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Abstract
Background. Comparative genomics between closely related bacterial strains can 

distinguish important features determining pathogenesis, antibiotic resistance, and 

phylogenetic structure. The Streptococcus genus is relevant to public health and 

food safety and it is well-represented (>100 genomes) in databases of publicly 

available databases. Streptococci are cosmopolitan, with multiple sources of 

isolation, from humans to dairy products. The Streptococcus genus has been 

classified by morphology, serotypes, 16S rRNA gene, and Multi Locus Sequence 

Types (MLST). The Genomic Similarity Score (GSS) is proposed as a tool to quantify

genome level relatedness between species of Streptococcus. The Streptococcus 

core genome can be used to assess strain specific abundances in metagenomic 

sequences.

Methods. A 16S rRNA gene phylogeny was calculated for 108 strains, belonging to 

16 Streptococcus species and compared to a dendrogram using GSS pairwise 

distances for the same genomes. The core and pan-genome were calculated for 

these 108 genomes. The core genome sequences were analyzed and used as a 

resource to discriminate homologous fragment reads from closely related strains in 

metagenomic samples.

Results. A total of 404 proteins are shared by all 108 Streptococcus genomes, 

which is the core genome. The pairwise amino acid identity values of the core 

proteins for all the compared strains and outgroups are reported. Lower sequence 

identity variation (90-100%) is predominantly found in core clusters containing 

ribosomal and translation-related proteins. For 48 core proteins (11.8%) no 

functional assignment could be made and those proteins have larger sequence 

identity variations than other core proteins. The sequence identity of the core 

genome diminishes as GSS score between species decreases. The GSS 

dendrogram recovers most of the clades in the 16S rRNA gene phylogeny while 

distinguishing between 16S polytomies (unresolved nodes). Finally, the core genome

was used to distinguish between closely related species within human oral 

2

20

25

30

35

40

45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26665v2 | CC BY 4.0 Open Access | rec: 7 May 2018, publ: 7 May 2018



metagenomes.

Discussion. The Streptococcus genus provides a benchmark dataset for 

comparative genomic studies due to the breath depth of genomic coverage. 

Comparing metagenomic shotgun fragment reads to the core genome using rapid 

alignment tools allows species-specific abundance estimates in metagenomic 

samples.  Understanding of genomic variability and strains relatedness is the goal of 

tools like GSS, which make use of both pairwise shared core and pan-genomic 

homologous shared sequences for its calculation.
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Background

Streptococcus is a bacterial genus that encompasses more than 40 different 

species, from a diverse range of human and animal pathogens like the etiological 

agents for caries and meningitis, to commensal species inhabiting animal guts and 

respiratory tracts (Kilian, 2012). Classification within the genus has been done by 

morphology, biochemical profiles, serum types, and more recently using the 

comparison of 16S ribosomal RNA (rRNA) gene phylogenies (Kawamura et al., 

1995). There are also Multi Locus Sequence Types (MLST) for eight streptococci 

species (Kawamura et al., 1995). The Streptococci are divided into six main 

paraphyletic groups, because of clinical or practical ease, named: pyogenes, mitis, 

anginosus, salivarius, bovis, and mutans according to the representative species for 

each clade (Kilian et al., 2008). There are multiple genome sequences available for 

the Streptococci; most of the species used in this work were isolated from humans, 

bovine, swine, and dairy product samples (Supplemental Information 1). 

Bacterial phylogenetics has been done using multiple criteria to define bacteria 

species. The current standards are based either on genome wide Average 

Nucleotide Identity (ANI) above 95% for estimating an overall genome related index 

(OGRI) (Konstantinidis & Tiedje, 2005; Konstantinidis, Ramette & Tiedje, 2006; Chun

et al., 2018) or on 16S rRNA gene sequence comparison with a 97% identity or 

above the threshold to identify a bacterium species (Stackebrandt & Goebel, 1994). 

Protein translation is universal to cellular life, and thus the conservation of the 

molecular-associated machinery has been used as a molecular taxonomic marker 

due to its high conservation across the tree of life, including the 16S rRNA gene. 

