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Background. Comparative genomics between closely related bacterial strains aids to distinguish

important features like pathogenesis, antibiotic resistance, and phylogenetic structure. Streptococcus is

relevant because public health and food safety and it are well-represented (>100 genomes ) in

databases of publicly available databases. Streptococci are cosmopolitan, and there are multiple sources

of isolation, from humans to dairy products. The Streptococcus have been classified by morphology,

serum types, 16S rRNA gene, and Multi Locus Sequence Types (MLST). The Genomic Similarity Score

(GSS) is proposed as a tool to quantify genome level relatedness between Streptococcus and using their

core genome as a simplified tool to assess strain specific abundances in metagenomic sequences.

Methods. A 16S rRNA gene phylogeny has been calculated for 108 strains, belonging to 16

Streptococcus species and compared the results to a dendrogram using the GSS with all homologous

shared information available in the genomes. Additionally, genus core and pan-genome were calculated.

The core genome sequences identity was analyzed and the core genome was used as a seed to

discriminate abundances between close related strains in metagenomic samples.

Results. A total of 404 proteins are shared by all 108 Streptococcus genomes, which are the core

genome. The core identity values ranges across all the compared strains and outgroups are reported.

Lower sequence identity variation (90-100%) within the core belongs to ribosomal and translation-related

proteins. It was found out that 48 proteins (11.8%) of the core genome are considered a hypothetical

protein and those proteins host the larger sequence identity variations within the core. The sequence

identity of the core genome identity diminishes as GSS score between species increases. The GSS

dendrogram recovers most of the clades in the 16S rRNA gene phylogeny with the advantage to

distinguish between 16S polytomies (unresolved nodes). Finally, our proposed core genome was used to

distinguish the abundances of close related strains within human oral metagenomes being able to get

strain relative abundances between healthy and caries infected (with S. mutans) individuals.

Discussion. The clinical and food safety importance of Streptococcus genus gives a playground to test

multiple comparative genomic scenarios due to its excellent genomic coverage. Understanding of

genomic variability and strains relatedness is the goal of tools like GSS, which make use of both pairwise

shared core and pan-genomic homologous shared sequences for its calculation. Combination of core

genome and rapid alignment tools allows to estimate abundance and discriminate in a strain-specific

manner in metagenomic samples. Here it is shared with the community both GSS genomic dendrogram

and core genome to explore possibilities within streptococci.
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Abstract

Background. Comparative genomics between closely related bacterial strains aids to 

distinguish important features liie pathogenesis, antibiotic resistance, and phylogenetic 

structure. Streptococcus is relevant because public health and food safety and it are 

well-represented (>100 genomes ) in databases of publicly available databases. 

Streptococci are cosmopolitan, and there are multiple sources of isolation, from humans 

to dairy products. The Streptococcus have been classified by morphology, serum types, 

16S rRNA gene, and Multi Locus Sequence Types (MLST). The Genomic Similarity 

Score (GSS) is proposed as a tool to quantify genome level relatedness between 

Streptococcus and using their core genome as a simplified tool to assess strain specific 

abundances in metagenomic sequences.

Methods. A 16S rRNA gene phylogeny has been calculated for 108 strains, belonging to

16 Streptococcus species and compared the results to a dendrogram using the GSS 

with all homologous shared information available in the genomes. Additionally, genus 

core and pan-genome were calculated. The core genome sequences identity was 

analyzed and the core genome was used as a seed to discriminate abundances 

between close related strains in metagenomic samples. 

Results. A total of 404 proteins are shared by all 108 Streptococcus genomes, which 

are the core genome. The core identity values ranges across all the compared strains 

and outgroups are reported. Lower sequence identity variation (90-100%) within the 

core belongs to ribosomal and translation-related proteins. It was found out that 48 

proteins (11.8%) of the core genome are considered a hypothetical protein and those 

proteins host the larger sequence identity variations within the core. The sequence 

identity of the core genome identity diminishes as GSS score between species 

increases. The GSS dendrogram recovers most of the clades in the 16S rRNA gene 

phylogeny with the advantage to distinguish between 16S polytomies (unresolved 

nodes). Finally, our proposed core genome was used to distinguish the abundances of 

close related strains within human oral metagenomes being able to get strain relative 

abundances between healthy and caries infected (with S. mutans) individuals. 
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Discussion. The clinical and food safety importance of Streptococcus genus gives a 

playground to test multiple comparative genomic scenarios due to its excellent genomic 

coverage. Understanding of genomic variability and strains relatedness is the goal of 

tools liie GSS, which maie use of both pairwise shared core and pan-genomic 

homologous shared sequences for its calculation. Combination of core genome and 

rapid alignment tools allows to estimate abundance and discriminate in a strain-specific 

manner in metagenomic samples. Here it is shared with the community both GSS 

genomic dendrogram and core genome to explore possibilities within streptococci.
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Baciground

