereas many trapdoor spider burrows (families Nemesiidae, Ctenizidae, 

57 Antrodiaetidae) are at an oblique angle and located on inclined surfaces (Uchman, Vrenozi & 

58 Muceku, 2017). This simple morphology can be comparable to the ichnogenenera Skolithos 

59 Hadelman, 1840 or Cylindricum Linck, 1949 (Smith et al., 2008; Hils & Hembree, 2015;), the 

60 Y- shaped forms to Psilonichnus Fürsich, 1981 (Uchman, Vrenozi & Muceku, 2017), and those 

61 with a terminal chamber to Macanopsis Macsotay, 1967 (Hasiotis, 2006; Miku[ & Uchman, 

62 2012; Hils & Hembree, 2015; Uchman, Vrenozi & Muceku, 2017).

63 Significant research related to burrow construction in wolf spiders has been made, but mainly 

64 focused on biological and ecological aspects (e.g. Hancock, 1899; Marshall, 1996; Aisenberg, 
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65 Viera & Costa, 2007; Carrel, 2008; Suter, Stratton & Miller, 2011; De Simone, Aisenberg & 

66 Peretti,2015; Foelix et al., 2016, 2017; Framenau & Hudson, 2017). In addition to the pionner 

67 contributions by Bryson (1939), Ahlbrandt et al. (1978), and Ractliffe and Fagerstrom (1980), 

68 recent neoichnological studies has paid attention to the morphology of spider burrows (Hils & 

69 Hembree, 2015; Hembree, 2017; Uchman, Vrenozi & Muceku, 2017). These studies rely 

70 essentially on the overall morphology as a clue for recognition of spider burrows in general, 

71 including those of Lycosidae. 

72 Similarly, probable spider burrows in the fossil record are scarce and its identification was 

73 always based on general morphology. The oldest record is controversial and based on poorly 

74 preserved simple vertical hollows from the Eocene of northern France, first considered worm 

75 burrows (Polychaeta) and later assigned to trapdoor spiders, in both cases named using biological 

76 names for a trace fossil (see details in Dunlop & Braddy, 2011). The same material was latter 

77 incorrectly referred to Oichnus Bromley, 1981 by Dunlop and Braddy (2011), an ichnogenus 

78 reserved for bioerosion structures on calcareous skeletons (Wisshak et al., 2015). Skolithos isp. 1 

79 from the Mio-Pliocene fluvial sediments of Brazil was compared with Lycosidae burrows due to 

80 its overall morphology (Fernandes, Borghi & Carvalho, 1992). Pleistocene and Holocene 

81 carbonate eolianites from Bahamas and Yucatán contains Skolithos linearis that were tentatively 

82 assigned to arachnids and/or insects (White & Curran, 1988; Curran & White, 1991, 2001). 

83 Finally, a burrow in Pleistocene clastic sediments of the Simpson Desert in Australia (Hasiotis, 

84 2007), was attributed to wolf spiders. 

85 The purposes of this work are 1) the identification of ichnological signatures of the burrows 

86 produced by Pavocosa sp. (Lycosidae) that may facilitate identification of wolf spider burrows in 

87 the fossil record, and 2) to discuss its environmental distribution.
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88

89 Previous descriptions of modern wolf spider burrows

90 The first work unequivocally related to burrows of wolf spiders was <The castle 3 building 

91 spider= from Illinois (USA) published by Hancock (1899). This paper describes in detail the 

92 burrows produced by Geolycosa domifex (=Lycosa domifex), explaining important aspects as 

93 materials and the methods of construction. Geolycosa domifex burrows are described as vertical 

94 shafts, unless obstacles cause some deviation (Fig. 1A). Ractliffe and Fagerstrom (1980), in his 

95 widely cited work on traces found in Holocene floodplains, described spider burrows in general 

96 (assigned to Ctenizidae, Antrodiaetidae, Theraphosidae and Lycosidae) as simple or branched 

97 tunnels, sometimes with side chambers that are separated of the main tunnel by hinged doors 

98 (Fig. 1B). Burrows of Geolycosa xera archboldi McCrone 1963 and G. hubbelli Wallace 1942 

99 from Florida, USA, are illustrated as vertical shafts showing a gradual transition between the 

100 shaft and the terminal chamber (Fig. 1C-D) (Carrel, 2008). Geolycosa missouriensis Banks, 1895 

101 burrows from Mississippi, USA, are described as vertical forms, narrower at the surface and 

102 broader near the bottom, sometimes with a conspicuously enlarged chamber at the bottom (Fig. 