However, 16S rRNA has a slow evolutionary rate which does not allow enough 

resolution to distinguish between closely related species (Stackebrandt & Goebel, 

1994). The use of multiple coding genes alignments known as multi locus sequence 

typing (MLST) is standard practice for distinguishing between strains of pathogenic 

bacteria. Even what should define a bacterial species based on  molecular 

phylogenetics is fuzzy (Fraser et al., 2009). 
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The astounding amount of  available bacterial genomes  (77,107 in GenBank,  

February 2018); (Liolios et al., 2010) allows genomic phylogenetic reconstructions 

based on the pan-genome (Tettelin et al., 2005). The core genome for a set of 

related genomes is a concept that involves the identification of orthologous genes 

common to a species (Goodall et al., 2017), and even genus (Alcaraz et al., 2010). 

The biological relevance of the core genome is to be discussed and analyzed yet 

because it tends to decrease if more genomes are added to the comparison. 

However, it provides a set of genes that are probably responsible for a genus 

evolutionary cohesion. For example, 20 strains encompassing 13 species of the 

Bacillus genus were determined to share 814 core genes which defined genus 

features like the ability to form endospores (Alcaraz et al., 2010). 

The core genome is automatically computable by software pipelines that identify 

shared orthologous genes (Contreras-Moreira & Vinuesa, 2013). Traditional 

phylogenetic reconstructions only use vertically inherited core genes ignoring clade-

specific genes. Ignoring these genes discards relevant elements of the biology of 

these organisms like horizontal gene transfer (HGT), gene family expansions, and 

gene content variability. Innocuous and pathogenic strains can be indistinguishable 

using traditional phylogenetic methods. We think that a metric representing actual 

genomic distances from pairwise shared homologous genes within a set of bacterial 

genomes will answer the most common question when sequencing the genome of a 

new strain: How related is the strain to known relatives? 

The Genomic Similarity Score (GSS) has been used to obtain a non-redundant set of

genomes (Janga & Moreno-Hagelsieb, 2004; Moreno-Hagelsieb & Janga, 2007; 

Alcaraz et al., 2010; Moreno-Hagelsieb et al., 2013). The GSS is a pairwise metric 

that depends on the normalized bit-scores of reciprocal best BLAST hits between 

orthologous proteins. GSS takes values from 0 to 1: when all orthologous proteins 

between two proteomes are identical it has a maximum value of 1, two genomes with

no orthologous proteins have a value of 0 (Moreno-Hagelsieb & Janga, 2007). Best 

reciprocal BLAST hits have been used to identify orthologs when comparing 

complete genomes  (Moreno-Hagelsieb & Janga, 2007). The pairwise GSS values 

can define a distance matrix between a set of genomes which can be turned into a 

distance dendrogram. Outgroups can be included in the comparison to root the 
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dendrogram. 

The GSS score was used to generate a dendrogram for the 108 strains comprising 

16 species of Streptococcus for comparison to a 16S rRNA gene phylogenetic 

reconstruction. A core genome was built from the 108 strains to  measure the 

sequence diversity of Streptococcus. Additionally, the core genome was used to 

discriminate between closely related strains in metagenomic sequences of 

Streptococcus dominated environments like the human mouth, where strains of the 

same genus are differential for causing caries (Belda-Ferre et al., 2012; Alcaraz et 

al., 2012; López-López et al., 2017).

Methods

Analyzed genomes and ortholog mapping. 
Predicted proteomes for 108 strains of Streptococcus, representing 16 different 

species were downloaded from NCBI Genbank (Supplemental Information 1).  

Orthologs were defined as Reciprocal Best Hits (RBH) of pairwise comparisons 

using the BLASTp program (Camacho et al., 2009), the following parameters were 

used as previously suggested (Moreno-Hagelsieb & Latimer, 2008):  e-value cutoff 

set to 1e-6 ‘-evalue 1e-6’, mask low complexity regions of the query sequence only 

during the search phase ‘-soft_masking "true"’, and perform an alignment with the 

Smith-Waterman algorithm to compute the bitscore ‘-use_sw_tback’. Then, hits with 

an alignment length shorter than 60% of the length of the query sequence were 

discarded. Detailed scripting procedure of RBH is available (Supplemental 

Information 2).