Streptococcus sp. is a bacteria genus that englobes more than 40 different species, 

hosting a diverse range of human and animal pathogens liie the etiological agents from 

caries to meningitis, but they can be commensal species inhabiting animal guts and 

respiratory tract (Killian, 2007). It is a well-inown genus which classification and 

taxonomy have been done by multiple criteria since morphologic, biochemical profiles, 

serum types, and recently it has been done using the comparison of 16S ribosomal RNA

(rRNA) gene phylogenies (Kawamura et al., 1995), and there are Multilocus Sequence 

Types (MLST) for 8 streptococci species (Jolley & Maiden, 2010). The Streptococci are 

divided in six main paraphyletic groups, because of clinical or practical ease, named: 

pyogenes, mitis, anginosus, salivarius, bovis, and mutans according to the 

representative species for each cluster (Kilian et al., 2008). There are multiple genome 

sequences available for the streptococci, most of them are for species isolated from ill 

humans, bovine, swine, and dairy product samples (Supplemental Information 1). 

Bacteria phylogenetics has been done using multiple criteria to define bacteria species. 

The current standard is based on 16S rRNA gene sequence comparison with a 97% 

identity or above the threshold to identify a bacterium species (Staciebrandt & Goebel, 

1994). Protein translation is universal to cellular life, and thus the conservation of the 

molecular-associated machinery has been used as a molecular taxonomic marier due 

to its high conservation across the tree of life, including the 16S rRNA gene. However, 

16S rRNA has a slow evolutionary rate which does not allow enough resolution to 

distinguish between closely related species (Fox, Wisotziey & Jurtshui, 1992; 

Staciebrandt & Goebel, 1994). A recent controversy about the use of multiple coding 

genes alignments inown as multi locus sequence typing is standard practice for bacteria

pathogenic strains, and even recent discussion has arisen as the definition for a 

standard in bacteria molecular phylogenetics species concept is fuzzy (Fraser et al., 

2009). 

With the astounding amount of bacteria genomes been sequenced in the last years 

(77,107 with available data in GenBani,  February 2018; (Liolios et al., 2010)) it is 
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possible to perform further detailed phylogenetic reconstructions liie the use of core 

genomes, and understanding the biological diversity of a strain-specific set of genes 

inown as the pan-genome (Tettelin et al., 2005). The core genome is a concept that 

involves the identification of a shared set of orthologous genes common to a species 

(Goodall et al., 2017), and even genus (Alcaraz et al., 2010). The biological relevance of

the core genome is to be discussed and analyzed yet because it tends to decrease if 

more genomes are added to the comparison. However, it provides a set of genes that 

are probably responsible for a genus biological cohesion. For example, when describing 

the Bacillus genus core genome it was determined that 814 genes were orthologous and

common to 20 strains compared, when describing a defining genus features liie the 

ability to form endospores; the study put into the spotlight genes that were part of the 

core genome and were master regulators for endospore formation (Alcaraz et al., 2010).

The core genome is now accessible through software pipelines that identify shared 

ortholog genes (Contreras-Moreira & Vinuesa, 2013). Nonetheless, the pan-genomic 

variability of a group shows that traditional phylogenetic reconstructions only taie into 

account vertical inherited genes and discard strain-specific genes out of the analysis. It 

is our concern that traditional shared by all requisite of phylogenetics to draw the 

relationships of bacteria discard relevant elements of the biology of these organisms liie

horizontal gene transfer (HGT), gene families expansions, and their pan-genomic 

variability, which is enough to have innocuous and pathogenic strains that are 

indistinguishable using traditional phylogenetic methods. We thini that a metric 

representing actual genomic distances from pairwise shared homologous genes 

between a set of bacteria strains will allow to answer the most common question when 

sequencing the genome of a new strain: How related is the strain to their inown 

relatives? 