103 1E) (Suter, Stratton & Miller, 2011). Geolycosa sp. burrows from India, exhibited a contrasting 

104 morphology in comparison with previous records of wolf spiders. These burrows were complex 

105 with a U-shaped form, two chambers (located one at the entrance and the other at the end of the 

106 burrow), and shallow hollows described as drainages or prey traps (Fig. 1F) (Chikhale et al., 

107 2013). Albín, Simó and Aisenberg (2015), reported different burrows morphologies produced by 

108 Allocosa brasiliensis Petrunkevitch 1910 from Uruguay, linking these variations in the 

109 morphology to the development stage and sex of the spider that produce them. These authors 

110 described burrows with a simple vertical shaft and a terminal chamber produced by adults, 

111 shallow capsules by virgin females, and Y-shaped burrows by male juveniles (Fig. 1G). Hils and 
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112 Hembree (2015), through experimental neoichnological studies, recorded four burrow 

113 morphologies produced by Hogna lenta Hentz, 1844 (Lycosidae): vertical shafts, vertical shafts 

114 with a terminal chamber, sub-vertical shafts, and Y-shaped burrows (Fig. 1H). Geolycosa 

115 vultuosa Koch, 1838 burrows from Albania are characterized as vertical to subvertical, slightly 

116 curved or straight shafts with a basal chamber, showing either a gradual transition between the 

117 shaft and the basal chamber or a well delineated chamber (Vrenozi & Uchman, 2015). In a 

118 taxonomic revision of the halotolerant wolf spider genus Tetralycosa Roewer, 1960 (Framenau 

119 & Hudson, 2017); the burrows of three species (T. alteripa McKay 1976, T. williamsi Framenau 

120 & Hudson 2017, and T. eyrei Hickman 1944) were described. Tetralycosa burrows are vertical 

121 shafts with an offset (a curvature) at mid-depth, which are later modified by backfilling the upper 

122 part and creating a new exit oriented in the opposite direction (Fig. 1I) (Framenau & Hudson, 

123 2017). Allocosa senex (Mello-Leitão, 1945) burrows from Uruguay are also simple vertical 

124 shafts with a downward widening (Fig. 1J) (Foelix et al., 2017). Finally, the burrows of Trochosa 

125 hispanica Simon, 1870 from Albania (Fig. 1K) were described as simple, vertical shafts with a 

126 terminal chamber (Uchman, Vrenozi & Muceku, 2017). 

127 From the previous account, it is clear that the most common wolf-spider burrow shape are near-

128 vertical cylinders with a rounded end that increase progressively in width downward, vertical 

129 shafts with a terminal chamber, and Y shaped burrows. Hasiotis (2006) also suggested that 

130 horizontal burrows systems with a pustulose ornamentation are produced by spiders, however, 

131 the illustrated burrow system (Hasiotis, 2002, p. 114, figure B) is typical of surface burrows 

132 produced by Grillotalpidae (e.g., Chamberlain, 1975). Figure 1 also highlight that the burrows 

133 produced under experimental conditions (Fig. 1H) contrast markedly with the remaining ones 

134 excavated in natural conditions. 
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135

136 MATERIALS AND METHODS

137 We studied burrows produced by Pavocosa sp. found on the edge of sparsely vegetated sandflat 

138 of the Gran Salitral saline lake located in southwest La Pampa province, Argentina 

139 (37°24'18.40"S, 67°12'13.57"W) (Fig. 2A-B). This saline lake is placed in the subregion of 

140 alluvial plains of the Atuel-Salado rivers, characterized by a flat relief and sandy sediments, 

141 under a semiarid climate and with halophyte vegetation (Fig. 2C) (INTA- UNLPam, 1980). The 

142 mean monthly temperature ranges between 6.9 °C in July and 24.6 °C in January, and the mean 

143 annual precipitation is 340 mm, in both cases for the period 1961-1980 (INTA- UNLPam, 1980).

144 Observations were conducted during three field trips in October-2016 (early spring, mean 

145 monthly temperature for 2016: 15.4º, and the total monthly precipitation was 140 mm), 

146 December-2016 (late spring, mean monthly temperature for 2016: 23.1°C, with no 

147 precipitations) and February-2017 (summer, mean monthly temperature for 2017: 24.7°C, and 

148 precipitation was 22 mm). Rain data from Policía de la Provincia de la Pampa 

149 (http://www.policia.lapampa.gov.ar/contenidos/ver/lluvias); and temperature from Servicio 

150 Meteorológico Nacional (www.smn.gov.ar), in both cases for the nearby 25 de Mayo  and Puelén 

151 towns. 

152 Sandflat sediments were logged in a shallow pit using standard sedimentological methods, and 

153 samples were taken for grain size and carbonate content analysis. Carbonate content of sediment 

154 samples was estimated using the Digital Calcimeter "NETTO=. Grain size analyses of sediment 

155 samples were obtained by a laser particle size counter Malvern Mastersizer 2000®, prior to 

156 elimination of organic matter and carbonates, at the Laboratorio de Sedimentología of the 

157 Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa. 
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158 A total of nine burrows were casted using dental plaster and three spiders found inside the 

159 burrows were collected for identification. Measurements on casts taken were the total length (L), 

160 neck length (NL), the minimum (mD) and maximum diameter (MD), and the angle of inclination 

161 (A); the measures of sets of surface ridges preserved on the cast, that are the length, the width, 

162 and the orientation in relation to the principal axis of the burrow (See Fig. 3). We also measured 

163 the entrance diameter (ED) from field photographs.

164 A 3D model of the burrows was generated based on photographs taken with a Lumix DMC-

165 FZ70 camera and processed in the software Agisoft Photoscan Professional v.1.4.6. The resulting 

166 models were export in OBJ files to Adobe Photoshop CC 2017 and converted to U3D files (a 

167 standard format for 3D), to compose a PDF file for easier visualization.