Genomic Similarity Score (GSS)
The GSS was calculated as previously reported (Janga & Moreno-Hagelsieb, 2004; 

Moreno-Hagelsieb & Janga, 2007; Alcaraz et al., 2010; Moreno-Hagelsieb et al., 

2013). Briefly, from the RBH of pairwise comparisons of predicted proteomes, the 

raw bit-score was parsed for each pair of aligned sequences of the proteomes and 

summed, then the self-scores of proteome a were summed and used to normalize 
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the summed raw scores. Values of GSS have a range from 0-1, and GSS formula is 

calculated in the following form:

GSSa=

∑
i=1

n

compScore
i

∑
i=1

n

selfScorei

Where compScore is the bitscore of protein i against its reciprocal best hit and 

selfScore is the bitscore of the alignment of protein i against itself in proteome a. 

Since selfScore might differ in proteome a and b, the final GSS for the proteome pair

ab is the arithmetic mean of GSSa and GSSb. We used two bacilli species (Bacillus 

subtilis 168, and B. licheniformis) as outgroups for the comparisons of GSS values, 

as Bacillus is the external group to Streptococcus according to a whole genome 

phylogeny (Ciccarelli, 2006). An inverse (1-GSS) distance matrix was built and used 

to compute a Neighbor-Joining tree using the ape library v. 3.5  (Paradis, Claude & 

Strimmer, 2004) for R v. 3.3.1 (R Development Core Team, 2003). A control 

phylogeny was built using 16S rRNA full-length sequence from each of the 108 

streptococci genomes. The multiple alignment for the 16S rRNA genes was done 

using structural RNA information using the software ssu-align (v0.1) (Nawrocki, 

2009). The resulting 16S rRNA phylogeny was plotted using the Neighbor-Joining 

method from MEGA 5.2  (Tamura et al., 2013). GSS calculation protocols are 

available as Supplemental Information 2. 

Core genome calculations
As a reference for all the core genome comparisons the smallest predicted proteome

of all the streptococci analyzed strains was used: S. agalactiae 2-22 (FO393392; 

1548 proteins). From the RBH calculations, results were compared, and the 

intersection set of orthologous proteins for all the 108 streptococci was defined as 

the core genome. From the local alignments from RBH comparisons, global 

alignments were performed using the Needleman-Wunsch method implemented in 

needleall of the EMBOSS suite (Rice, Longden & Bleasby, 2000), global alignments 

were used to calculate global sequence identity for each core protein. Additionally, 
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the core genome was defined using the software package GET_HOMOLOGUES 

(Contreras-Moreira & Vinuesa, 2013) with the blastp program to perform 

comparisons and the BDBH algorithm to define orthologous clusters. The minimum 

alignment coverage was set to 60% and and the maximum E-value to 1e-06. Only 

clusters that included at least one sequence from all the analyzed genomes were 

considered for further analysis. Only protein coding genes were considered. 

Pan-genome calculation
The Streptococcus genus pan-genome was calculated by clustering all the predicted 

proteomes using cd-hit (Huang et al., 2010) with an identity cut-off value of 70%. 

This clustering method allows to generate protein family without constraints of 

inparalog groupings that collapses large gene family (i.e., ABC transporters).  

Additionally, GET_HOMOLOGUES was used as a second method to obtain the 

genus pan-genome. BLASTp (Camacho et al., 2009) hits with at least 70% 

sequence identity, a minimum of 75% alignment length coverage, and an E-value of 

1e-6 were considered. The OrthoMCL algorithm (Li, Stoeckert & Roos, 2003) was 

used to group sequences. Only protein coding genes were considered. 

ANI calculation
Average Nucleotide Identity (ANI) was calculated using pyani  (Marçais et al., 2018) 

for the 108 genomes used in this study (Supplemental Information 1) with two 

methods: Mummer (Marçais et al., 2018) using minimum lengths of exact match (20 

nt), maximum gaps (90 nt); and BLASTN+ (Camacho et al., 2009) with 1020 

nucleotide windows. 

Core genome and pan-genome annotation
The core and pan-genomes were annotated using MG-RAST (Huang et al., 2010; 

Meyer et al., 2017) and their M5NR database (Wilke et al., 2012). Annotation 

required a minimum alignment length of 15 amino acids and 60%  identity. 
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Streptococci coding genes were uploaded to MG-RAST because it is possible to 

compare them with multiple metagenomes, in particular,  human oral metagenomes 

where Streptococcus species composition has repercussions for health or disease 

status (Belda-Ferre et al., 2012; Alcaraz et al., 2012; López-López et al., 2017). 