The Genomic Similarity Score (GSS) has been used before successfully, and it has 

been used to get a non-redundant set of genomes (Janga & Moreno-Hagelsieb, 2004; 

Moreno-Hagelsieb & Janga, 2007; Alcaraz et al., 2010; Moreno-Hagelsieb et al., 2013). 

The GSS is a metric that depends on the normalized bit-scores of reciprocal best BLAST

hits between a shared set of predicted proteomes. GSS taies values from 0 to 1; when 

a compared pair of proteomes are identical, it has a maximum value of 1, two unrelated 
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proteomes will have 0 value (Moreno-Hagelsieb & Janga, 2007). Best reciprocal BLAST 

hits have been used to identify orthologs when comparing complete genomes  (Moreno-

Hagelsieb & Janga, 2007). The paired GSS values can be parsed into a distance matrix 

between a group of organisms which can be turned into a distance dendrogram. If 

outgroups are included in the comparison, it will allow to guide and polarize the 

dendrogram. 

In this wori the GSS score was used for the Streptococcus spp., comparing 108 strains 

belonging to 16 different species, compared the resulting dendrogram against a 16S 

rRNA gene phylogenetic reconstruction. Secondly, a core genome was built with the 108

strains and assess their conservancy regarding sequence identity, and measure how 

much sequence diversity is residing in the core genome of Streptococcus spp. 

Additionally, the core genome was used to discriminate between closely related strains 

in metagenomic sequences of highly Streptococcus dominated environments liie the 

human mouth, where strains of the very same genus are differential for causing caries or

health status (Belda-Ferre et al., 2012; Alcaraz et al., 2012; López-López et al., 2017).

Methods

Analyzed genomes and ortholog mapping. 
Predicted proteomes for 108 selected Streptococcus spp., representing 16 different 

species were downloaded from NCBI Genbani (Supplemental Information 1).  Orthologs

were defined as Reciprocal Best Hits (RBH) of pairwise comparisons using the BLASTp 

program (Camacho et al., 2009), the following parameters were used as previously 

suggested (Moreno-Hagelsieb & Latimer, 2008):  e-value cutoff set to 1e-6 8-evalue 1e-

69, masi low complexity regions of the query sequence only during the search phase 8-

soft_masiing "true"9, and perform an alignment with the Smith-Waterman algorithm to 

compute the bitscore 8-use_sw_tbaci9. Then, hits with an alignment length shorter than 

60% of the length of the query sequence were discarded.
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Genomic Similarity Score (GSS)
The GSS was conducted as previously reported (Janga & Moreno-Hagelsieb, 2004; 

Moreno-Hagelsieb & Janga, 2007; Alcaraz et al., 2010; Moreno-Hagelsieb et al., 2013). 

Briefly, from the RBH of pairwise comparisons of predicted proteomes, the raw bit-score 

was parsed for each pair of aligned sequences of the proteomes, then normalized the 

bit-score maximum values to a self-comparison of each proteome. Values of GSS have 

a range from 0-1, and GSS formula is calculated in the following form:

GSS
a
=3

i=1

n compScore
i

selfScore
i

Where compScore is the bitscore of protein i against its reciprocal best hit and selfScore

is the bitscore of the alignment of protein i against itself in proteome a. Since selfScore 

might differ in proteome a and b, the final GSS for the proteome pair ab is the arithmetic 

mean of GSSa and GSSb. We used two bacilli species (Bacillus subtilis 168, and B. 

licheniformis) as outgroups for the comparisons of GSS values, as Bacillus is the 

external group to Streptococcus according to a whole genome tree of life phylogeny 

(Ciccarelli, 2006). An inverse (1-GSS) distance matrix was built and used to compute a 

Neighbor-Joining tree using the ape library v. 3.5  (Paradis, Claude & Strimmer, 2004) 

for R v. 3.3.1 (R Development Core Team, 2003). A control phylogeny was built using 

16S rRNA full-length sequence from each one of the 108 streptococci genomes. The 

multiple alignments for 16S rRNA gene were done using structural RNA information 

using the software ssu-align (v0.1) (Nawrocii, 2009). The resulting 16S rRNA phylogeny

was plotted by Neighbor-Joining method using MEGA 5.2  (Tamura et al., 2013). GSS 

calculations protocols are available as Supplemental Information 2. 