168 The casts and spider specimens collected were stored in the <Colección Paleontológica de la 

169 Facultad de Ciencias Exactas y Naturales= of the Universidad Nacional de La Pampa (acronym 

170 GHUNLPam), and one of the Pavocosa sp. specimens in the Museo Argentino de Ciencias 

171 Naturales <Bernardino Rivadavia= (acronym MACN- Ar). The specimens were preserved in 

172 EtOH 80%; photographs of preserved specimens were taken with a Leica DFC 290 digital 

173 camera mounted on a Leica M165 C stereoscopic microscope. Images taken in different focal 

174 planes were combined with Helicon Focus 4.62 Pro (www.heliconsoft.com). The width between 

175 the fangs of chelicera in spider specimens was measured for comparison with the marks 

176 preserved in the casts. 

177

178 RESULTS

179 Ocurrence of Pavocosa sp. burrows

180 In early spring (October, 2016), there were frequent rains, and abundant burrow entrances of 

181 similar size were observed in the sandflat surface. Spider burrows were found in a sparsely 
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182 vegetated sandflat (0 to 10% of plant coverage), with the only presence of a small halophyte 

183 shrub Heterostachys ritteriana Ungern-Sternberg, 1876 (Fig. 4A). The burrows were simple 

184 vertical and silk lined forms (Fig. 4B), either open covered with a thin ring of silk (Fig. 4C) or 

185 partially closed with a plug of silk and sediment pellets (Fig. 4D). Surrounding the burrow (in a 

186 radius of up to 64 cm) abundant small spherical sediment pellets were observed (with a density 

187 of up to 290 pellets/ m2) (Fig. 4F), at this time no casts were made. In late spring (December, 

188 2016) burrow density was lower, all restricted to a small area on the edge of the saline lake with 

189 sparse vegetation at the boundary with the bare sandflat. A total of eight casts were obtained, five 

190 were inhabited burrows, while the remaining were abandoned. The inhabited burrows showed up 

191 two sacs of eggs in the lowermost part (Fig.4E). During the field trip conducted in summer 

192 (February, 2017), very few burrows were observed, all open and partially filled with some sand, 

193 they seem to be uninhabited for a long time. At this time only one uninhabited burrow was 

194 casted.

195

196 Sandflat sediments

197 The pit dug in the saline sandflat where the burrows occur was 60 cm deep (Fig. 5A). The 

198 uppermost bed (# 1) is 13 cm thick and mainly composed of poorly-sorted pale yellowish brown 

199 (10 YR 6/2) silty sand containing 0.9 % CO3 -2 (Figs. 5B, 5C). The lower 5 cm of bed 1 exhibits 

200 thin diffuse evaporite laminae and a mud lamina. This bed contained the studied Pavocosa sp. 

201 burrows. Bed 2 (7 cm thick) is poorly-sorted moderate yellowish brown (10 YR 5/4) silty sand, 

202 with massive structure and 0.8% CO3 -2. Bed 3 (5 cm thick) is very poorly-sorted, dark yellowish 

203 brown (10 YR 4/2), silty sand with massive structure, containing 1.4% CO3 -2 and small (2 mm) 

204 gastropod shells comparable with Heleobia Stimpson, 1865. The 27 cm thick bed 4 is very 
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205 poorly-sorted, massive, moderate brown (5 YR 4/4), sandy silt containing 0.6% CO3 -2. The 6 

206 cm thick lowermost bed (# 5), is mainly composed of fine-grained, pale yellowish brown (10 YR 

207 6/2) sand with abundant carbonate cement that matches with the water table. Field work was 

208 conducted in rainy days, however, the water table was well below the bottom of Pavocosa sp. 

209 burrows (about 40445 cm below).

210

211 Producer of the burrows: Pavocosa sp.

212 Although the genus Pavocosa Roewer, 1960 was never reviewed, and its composition was 

213 recently questioned (Toscano-Gadea & Costa, 2016), the inclusion of the material studied as an 

214 undescribed species of Pavocosa was possible thought the comparison of the males and females 

215 of Pavocosa gallopavo (Mello-Leitão, 1941) (Figs. 6A, 6C), the type species of the genus. The 

216 male holotype of P. gallopavo (MLP-15065) and females from MACN collection were examined 

217 and shares with Pavocosa sp. (Figs. 6B, 6D) the presence of deep furrows on the atrium, parallel 

218 to the median septum of the female epigyne and the coloration pattern (Figs. 6A, 6B), characters 

219 probably diagnostic of the genus (Piacentini et al. unpublished data). The enlarged posterior eyes 

220 in Pavocosa sp. and the shape of the genitalia are clearly distinctive from P. gallopavo. The 

221 fangs of specimens captured inside the burrows (n=3) are seprated about 3.9 mm -4.6 mm 

222 (Fig.7H).

223 Additional material from Córdoba (Salinas Grandes, 29°50939= S, 64°40916= W), Santiago del 

224 Estero and San Luis (Pampa de las Salinas; 32°12919= S, 64°39913= W) were recorded from 

225 MACN-Ar collection (23503, 23505 to 23513, 24096, and 38710), all from saline environments. 

226 The burrows of representatives from Córdoba (A. Peretti, C. Mattoni and M. Izquierdo, personal 

227 communication, 2008) and San Luis (M. Ramírez pers communication, 2016) are very similar to 
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228 those described on this work. 