Metagenomic comparisons
Fragment recruitment analysis (Rusch et al., 2007) was done to compare oral 

metagenomes from a healthy and diseased individuals against the Streptococcus 

reference core genome for each streptococci species using Nucmer from the 

Mummer suite (Marçais et al., 2018). A cut-off value of 90% identity (nucleotide) was

chosen for classifying each metagenomic read to an individual species. Using 

minimum lengths of exact match (20 nt) and maximum gaps (90 nt).

Results

Phylogenetic and genome similarity of the Streptococcus genus.
A 16S rRNA phylogenetic reconstruction was done as a reference and confirms 

previously proposed clades (Fig. 1A) (Kawamura et al., 1995). There is a Pyogenic 

clade containing multiple species: S. pyogenes, S. dysgalactiae, S. equi, S. uberis, 

S. parauberis, S. agalactiae, and S. pneumoniae. A second clade is the Salivarius 

group formed just by S. thermophilus and S. salivarius. The Mutans clade groups the

following species: S. mutans, S. infantarius, S. lutetiensis, S. macedonicus, and S. 

gallolyticus. The species S. suis has its clade with multiple strains of the same 

species.   A fifth clade known as Mitis group is the basal group: S. pneumoniae, S. 

pseudopneumoniae, S. mitis, S. pasteurianus, S. parasanguinis, S. sanguinis, 

S.gordonii, S. oligofermentans, and S. intermedius. The external groups are Bacillus 

subtilis 168 and B. licheniformis. 

Besides, ANI was calculated for all the Streptococci genomes. ANI was able to 

discriminate main Pyogenic and Suis clades (Fig. 1 B); but it does break Mutans, 

Salivarius, which are supported both by 16S phylogeny and GSS dendrogram (Fig. 1

A,C). Interestingly, there is an ANI clade formed by a mix of Pyogenic, Mitis, and 
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Salivarius groups, not supported neither by GSS or 16S phylogeny. ANI correlogram 

is available (Supplemental Information 3).

The GSS dendrogram has the same clades as the 16S rRNA (Fig. 1C); however, 

GSS rearranges the Pyogenic group, where S. agalactiae  is included interior to the 

Pyogenic clade in the 16S phylogeny, GSS shows it as the basal group for the 

Pyogenic clade. Another rearrangement of GSS has the Suis group as a sister clade 

to the Mitis group, but in the 16S rRNA phylogeny, Suis is placed as a sister clade to 

the Pyogenic group.  It is noticeable that the GSS dendrogram distances are large 

enough to distinguish discrete groups among closely related strains like such as the 

inner clades of Suis, Pyogenic, Mutans, and Mitis groups. Resolved clades are 

formed in the GSS dendrogram for strains of S. pneumoniae and S. 

pseudopneumoniae; whereas, 16S rRNA does not distinguish inner relationships, 

but rather allows polytomies. Also, the Suis GSS clade shows clearly resolved 

branches when comparing to the 16S rRNA phylogeny. 

Core genome sequence diversity
According to the RBH method, the 108 streptococci core genome has 404 proteinsis 

a small number compared to the average protein content of 1,929 for the 108 

strains., The core proteins represent one-fifth of the average predicted proteome. 

The total pan-genome comprises 33,039 protein clusters (families) at 70% identity 

(Supplemental Information 4). According to the GET_HOMOLOGUES method, the 

core genome is composed of 306 proteins and the pan-genome of 36,387. 

Comparisons of the core proteins obtained by both methods find 255 proteins, the 

RBH method finds 149 unique proteins, while GET_HOMOLOGUES finds only 51 

unique proteins (Supplementary Information 5). 

Paired global alignments were performed to analyze variation across species and 

strains over the core genome (Fig. 2). For each core cluster, the individual proteins 

were plotted showing the pairwise identity of the protein compared to a  reference 

sequence from S. pyogenes which was chosen as the reference because of its top 

phylogenetic position both in 16S and in GSS dendrogram (Fig. 2). The high 

sequence identity (mean=77.6±11.5) for the core proteome is suggesting evidence 
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for selective constraints (Supplemental Information 5). Identity to S. pyogenes over 

the core genome, diminishes as the genomic distances to other species increase.  

The range of protein sequence diversity in the core proteome goes from 25 - 100% 

identity. Based on the core proteome sequence diversity,  we were able to describe 

a set of phylogenetic markers that can be used as DNA references to identify and 

discriminate between closely related species in metagenomes using high nucleotide 

identity cut-offs (>90%).  Core genes for each of the streptococci species described 

here are available for the community in FASTA format (Supplemental Information 6). 