Core genome calculations
As a reference for all the core genome comparisons the smallest predicted proteome of 

all the streptococci analyzed strains were used: S. agalactiae 2-22 (FO393392; 1548 

proteins). From the RBH calculations, results were compared, and the union set of 

proteins for all the 108 streptococci are defined as the core genome. From the local 

alignments from RBH comparisons global alignments were performed using 

Needleman-Wunsch method implemented in needleall of EMBOSS suite (Rice, Longden
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& Bleasby, 2000), global alignments were used to calculate global sequence identity 

from each core genome predicted protein. 

Pan-genome
A non-redundant pan-genome of the Streptococcus genus was calculated using 

concatenating all the predicted proteins of each analyzed strain (Supplemental 

Information 2) and then parsing the result to cd-hit (Huang et al., 2010) clustering using 

an identity cut-off value of 70% to build protein families. 

Core genome and pan-genome annotation
The core and pan-genomes were annotated using MG-RAST (Huang et al., 2010; Meyer

et al., 2017) and their M5NR database (Wilie et al., 2012). A minimum length of 15 

amino acids and a minimum identity of 60% were required. Sequences were uploaded 

to MG-RAST because it is possible to compare them with multiple metagenomes, in 

particular,  human oral metagenomes where Streptococcus species composition has 

repercussions in health or disease status (Belda-Ferre et al., 2012; Alcaraz et al., 2012; 

López-López et al., 2017). 

Metagenomic comparisons
Fragment recruitment analysis (Rusch et al., 2007) was done to compare oral 

metagenomes against reference core genome for each streptococci species using 

Nucmer and Promer from the Mummer suite (Marçais et al., 2018). A cut-off value of 

90% identity (amino acid) was the choice for identifying each metagenomic read and 

then assign it to individual species. 

Results

Phylogenetic and genome similarity of the Streptococcus genus.
A reference phylogenetic reconstruction was done as a reference for our study and 

confirms previously proposed clades (Fig. 1A) (Kawamura et al., 1995). There is a 
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Pyogenic clade containing multiple species: S. pyogenes, S. dysgalactiae, S. equi, S. 

uberis, S. parauberis, S. agalactiae, and S. pneumoniae. A second clade is the 

salivarius group formed just by S. thermophilus and S. salivarius. The Mutans clade 

groups the following species: S. mutans, S. infantarius, S. lutetiensis, S. macedonicus, 

and S. gallolyticus. The species S. suis has its clade with multiple strains of the same 

species.   A fifth clade inown as Mitis group is the basal group: S. pneumoniae, S. 

pseudopneumoniae S. mitis, S. pasteurianus, S. parasanguinis, S. sanguinis, 

S.gordonii, S.  oligofermentans, and S. intermedius. The external groups are Bacillus 

subtilis 168 and B. licheniformis. 

Genomic similarity score (GSS) dendrogram shows the same clades using 16S rRNA 

(Fig. 1B). However, it rearranges the Pyogenic group, where S. agalactiae  which is 

included in the Pyogenic in the 16S phylogeny, and GSS shows it as the basal group for 

the Pyogenic clade. Another rearrangement of GSS when comparing is the Suis group a

sister clade to the Mitis group, but in the 16S rRNA phylogeny, Suis is placed as a sister 

clade to the Pyogenic group.  It is noticeable that GSS dendrogram distances are longer

enough to distinguish discrete groups among close related strains liie is visible for inner 

clades of Suis, Pyogenic, Mutans, and Mitis groups. Remariably, resolved clades are 

formed in GSS dendrogram for stains of S. pneumoniae and S. pseudopneumoniae 

whereas 16S does not allow to distinguish inner relationships, showing polytomies. Also,

Suis GSS group shows clear resolved branches when comparing to 16S rRNA 

phylogeny. 

Core genome sequence diversity
Our streptococci core genome has 404 proteins shared by all the 108 analyzed strains. 