229

230 Pavocosa sp. burrows

231 The inhabited burrow (n=5) (Figs. 7A-E) are simple, vertical and circular shafts with an 

232 inclination of the main axis of 72°488° (average: 80°), the length ranges from 115 to 130 mm 

233 (average: 120 mm). The diameter gradually increases from an upper narrow neck that is 12 to 15 

234 mm wide (average 14 mm) and 548 mm long (average 6 mm), to a maximum diameter in the 

235 lower half ranging from 18 to 28 mm (average 23 mm). The outline of the entrance and cross-

236 section of the maximum diameter of the burrows are subcircular. In average, the widest part of 

237 the burrow is 64 % larger than the neck. The burrow cast surface exhibits sparse ornamentation 

238 in the form sets of two linear parallel ridges (Fig. 7F-G) about 2.844.4 mm long (average 3.4 

239 mm, n=16) and 2.24 4.5 mm wide (average: 3.4 mm, n= 14) aligned almost perpendicular 

240 (range: 42°489°, average: 64°, n=14) to the main axis of the burrow. The supplementary 

241 material contains interactive PDF files of each Pavocosa sp. burrow casts.

242

243 Modified Pavocosa sp. burrows 

244 Uninhabited Pavocosa sp. burrows (n=4) (Fig. 8) display some kind of modification in its overall 

245 form (Fig. 6A-D) (see Supplementary Material for interactive 3D models of each cast). All are 

246 composed of a highly inclined shaft (range: 78º4 87º; average: 84.5º), with an upper 

247 constriction and an average maximum diameter ranging from 15 to 22 mm (average 19 mm). 

248 Three types of modifications were identified. 1) Subcylindrical burrows (108 4116 mm long by 

249 15422 mm wide) with a subhorizontal expansion in the middle part forming an "umbrella= 

250 (Figs. 8A-B). The shaft walls exhibit scarce ornamentation in the form sets of two linear parallel 
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251 ridges similar to those of inhabited Pavocosa sp. burrows. The <umbrella= structure shows an 

252 oval to lobed shape in plan view (Figs. 8C-D), with minimum diameter of 47454 mm and a 

253 maximum diameter of 594 66 mm. The <umbrella= surface exhibits an ornamentation in form 

254 of small (1.4 mm in diameter) rounded knobs (Fig. E). The burrow bottom is rounded or partially 

255 filled with sediments. 2) Subcylindrical burrow about 116 mm long and 21 mm wide with two 

256 smaller burrows (8 mm of diameter) arising at the bottom of the larger burrow (Fig. 8 F). 3) A 

257 third form is a 143 mm high and 101 mm wide funnel that ends in a 24 mm wide cylindrical 

258 shaft with an oblique bottom (Fig. 8 G). The surface of the funnel exhibits sets of two parallel 

259 ridges (about 21 mm long and 9.2 mm wide) running oblique to the major axis (Fig. 8H).

260

261 DISCUSSION

262 Identification of wolf-spider burrows in the fossil record

263 Pavocosa sp. produce open burrows with distinctive features as cylindrical, nearly vertical, silk 

264 lined shaft showing a gradual downward widening, a neck in the top and a rounded end, the 

265 entrance sometimes plugged with a cap of silk and sediment pellets, and a particularly distinctive 

266 surface ornamentation on the burrow walls. Most of these features are shared with other wolf 

267 spider burrows documented in the literature (Fig. 1) (Hancock, 1899; Ractliffe & Fagerstrom, 

268 1980; Carrel, 2008; Suter, Stratton & Miller, 2011; Albín, Simó & Aisenberg, 2015; Hils & 

269 Hembree, 2015; Vrenozi & Uchman, 2015; Foelix et al., 2017; Uchman, Vrenozi & Muceku, 

270 2017). In particular, the presence of a neck and downward widening seem to be a common 

271 feature in wolf spider burrows found in natural settings. For Pavocosa sp. burrows this widening 

272 is about 64%, whereas it is 52% for Trochosa hispanica (Uchman, Vrenozi & Muceku, 2017).

273 Another highly distinctive feature of Pavocosa sp. burrows is its surface ornamentation in the 

274 form of two short parallel ridges that appear in the burrow casts (Figs. 7F-G). This feature was 
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275 not identified in previous studies of wolf spider burrows and is potentially related to the 

276 burrowing technique used by Pavocosa sp. Spiders uses two main mechanisms of excavation: 1) 

277 By pushing and compressing sediment using the pedipalps (Hils & Hembree, 2015) and 2) by 

278 scraping the soil with help of fangs from chelicerae (Stokes, 1884; Suter, Stratton & Miller, 

279 2011; Hils & Hembree, 2015; Foelix et al., 2016). Although we have not observed Pavocosa sp. 

280 during digging, the sets of two linear parallel ridges observed on the burrow cast surface are 

281 similar in form and shape with the arrangement of fangs of collected specimens. The distance 

282 between fangs (3.9 3 4.6 mm) overlaps with distance between ridges within a set (2.2 3 4.5 mm). 

283 Thus we propose that excavation in Pavocosa sp. involves the use of fangs, as in type 2 

284 excavation mechanism mentioned above. 