Core genome functional analysis
Normalized abundances (Z-scores) of the pan-genome against the core were 

compared to stress out the over-represented protein categories in the core (Fig. 3). 

The most abundant genes in the 404 protein core clusters are related to the 

translational machinery, including ribosomal proteins and translation-related proteins 

(Z=3.08 core; Z=0.88 pan-genome). There are more cell division related proteins in 

the core genome (Z=-0.87), than in the pan-genome (Z=-1.06). Membrane and cell 

envelope coding genes (M) are better represented in the core genome (Z=0.22; 

Z=0.10 pan-genome). The most conserved core proteins (average pairwise identity 

>90%) are mostly related to the translation process, and the top 10 are exclusively 

ribosomal proteins (Supplemental Information 5). As average pairwise identity 

decreases for the core proteins, several transport proteins appear along with multiple

transport-related proteins, transcriptional regulators, phosphatases, recombinases, 

peptidases, multidrug and efflux transporters (MATE), and hypothetical proteins (Fig.

2; Supplemental Information 5). There is also a high proportion of core proteins with 

unknown function (48 out of 404; 11.81%). 

Using the core genome to scan oral metagenomes
Metagenomic shotgun reads from oral microbiome samples were mapped to the 

individual sequences from the core genome to estimate relative abundance for each 

Streptococcus species. Oral metagenomes were chosen because of the many 

streptococci with high abundance (4 to >20%) (Supplemental Information 7). Two 

oral metagenomes were chosen: a patient with active caries and a healthy adult that 
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never suffered from caries (Belda-Ferre et al., 2012). In both metagenomes, the 

species with the most recruited number of fragments was S. pneumoniae (Fig. 4 and

Table 1), but the caries etiological agent S. mutans is depleted (17 metagenomic 

fragments) in the caries-free individual  (NOCA_01) and abundant  (127 

metagenomic fragments) in the patient with caries. Recruiting metagenomic 

sequences against each reference core genome and filtering alignments with high 

identity levels (≥ 90%) shows that is possible to generate species-specific profiles 

(Fig. 4, Table 1). 

Discussion
Streptococcus species have historically been classified by their cell wall antigenic 

properties (Kayser, Bienz & Eckert, 2011) and clinical criteria for pathogenic strains 

like hemolysis capabilities. More recently molecular phylogenetics has aided 

streptococci classification (Kawamura et al., 1995; Kilian et al., 2008). Analysis of 

genomic variability within the same species expanded with the definition of relevant 

concepts like the pan-genome and the core genome for S. agalactiae (Tettelin et al., 

2005). 

The core genome is dependent on the set of genomes being analyzed,  for each 

genome added the size of the core would decrease if any genes are not present for 

that genome. Besides this, different methods can estimate different core and pan-

genome sizes, this have been shown in previous works (Fouts et al., 2012).  In this 

work, 404 core proteins  comprise the core genome according to the RBH method 

and given the 108 strains compared, while GET_HOMOLOGUES gets 306 proteins. 

Historically, the first core genome for streptococci was 611 genes for 26 genomes 

(Lefébure & Stanhope, 2007); a second effort wast 547 genes for 64 genomes (Van 

den Bogert et al., 2013); a third reconstruction  gave 369 core genes for 138 strains 

(Gao et al., 2014). Interestingly, 11.81% of the core genes of streptococci are of 

unknown function (Supplemental Information 5), representing an opportunity as 

possible therapeutic targets. 

The core genome for streptococci provides a platform for investigating what is 
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essential to the lifestyle of these organisms and also can be used to analyze their 

presence in metagenomic samples. Additionally, we think that traditional 

phylogenetic methodology is necessary to understand vertical group evolution and 

GSS or similar measures of whole genome relatedness are an improvement over 

marker gene-based methods. However, bacteria have amazing capabilities to 

transfer genes through conjugation, transformation, and competence, with high rates

of recombination, which pose a challenge for traditional phylogenetics (Frost et al., 