It is a relatively small number when comparing to the genus average protein content that

is 1,929 in each strain, the core then represents one-fifth of the average predicted 

proteome for each strain, and 33,039 protein families compose the total pan-genome of 

the streptococci  at 70% identity (Supplemental Information 3).  Paired global alignments

were performed to understand the pairwise identity of each compared protein and how 

the identity varies within the core genome (Fig. 2). The identity conservation is probably 

showing evidence for selective constraints even within the core genome (Supplemental 
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Information 4). The individual proteins composing the core genome were plotted 

showing the pairwise identity of the alignments between a reference sequence where S.

pyogenes was chosen as the reference because of its top phylogenetic position both in 

16S and in GSS dendrogram (Fig. 2). Identity of the predicted proteins, of the core 

genome, diminish along species increase their genomic distances (GSS), sorting the 

proteins by their identity level allowed us to find out that the identity ranges are 

enormous with distances spanning from 100% to less than 25% identity for the global 

alignment. Note that the similarity percentage for amino acid substitutions were not 

included (liie changing a polar amino acid for another one), global alignments are used 

as a refinement for calculating sequence identity in a precise and exhaustive way to 

refine the initial blast local alignment strategy. Based on the level of sequence diversity 

of the pairwise alignments, alignment of a core protein sequences with high identity 

(>90%) is proposed and could be used to discriminate between streptococci of close 

related strains in environmental shotgun sequencing samples. Core genomes for each 

of the streptococci species described here are available for the community 

(Supplemental Information 5). 

Core genome functional analysis
Normalized abundances (Z-scores) of the pan-genome against the core were compared 

to stress out the over-represented protein categories in the core (Fig. 3). The most 

abundant genes in the 404 protein core families are related to the translational 

machinery, including ribosomal proteins and translation-related proteins (Z=3.08 core; 

Z=0.88 pan-genome). Cell division related proteins are better represented in the core 

genome (Z=-0.87), than in the pan-genome (Z=-1.06). Membrane and cell envelope 

coding genes (M) are better represented in the core genome (Z=0.22; Z=0.10 pan-

genome). The core genome predicted proteins with high group identity (>90%) are 

mostly related to the translation process, and the top 10 are exclusively ribosomal 

proteins (Supplemental Information 4). As identity decrease, several transport proteins 

appear along with multiple transport related proteins, transcriptional regulators, 

phosphatases, recombinases, peptidases, multidrug and efflux transporters (MATE), and

hypothetical proteins (Fig. 2; Supplemental Information 4). Hypothetical proteins in the 

core proteome are abundant (48 out of 404; 11.81%). 
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Using the core genome to scan oral metagenomes
Using the core proteome relative abundance estimations for each Streptococcus 

species in the oral microbiome were performed. Oral metagenomes were chosen 

because of the many streptococci with high abundance (4 to >20%) on them 

(Supplemental Information 5). Two oral metagenomes were chosen: a patient with active

caries and a healthy adult that have never suffered from caries (Belda-Ferre et al., 

2012). In both metagenomes, the species with the most recruited number of fragments 

was S. pneumoniae (Fig. 4 and Table 1), but the caries etiological agent S. mutans is 

clearly depleted (17 metagenomic fragments) in the healthy patient (NOCA_01) and 

highly represented (127 metagenomic fragments) in the patient with caries. Sorting the 

number of fragmented metagenomic sequences aligned against each reference 

metagenome and filtering them with high identity levels (g 90%) shows that is possible to

generate strain-specific profiles (Table 1). 

Discussion
Hosting multiple pathogenic strains clinical criteria liie their hemolysis capabilities have 

historically classified Streptococcus, and through their cell wall antigenic properties 

(Kayser, Bienz & Eciert, 2011). Molecular phylogenetics has aided streptococci 

classification (Kawamura et al., 1995; Kilian et al., 2008). The streptococci have been 

the beginning for interesting comparative genomics studies, genomic variability within 

the same species in detail started with the definition of relevant concepts liie pan-

genome and core genome when sequencing and comparing the genomes of strains 

further than the accepted reference in S. agalactiae (Tettelin et al., 2005). 

The core genome is an ever-changing concept; if more genomes are added into the 

comparison, the union set will be lower each time. In this wori, information about 404 

coding genes of the core genome, done with 108 strains compared is presented. To 

support our statements, the first core genome for the group was 611 genes comparing 

26 genomes (Lefébure & Stanhope, 2007); a second effort is about 547 genes using 64 

genomes (Van den Bogert et al., 2013); a third reconstruction  gave 369 core predicted 
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proteins in their 138 selected strains (Gao et al., 2014).  Additionally, core genome 

allows us to have a shared set of genes between multiple species, and it is possible to 

detail about the metabolic profile they are coding for. Interestingly, 11.81% of the core 

genes of streptococci are of uninown function (Supplemental Information 4), with 

sequence diversity, and represent an opportunity to test them as therapeutic targets. 