285 Silk lined burrows are unique in spiders and essentially impart stability in soft substrates to 

286 prevent collapse (Ractliffe & Fagerstrom, 1980; Foelix et al. 2017; Hils & Hembree, 2015). The 

287 presence of organic matter in the form of a silk lining increase the potential of preservation of 

288 wolf spider burrows (Uchman, Vrenozi & Muceku, 2017), well above those of all others 

289 arthropods that habit in the same environment.

290 Spider burrows may result modified by reoccupation or predation. Reoccupation of abandoned 

291 lycosid and mygalomorph burrows by lizards, centipedes, moths, wasps, beetles and ants have 

292 been documented (e.g., Fellows, Fenner & Bullet, 2009). Ants have been also observed invading 

293 occupied wolf spider burrows with the purpose of prey piracy (Marshall, 1995). However, it has 

294 not been documented if the reoccupation results in any change in the morphology of the burrow. 

295 Common spider burrow disturbances caused by predation includes those produced by pompilid 

296 wasps that preys the spider and digs a tunnel perpendicular to the spider burrow (Gwynne, 1979), 

297 and excavation of the upper part of the burrows by armadillos (Suter, Stratton & Miller, 2011). 
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298 Most of Pavocosa sp. burrows are susceptible to go through a large amount of disturbances, 

299 including those caused by the reoccupation by another organism (Fig. A-B and F) and predation 

300 of the dweller (Fig. 8G). Two kinds of burrow modifications observed during this study are 

301 tentatively related to reoccupation of burrows: those with an expansion in the middle part as a 

302 kind of "umbrella= (Fig. 8A-B) and that with smaller excavations at the bottom of the burrow 

303 (Fig. 8F). The <umbrella= seen in some casts is highly reminiscent of oval to lobed ant nest 

304 chambers (Tschinkel, 2003), although no ants were recorded when making the casts. The 

305 producer of the smaller burrows at the bottom of Pavocosa sp. burrow is unknown. Funnel 

306 shaped burrows (Fig. 8G) are related to predation by armadillos and are similar to structures 

307 described in the literature including Sarzetti and Genise (2011) from northern Argentina, Suter, 

308 Stratton and Miller (2011: fig. 2), and Platt (2014), the two latter from Mississippi, USA. 

309 Assignation to a small armadillo is suggested by the size of the funnel and the presence of sets of 

310 two large ridges in the cast surface (compare Platt, 2014), interpreted as scratch marks (Fig. 8H). 

311 In particular, Zaedyus pichiy Desmarest, 1804 is the only small armadillo species recorded in the 

312 area (Siegenthaler et al., 2004).

313 Both the original Pavocosa sp. burrows and those modified by reoccupation or predation can be 

314 compared with known ichnogenera. The simple vertical forms are grossly comparable with 

315 Skolithos (see Alpert, 1974 and Schlirf, 2000); some significant differences are the presence of a 

316 constriction or neck, the downward widening and the surface texture. These features are 

317 potentially significant ichnotaxonomicaly (Schlirf & Uchman, 2005), although no proposed 

318 ichnotaxon match them. Slight variations in burrow diameter are allowed in Skolithos (Alpert, 

319 1974; Schlirf, 2000), although the observed differences in Pavocosa sp. burrow diameter are 

320 significant and systematic. There are a few examples of ornamented Skolithos, all of them from 
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321 continental settings and tentatively assigned to insects or spiders (Bromley and Asgaard, 1979; 

322 Schlirf et al. 2001; Netto, 2007). Modified Pavocosa sp. burrows with an <umbrella= if fossilized 

323 can be confused with Daimoniobarax Smith et al., 2011; in particular, the umbrella is 

324 comparable with chambers and the vertical burrow of the spider is comparable with the shaft 

325 connecting the chambers in Daimoniobarax. A potential difference is the considerably larger 

326 diameter of the burrow connecting the chambers that averages 40% of chamber diameter in the 

327 modified Pavocosa sp. burrow and 10% in Daimoniobarax (Smith et al., 2011). The modified 

328 Pavocosa sp. burrow with smaller burrows arising from the bottom can be confused with a 

329 downward bifurcation as seen in rhizoliths (Klappa, 1980), a roughly similar rhizolith was 

330 figured by Melchor et al. (2002, fig. 3B). Finally, funnel shaped burrows can be compared with 

331 several ichnogenera including Monocraterion Torell, 1870; Conostichnus Lesquereux, 1876; 

332 Rosselia Dahmer, 1937; Conichnus Männil, 1966; and Cornulatichnus Carroll and Trewin, 1995 

333 (see also Platt, 2014). A fundamental difference with these ichnogenera is the lack of paired 

334 surface ridges, as seen in the predated Pavocosa sp. burrow. Further differences are: 1) 

335 Monocraterion shows smaller radial burrows arising from the central funnel (Jensen, 1997); 2) 

336 Conostichnus exhibits a duodecimal symmetry and transverse and longitudinal ridges and 

337 furrows (Pemberton et al. 1988); 3) Rosselia is a bulbous structure with a concentrically 

338 laminated fill (Schlirf et al. 2002); 4) Conichnus exhibits a rounded apex and common chevron-

339 like fill (Pemberton et al. 1988); and 5) Cornulatichnus has a well-developed lining (Carroll and 

340 Trewin, 1995). Conical sedimentary structures of inorganic origin can also resemble Pavocosa 

341 sp. burrows modified by predation. Buck and Goldring (2003) identified two main inorganic 

342 processes that ca produced conical sedimentary structures: collapse and dewatering. The former 

343 is distinguished by V or U shaped downwarping of lamination and the latter by deformed 
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344 lamination and massive zone at the base of the cone (Buck & Goldring, 2003). These features 

345 allow distinction from the predated (i.e., funnel-shaped) Pavocosa sp. burrow, that would have a 

346 massive fill. 