2005; Francino, 2012). Pan-genomic analysis shows the variability within a species 

which may indicate adaptation to particular environments through additions or 

deletions to the genomic repertoire (Tettelin et al., 2008; Mira et al., 2010; Vernikos 

et al., 2015). The GSS measures bacterial strain similarity over all homologous 

genetic elements shared by a pair of bacteria, no matter if it is vertically or 

horizontally transmitted (Janga & Moreno-Hagelsieb, 2004; Moreno-Hagelsieb & 

Janga, 2007; Alcaraz et al., 2010; Moreno-Hagelsieb et al., 2013). Recently, new 

standards are establishing in the bacterial taxonomic rules trying to make use of 

whole genome information, and ANI is the preferred choice to discriminate between 

species (Chun et al., 2018). Working at with genus level, involves methods able 

identify homologous sequences, here we found protein sequence diversity with 

distances spanning from 100% to less than 25% identity for the global alignments. 

The main advantage of GSS is that it uses both core and pan-genomic information to

estimate relatedness between strains. Proteins are the choice to find homologs with 

large evolutionary distances (Rost, 1999). ANI will be the choice when comparing 

inside strains of the same species (Chun et al., 2018), but it discards homologous 

information due to the shortcome of comparing nucleotides when comparing long 

time diverging lineages, in Streptococci there are estimates about 0.5 billion years of 

the last common ancestor (Battistuzzi, Feijao & Hedges, 2004). Multiple sequenced 

strains redundancy complicates comparative genome analysis, information beyond 

nucleotide clustering is needed; genome redundancy elimination by using 

information like distance matrix or phylogenetic information like GGRaSP  (Clarke et 

al., 2018), GSS could easily integrate to tools like GGRaSP.  

The GSS dendrogram is consistent with the accepted clades of streptococci.  GSS 

provides better resolution of  clade structure and distances than the 16S rRNA gene 

based phylogeny (Fig. 1). Within group resolution is greatly improved in the GSS 
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dendrogram for several streptococci species like S. pyogenes, S. suis, S. mutans, 

and S. pneumoniae which are practically indistinguishable using 16S but GSS shows

monophyletic clades for each species with clear branching and long enough 

distances to identify each strain within a species (Fig 1C). 

The growth of metagenomic data needs a framework to distinguish between closely 

related strains. Some environments host intra-genus diversity with implications for 

health like human vaginal microbiomes dominated by Lactobacillus species (Gajer et

al., 2012), and the human oral microbiome (Belda-Ferre et al., 2012; Simón-Soro et 

al., 2013). There are multiple ways to bin metagenomic diversity from nucleotide k-

mer frequencies (Ulyantsev et al., 2016), using phylogenomic markers (Segata et al.,

2012), AMPHORA (Segata et al., 2012; Kerepesi, Bánky & Grolmusz, 2014), through

annotation of ribosomal genes (Pruesse et al., 2007; Cardenas et al., 2009), and 

lowest common ancestor binning (Huson et al., 2007; Meyer et al., 2017).  In this 

work, the use of the core genome of a genus provides a relatively simple (404 

genes) dataset to align metagenomic information (reads, contigs) against and 

estimate species abundances based on the coverage and identity of each aligned 

fragment (Fig. 4). Despite the biological relevance, or connecting it to essential 

genes (Goodall et al., 2017), the core genome of a clade provides a resource to 

discriminate between closely related strains. Sequence identity variation within the 

core genome provides a basis for understanding the differential selective pressure 

for each core cluster (Supplemental information 5). Core genome variation could be 

exploited in practical and biological meaningful ways like probe and diagnosis design

or understanding conserved but highly variable proteins. 

Conclusions

The core genome of bacteria, no matter if species, genus or whatever preferred level

should be an open repository and recalculated each time a new strain is sequenced, 

and shared with the scientific community, maybe through a “living” paper that self-

updates with new genomes. Here is presented a working version of streptococci core

genome with 404 predicted proteins. Additionally, core genome and pan-genome are

not just mathematical concepts only, the functional metabolic roles of the known 

genes are relevant and also its natural variations.Traditional marker gene based 
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phylogenetic tools in bacteria are invaluable; however, they do not capture the 

dynamism occurring in bacterial genomes and other tools like the GSS better 

distinguish genome level relatedness between species. A practical use for the core 

genome of the streptococci is to classify abundances of different species and strains 

in metagenomic samples. Finally, the range of sequence diversity within each 

Streptococcus core cluster will need further analysis to determine if the level of 

sequence identity correlates with selective pressures.
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