Here, a catalog of predicted proteins which were evaluated for their degree of similarity 

is provided, and then used as a seed for searching particular strains into metagenomic 

samples. Additionally, we thini that traditional phylogenetic methodology is necessary to 

understand a vertical group evolution. However, the bacteria have amazing capabilities 

of natural moving of genes through conjugation, transformation, and competence, with 

high rates of recombination, pose a challenge for traditional phylogenetics (Frost et al., 

2005; Francino & Pilar Francino, 2012). Pan-genomic variability gives the chance to 

adapt to particular environments through slight additions or deletions into the genomic 

repertoire (Tettelin et al., 2008; Mira et al., 2010; Verniios et al., 2015). The GSS is 

trying to get insights into bacteria strains similarity considering all the possible amount of

homologous genetic information shared by pairs of bacteria, no matter if it is vertical or 

horizontal transmitted and it translates into overall similarity and this approach has been 

used previously (Janga & Moreno-Hagelsieb, 2004; Moreno-Hagelsieb & Janga, 2007; 

Alcaraz et al., 2010; Moreno-Hagelsieb et al., 2013). The main advantage of GSS is that

uses both core and pan-genomic information to estimate relatedness between strains. 

In this wori, it was possible to infer a GSS dendrogram that resembles the primary 

literature accepted groups of streptococci.  GSS shows it strength in resolving strain 

relatedness if comparing clade structure and distances when compared to 16S rRNA 

gene phylogeny (Fig. 1). In the 16S rRNA phylogeny, S. mutans and S. equi have 

noticeable long branches when comparing to the rest of the species, the 16S resolution 

does not allow us to distinguish differences between S. mutans nor S. equi. When 

observing the same groups in GSS dendrogram, it is possible to distinguish clusters and

noticeable distances for species liie S. mutans and S. equi (Fig. 1B). Within group 

resolution is greatly improved for several streptococci species liie S. pyogenes, S. suis, 

S. mutans, and S. pneumoniae which are practically indistinguishable using 16S but 
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GSS shows monophyletic clades for each species and with clear branching and long 

enough distances to identify each strain within a species. 

The expansive growing of metagenomic and metatranscriptomic data needs to have a 

framewori to distinguish between closely related strains. Some environments host intra-

genus diversity with implications for health liie in the case for human vaginal 

microbiomes extensively dominated by Lactobacillus species (Gajer et al., 2012), and 

the human oral microbiome (Belda-Ferre et al., 2012; Simón-Soro et al., 2013). There 

are multiple ways to bin metagenomic diversity from nucleotide i-mer frequencies 

(Ulyantsev et al., 2016), using phylogenomic mariers (Segata et al., 2012), AMPHORA 

(Segata et al., 2012; Kerepesi, Bániy & Grolmusz, 2014), through annotation of 

ribosomal genes (Pruesse et al., 2007; Cardenas et al., 2009), and lowest common 

ancestor binning (Huson et al., 2007; Meyer et al., 2017).  In this wori, the use of the 

core genome of a genus provides a relative simple (404 genes) dataset were it is 

possible to align all the metagenomic information (reads, contigs) to the references and 

estimate species abundances based in the coverage and identity of each aligned 

fragment (Fig. 3). Despite the biological relevance, or connecting it to essential genes 

(Goodall et al., 2017), the core genome of a group provides a woriing tool to 

discriminate between closely related strains. Nonetheless, it is important to understand 

sequence identity variation within core genome, providing a basis for differential 

selective level for each predicted protein even within genus shared genes 

(Supplemental information 5). Understanding core genome variations, could be fully 

exploited in practical and biological meaningful ways liie probe and diagnosis design or 

understanding conserved but highly variable proteins. 