347 Burrowing spiders belong to Mesothelae and Opisthothelae (Coddington, 2005). Although 

348 Mesothelae dates back to the Late Carboniferous, the only known burrowing group (Liphistiidae) 

349 has no fossil record (Dunlop, Penney & Jekel, 2017). Within Opisthothelae, burrowing spiders 

350 are found in the Middle Triassic to Recent Mygalomorphae that includes the tarantulas and 

351 trapdoor spiders and in the ?Cretaceous to Recent Lycosoidea (included in Araneomorphae) that 

352 comprises the wolf spiders (Dunlop, 2010; Dunlop, Penney & Jekel, 2017). The oldest putative 

353 example of Lycosoidea comes from Turonian beds of Botswana, Africa (Selden, Anderson & 

354 Anderson, 2009); which is close to the age of the superfamily suggested by phylogenetic studies 

355 (70 Ma, after Garrison et al., 2016); although most fossil records are from the Paleogene to 

356 Recent (Dunlop, Penney & Jekel, 2017). In addition, phylogenetic studies on web type suggest 

357 that the spider common ancestor likely foraged from a subterranean burrow, sometimes sealed by 

358 a trapdoor (Garrison et al. 2016). In consequence, the record of spider burrows can be traced 

359 back, at least. to the Middle Triassic (and probably to the Late Carboniferous) and lycosid 

360 burrows in Cenozoic or Late Cretaceous rocks.

361 The use of fossil to calibrate molecular phylogenies is an uprising topic in spider biology (Planas 

362 et al, 2013; Wood et al, 2013; Moradmand et al, 2014). The absence of reliable fossil record, 

363 such as in Lycosidae (Penney, 2001), is an important impediment and the potential identification 

364 of wolf spider burrows on the fossil record, with the clues provided herein, can be a useful 

365 alternative source of data.

366
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367 Environmental distribution of Pavocosa sp. burrows

368 The sediments of the sandflat containing the Pavocosa sp. burrows reflect the interaction 

369 between the nearby eolian and lacustrine settings. The two upper beds are essentially sandy 

370 deposits with a mixture of dominant fine sand and silt (samples S1 and S2; Fig. 5). The 

371 dominance of the coarse fraction (fine sand), poor sorting and the frequency distribution is 

372 comparable with those of modern interdune deposits (e.g., Ahlbrandt, 1979). Poorly defined 

373 laminae with evaporites in bed 1 are interpreted as result of capillary rise and precipitation from 

374 brines. The sandy nature of the material where Pavocosa sp. excavated the burrows and the 

375 depth to the water table suggests preference for well-drained substrates. In contrast, the 

376 lowermost silty beds (samples S3 and S4; Fig. 5) are interpreted as dominantly lacustrine 

377 deposits, on the basis of the fine grain size and the presence of gastropods shells. Heleobia is a 

378 very common extant gastropod in South America recorded in estuarine and continental settings, 

379 including saline lakes (see review in Cazzaniga, 2011). In consequence, the logged section 

380 reflects the migration of the parabolic dune towards the northeast over the Gran Salitral 

381 lacustrine sediments (for a more detailed interpretation of dune deposits see Melchor et al., 

382 2012).

383 Wolf spiders (Lycosidae) is one of the most successful spider families distributed in most of the 

384 habitats around the World (World Spider Catalog, 2017). Lycosids display a wide range of prey-

385 capture strategies from web builders to burrow-dwellers or vagant species. The use of burrows in 

386 wolf spiders can be in some cases obligatory, temporary in male juveniles, and as brood care in 

387 females (Logunov, 2011), or merely facultative in absence of objects as a rock that serves as a 

388 retreat. In general, burrows in wolf spiders are related to open areas of xerothermic habitats with 

389 sparse or no vegetation (e.g. sandy seashores, dune heaths, limestone areas and desert 
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390 nanophanerophyte steppe) (Logunov, 2011). Some wolf spider species have specific habit 

391 preferences, as is the case of halotolerant species that inhabit the surface of salt lakes, most of 

392 them included in Tetralycosa and other species as Lycosa salifodina McKay, 1976 from 

393 Australia (Framenau & Leung, 2013), and two other Argentinian species including Pavocosa sp. 

394 In particular, Pavocosa sp. has been documented in saline lakes of Cordoba, Santiago del Estero, 

395 San Luis and La Pampa. In consequence, it is likely that the described burrows are typical of 

396 saline environments. 

397

398 CONCLUSIONS

399 Observations on the burrows of the wolf spider Pavocosa sp. in the coast of a saline lake in 

400 central Argentina suggest that:

401 1) Pavocosa sp. produce burrows with recognizable features as open, cylindrical, nearly vertical, 

402 silk lined shafts, showing a gradual downward widening, with a neck and the entrance and a 

403 rounded end, and a particularly distinctive surface ornamentation on the burrow walls. 

404 2) Burrows are susceptible to go through a large amount of disturbances, including reoccupation 

405 by another organism or by predation of the dweller. Two types of modified Pavocosa sp. are 

406 related to reoccupation of burrows: those with an expansion in the middle part as a kind of 

407 "umbrella= and another with smaller excavations at the bottom of the burrow. Predation by 

408 armadillos results in funnel-shaped burrows.

409 3) Pavocosa sp. burrows have significant differences with those found in the ichnogenus 

410 Skolithos. Features as the presence of a neck, a downward widening and the surface texture make 

411 them identifiable in the fossil record. In the same way, the modified Pavocosa sp. burrows can 
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412 be confused with Daimoniobarax, rhizoliths, and several conical sedimentary structures, 

413 although some key aspects allows their distinction. 

414 4) Pavocosa sp. colonized well drained sandy substrates of eolian origin on the margin of a 

415 saline lake. Known occurrences of this species suggest that it is a halotolerant wolf spider that 

416 inhabit the surface of saline lakes. 

417 5) The potential record of wolf spider burrows dates back to the Paleogene (possibly Late 

418 Cretaceous). The presence of silk lining increases its potential of preservation and the typical 

419 morphology and the surface texture render them recognizable in the fossil record. 

420
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660 Figure captions

661 Figure 1. Compilation of previous descriptions of wolf spider burrows: (A) Geolycosa domifex 

662 (Hancock, 1899;  fig. Pl II). (B) Generalized shape of spider burrows (Ctenizidae, 

663 Antrodiaetidae, Theraphosidae and Lycosidae. Ractliffe and Fagerstrom  (1980,  fig. 1B). Not to 

664 scale. (C) Geolycosa xera archboldi and (D) G. hubbelli burrows by Carrel (2008,  fig. 1). (E) 

665 Geolycosa missouriensis burrow (Suter et al., 2011,  fig. 1). (F) Geolycosa sp. (Chikhale et al., 

666 2013,  fig. 7); (G) Allocosa brasiliensis: Produced by: a. Females, b. Males, and c. Juveniles 

667 (Albín et al. 2015,  fig. 1). (H) Hogna lenta: a. vertical shaft (fig. 12-2), b. vertical shaft with a 

668 terminal chamber (14-4), c. subvertical shaft (fig. 13-4), and d. Y-shaped burrow (fig. 15-1) (Hils 

669 and Hembree ,2015) (I) Tetralycosa (a) offset burrow (b) with original burrow backfilled 

670 (Framenau and Hudson, 2017, fig. 3); (J) Allocosa senex (Foelix et al., 2017; fig. 16); (K) 

671 Trochosa hispanica (Uchman et al., 2017; fig. 6A).

672 Figure 2. Location map of the study area. (A-B) Site of study in the <Gran Salitral= in La Pampa 

673 Province, Argentina; (C) Geomorphologic map of the Gran Salitral area and location of 

674 Pavocosa sp. burrows (GS). Modified from Melchor et al. (2012)

675 Figure 3. Measures taken on burrows. Length (L), neck length (NL), minimum (mD) and 

676 maximum diameter (MD), angle of inclination (A).

677 Figure 4. View of Pavocosa sp. burrows in the field. (A) Site of observation of burrows in an 

678 open area with sparse vegetation (Heterostachys ritteriana). (B) Longitudinal section of an 

679 inhabited burrow with silk lining. Scale divisions in centimeters. (C) Entrance covered with a 

680 thin layer of silk. (D) Burrow partially closed with a cap of silk and sediment pellets; (E) Sac of 
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681 eggs found inside the burrow. Scale divisions in millimetres. (F) Partially plugged entrance and 

682 sediment pellets dispersed on the surface of the sandflat. 

683 Figure 5. Sediments of the sandflat. (A) Detailed section of the sediments observed at the pit. (B) 

684 Representative grain size distribution of sediment samples. (C) Classification of sediment 

685 samples after Shepard (1954).

686 Figure 6. Comparison between type material of Pavocosa gallopavo and Pavocosa sp. (A) 

687 Female epigyne of Pavocosa gallopavo (MACN-Ar 13208). (B) Female epigyne of Pavocosa sp. 

688 (MACN-Ar 38582). (C) Dorsal view of Pavocosa gallopavo (MACN-Ar 13208). (D) Dorsal 

689 view of Pavocosa sp. (MACN-Ar 38582). Scale divisions in millimetres.

690 Figure 7. Plaster casts of Pavocosa sp. burrows. (A) GHUNLPam-4771. Dweller captured 

691 Pavocosa sp. (GHUNLPam -4780). (B) GHUNLPam -4772 (C) GHUNLPam -4773. Dweller 

692 captured Pavocosa sp and an egg sac found at the bottom (GHUNLPam -4770). (D) 

693 GHUNLPam -4774. Egg sac found at the bottom (E) GHUNLPam -4775. (F- G) Surface texture 

694 of burrow casts in the form of sets of two linear parallel ridges (arrows) (H) View of cheliceral 

695 fangs of Pavocosa sp. (specimen GHUNLPam -4780).