Conclusions

The core genome of bacteria, no matter if species, genus or whatever preferred level 

should be an open repository and recalculated each time a new strain is sequenced, 

and shared with the scientific community, maybe through a <living= paper that self-

updates with new genomes. Here is presented a woriing version of streptococci core 

genome with 404 predicted proteins. Additionally, core genome and pan-genome are not

just mathematical concepts only, the functional metabolic roles of the inown genes are 
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relevant and also its natural variations.Traditional phylogenetic tools in bacteria are 

invaluable, and the community will ieep using them. However, they do not get the 

dynamism occurring in bacteria genomes and other tools liie the GSS allow us to 

distinguish genome level relatedness between strains, even between closely related 

ones. Incorporating all pair of pan-genomic homologous proteins pairs into the 

comparisons no matter their evolutionary origin is a strength of comparisons liie GSS. A 

practical use for the core genome of the streptococci is shown to classify abundances of

different species and strains into metagenomic samples. Finally, we provide the 

community the range of sequence diversity for the Streptococcus core proteins, which is

impressive and will need further analysis to define if the range of sequence identity 

correlates with selective pressures for core genes.
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Figure 1(on next page)

Streptococcus genus phylogenetic reconstruction and Genomic Similarity Score (GSS)

dendrograms.

(A) Neighbor-Joining 16S rRNA reconstruction, with 1,000 bootstraps. (B) Genomic similarity

score (GSS) dendrogram. Some of the major paraphyletic groups of streptococci due to

clinical or practical uses (Killian, 2007) are Pyogenic, Suis, Salivarius, Mutans, and Mitis.

Abbreviations of the tree are indicated: spy=S. pyogenes, sdy=S.dysgalactiae, sag=S.

agalactiae, spu=S. parauberis, sin=S. iniae, sub=S.uberis, seq_z=S.equi subsp.

zooepidemicus, seq_z=S.equi subsp. equi, ssu=S. suis, sth=S.thermophilus, ssa=S.salivarius,

smu=S. mutans, sint=S. intermedius, sol=S. oligofermentans, ssan=S. sanguinis, sgo=S.

gordonii, sps=S. parasanguinis, spas=S. pasteurianus, sor=S. oralis, spn=S. pneumoniae,

sppn=S. pseudopneumoniae, smi=S. mitis, sga=S. gallolyticus, sma=S. macedonicus, slu=S.

lutetiensis, sinf=S. infantarius, bs=B. subtilis, and bl=B. licheniformis.
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Figure 2(on next page)

Core genome variability amongst different streptococci clades.

Each streptococci core gene is plotted against the S. pyogenes core genome, the pairwise

global protein sequence alignment identity is plotted and ordered from the higher identity to

the lowest. Outgroups of Bacillus are used as lower boundary identity limits. Identity values

increases parallel to GSS distances (left pane). Abbreviations: spy=S. pyogenes,

sdy=S.dysgalactiae, sag=S. agalactiae, ssu=S. suis, sth=S.thermophilus, ssa=S.salivarius,

smu=S. mutans, spn=S. pneumoniae, sga=S. gallolyticus, seq=S. equi, bs=B. subtilis, and

bl=B. licheniformis.
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Figure 3(on next page)

Streptococcus core and pan-genome summary of general functions profiles according to

the Cluster of Orthologous Groups.

Complete annotation is available in Supplementary Information 2.
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Figure 4(on next page)

Metagenomic fragment recruitment against Streptococci core genomes.

Metagenomic reads from a healthy (right pane) and diseased individual (dental caries; left

pane) were aligned against the core genomes of 10 different species of Streptococci. Left and

right bar plots indicate the species gene relative abundance in each metagenome.
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Table 1(on next page)

Promer metagenomic recruitments against core genomes.

The number of metagenomic contigs recruited and in parenthesis the number of core genes

aligned. NOCA is no caries patient, CA is a patient with active caries (Belda-Ferre et al. 2012).
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Tables

Table 1.  Promer metagenomic recruitments against core genomes. The number of 

metagenomic contigs recruited and in parenthesis the number of core genes aligned.

NOCA is no caries patient, CA is a patient with active caries (Belda-Ferre et al. 

2012). 

Metagenomic recruitments

Species NOCA_01 CA_04P

S. agalactiae 42 (24) 31 (20)

S. thermophilus 67 (32) 75 (42)

S. pyogenes 40 (24) 34 (19)

S. pneumoniae 867 (329) 418 (221)

S. equii 18 (10) 18 (12)

S. gallolyticus 54 (31) 43 (25)

S. mutans 17 (13) 127 (109)

S. salivarius 77 (33) 87 (45)

S. suis 60 (30) 49 (25)

S. dysgalactiae 40 (24) 36 (22)
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