696 Figure 8. Plaster casts of modified Pavocosa sp. burrows. (A-B) Burrows with umbrella-like 

697 structures in the middle part, probably produced by reoccupation by ants (GHUNLPam-4776 and 

698 4777). (C-D) Plan view showing umbrella shape from burrow casts GHUNLPam-4776 and 4777. 

699 (E) Detail of the knobby surface texture of the umbrella-like structure. (F) Cast showing two 

700 smaller burrows arising from the bottom of the wolf spider burrow (GHUNLPam -4778). (G) 

701 Funnel-shaped burrow cast as result of predation by a small armadillo (GHUNLPam -4779). 

702 Arrows point to set of two parallel ridges. (H) Detail of the set of two linear parallel ridges 
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703 (arrows). (I) Field view of burrow modified by predation by armadillos (cast figured in G). Note 

704 brecciated fragments produced during excavation by the armadillo.

705
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Figure 1

Compilation of previous descriptions of wolf spider burrows

(A) Geolycosa domifex (Hancock, 1899; fig. Pl II). (B) Generalized shape of spider burrows

(Ctenizidae, Antrodiaetidae, Theraphosidae and Lycosidae. Ractliffe and Fagerstrom (1980,

fig. 1B). Not to scale. (C) Geolycosa xera archboldi and (D) G. hubbelli burrows by Carrel

(2008, fig. 1). (E) Geolycosa missouriensis burrow (Suter et al., 2011, fig. 1). (F) Geolycosa

sp. (Chikhale et al., 2013, fig. 7); (G) Allocosa brasiliensis: Produced by: a. Females, b. Males,

and c. Juveniles (Albín et al. 2015, fig. 1). (H) Hogna lenta: a. vertical shaft (fig. 12-2), b.

vertical shaft with a terminal chamber (14-4), c. subvertical shaft (fig. 13-4), and d. Y-shaped

burrow (fig. 15-1) (Hils and Hembree ,2015) (I) Tetralycosa (a) offset burrow (b) with original

burrow backfilled (Framenau and Hudson, 2017, fig. 3); (J) Allocosa senex (Foelix et al., 2017;

fig. 16); (K) Trochosa hispanica (Uchman et al., 2017; fig. 6A).
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Figure 2

Location map of the study area

(A-B) Site of study in the <Gran Salitral= in La Pampa Province, Argentina; (C)

Geomorphologic map of the Gran Salitral area and location of Pavocosa sp. burrows (GS).

Modified from Melchor et al. (2012).
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Figure 3

Measures taken on burrows

Length (L), neck length (NL), minimum (mD) and maximum diameter (MD), angle of

inclination (A).
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Figure 4

View of Pavocosa sp. burrows in the field and location.

(A) Site of observation of burrows in an open area with sparse vegetation (Heterostachys

ritteriana). (B) Longitudinal section of an inhabited burrow with silk lining. Scale divisions in

centimeters. (C) Entrance covered with a thin layer of silk. (D) Burrow partially closed with a

cap of silk and sediment pellets; (E) Sac of eggs found inside the burrow. Scale divisions in

millimetres. (F) Partially plugged entrance and sediment pellets dispersed on the surface of

the sandflat.
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Figure 5

Sediments of the sandflat.

(A) Detailed section of the sediments observed at the pit. (B) Representative grain size

distribution of sediment samples. (C) Classification of sediment samples after Shepard

(1954).
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Figure 6

Comparison between type material of Pavocosa gallopavo and Pavocosa sp.

. (A) Female epigyne of Pavocosa gallopavo (MACN-Ar 13208). (B) Female epigyne of

Pavocosa sp. (MACN-Ar 38582). (C) Dorsal view of Pavocosa gallopavo (MACN-Ar 13208). (D)

Dorsal view of Pavocosa sp. (MACN-Ar 38582). Scale divisions in millimetres.
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Figure 7

Plaster casts of Pavocosa sp. burrows.

(A) GHUNLPam-4771. Dweller captured Pavocosa sp. (GHUNLPam -4780). (B) GHUNLPam -

4772 (C) GHUNLPam -4773. Dweller captured Pavocosa sp and an egg sac found at the

bottom (GHUNLPam -4770). (D) GHUNLPam -4774. Egg sac found at the bottom (E)

GHUNLPam -4775. (F- G) Surface texture of burrow casts in the form of sets of two linear

parallel ridges (arrows) (H) View of cheliceral fangs of Pavocosa sp. (specimen GHUNLPam -

4780).
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Figure 8

Plaster casts of modified Pavocosa sp. burrows.

(A-B) Burrows with umbrella-like structures in the middle part, probably produced by

reoccupation by ants (GHUNLPam-4776 and 4777). (C-D) Plan view showing umbrella shape

from burrow casts GHUNLPam-4776 and 4777. (E) Detail of the knobby surface texture of the

umbrella-like structure. (F) Cast showing two smaller burrows arising from the bottom of the

wolf spider burrow (GHUNLPam -4778). (G) Funnel-shaped burrow cast as result of predation

by a small armadillo (GHUNLPam -4779). Arrows point to set of two parallel ridges. (H) Detail

of the set of two linear parallel ridges (arrows). (I) Field view of burrow modified by predation

by armadillos (cast figured in G). Note brecciated fragments produced during excavation by

the armadillo.
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