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 2 

ABSTRACT 14 

Analysing the relationships between biomolecules and the genetic diseases is a highly active 15 

area of research, where the aim is to identify the genes and their products that cause a 16 

particular disease due to functional changes originated from mutations. Biological ontologies 17 

are frequently employed in these studies, which provided researchers with extensive 18 

opportunities for knowledge discovery through computational data analysis. 19 

In this study, a novel approach is proposed for the identification of relationships between 20 

biomedical entities by automatically mapping phenotypic abnormality defining HPO terms 21 

with biomolecular function defining GO terms, where each association indicates the 22 

occurrence of the abnormality due to the loss of the biomolecular function expressed by the 23 

corresponding GO term. The proposed HPO2GO mappings were extracted by calculating the 24 

frequency of the co-annotations of the terms on the same genes/proteins, using already 25 

existing curated HPO and GO annotation sets. This was followed by the filtering of the 26 

unreliable mappings that could be observed due to chance, by statistical resampling of the 27 

co-occurrence similarity distributions. Furthermore, the biological relevance of the finalized 28 

mappings were discussed over selected cases, using the literature.  29 

The resulting HPO2GO mappings can be employed in different settings to predict and to 30 

analyse novel gene/protein - ontology term - disease relations. As an application of the 31 

proposed approach, HPO term – protein associations (i.e., HPO2protein) are predicted. In 32 

order to test the predictive performance of the method on a quantitative basis, and to compare 33 

it with the state-of-the-art, CAFA2 challenge HPO prediction target protein set was 34 

employed. The results of the benchmark indicated the potential of the proposed approach, as 35 

HPO2GO performance was among the best (Fmax = 0.35). The automated cross ontology 36 

mapping approach developed in this work can easily be extended to other ontologies as well, 37 

to identify unexplored relation patterns at the systemic level. The datasets, results and the 38 

source code of HPO2GO are available for download at: https://github.com/cansyl/HPO2GO. 39 
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1. INTRODUCTION AND BACKGROUND 40 

Systematic definition of biomedical entities (e.g., diseases, abnormalities, symptoms, traits, 41 

gene and protein attributes, activities, functions and etc.) is crucial for computational studies 42 

in biomedicine. Ontological systems, composed of standardized controlled vocabularies, are 43 

employed for this purpose. Human Phenotype Ontology (HPO) system annotates disease 44 

records (i.e., terms and definitions about diseases, recorded in relevant databases) with a 45 

standardized phenotypic vocabulary (Robinson et al., 2008; Köhler et al., 2017). The source 46 

of the disease information for HPO are Orphanet (Rath et al., 2012), DECIPHER (Firth et 47 

al., 2009), and OMIM (Amberger et al., 2014) databases. Each of the phenotype terms define 48 

a specific type of abnormality encountered in human diseases (e.g., HP:0001631 - atrial 49 

septal defect). The generation of HPO terms and their associations with diseases are carried 50 

out with both manual curation efforts and automated procedures (e.g., text mining). The 51 

curation job is usually done by experts by reviewing the relevant literature publications along 52 

with the disease centric information at various biomedical data resources. The growing 53 

library of HPO currently contains nearly 12,000 phenotype terms, providing more than 54 

123,000 annotations to 7,000 different rare (mostly Mendelian) diseases and the newly added 55 

132,000 annotations to 3,145 common diseases (Groza et al., 2015). A long-term goal of the 56 

HPO project is that the system to be adopted for clinical diagnostics, which will both provide 57 

a standardized approach to medical diagnostics and present structured machine readable 58 

biomedical data for the development of novel computational methods using data mining 59 

techniques. Apart from phenotype-disease associations, which is the main aim of the HPO 60 

project, HPO also provides phenotype-gene associations by using the known rare disease - 61 

gene relations (i.e., the information which is in the form of: "certain mutation(s) in Gene X 62 

causes the hereditary Disease Y"), using the abovementioned disease centric resources. The 63 

associations between HPO terms and biomolecules, together with the downstream analysis 64 

of these associations, help in disease gene identification and prioritization (Köhler et al., 65 

2009). With the mapping of phenotypes to human genes, HPO currently (January 2018) 66 

provides 122,166 annotations between 3,698 human genes and 6,729 HPO terms. 67 

The Gene Ontology (GO) is an ontological system to define gene/protein attributes with an 68 

extensive controlled vocabulary (GO Consortium, 2014). Each GO term defines a unique 69 

aspect of biomolecular attributes. Similar to other ontological systems GO has a directed 70 
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acyclic graph (DAG) structure, where terms are related to each other mostly with “is_a” or 71 

“part_of” relationships. GO is composed of three categories (i.e., aspects) in terms of the type 72 

of the defined gene product / protein attribute such as: (i) molecular function – MF (i.e., the 73 

basic function of the protein at the molecular level; e.g., GO:0016887 - ATPase activity), (ii) 74 

biological process  - BP (i.e., the high level process, in which the protein plays a role; e.g., 75 

GO:0005975 - carbohydrate metabolic process), and (iii) cellular component – CC (i.e., 76 

subcellular location, where the protein carries out its intended activity; e.g., GO:0016020 - 77 

membrane). Similar to the other ontological systems, the basic way of annotating a gene or 78 

protein with a GO term is the manual curation by reviewing the relevant literature. GO also 79 

employs the concept of “evidence codes”, where all annotations are labelled with descriptions 80 

indicating the quality of the source information used for the annotation (e.g., ECO:0000006 81 

- experimental evidence, ECO:0000501 – IEA: evidence used in automatic assertion). 82 

UniProt-GOA (Gene Ontology Annotation) database (Huntley et al., 2015) houses an 83 

extensive collection of GO annotations for UniProt protein sequence and annotation 84 

knowledgebase records. In the UniProtKB/Swiss-Prot database (i.e., housing manually 85 

reviewed protein entries with highly reliable annotation) version 2018_02, there are a total 86 

of 2,850,015 GO term annotations for 529,941 protein records; whereas in 87 

UniProtKB/TrEMBL database (i.e., housing mostly electronically translated uncharacterized 88 

protein entries) version 2018_02, there are a total of 189,560,296 GO term annotations for 89 

67,760,658 protein records. Most of the annotations for the UniProtKB/TrEMBL database 90 

entries are produced by automated predictions (UniProt Consortium, 2017). 91 

Due to the high volume of experimental research that (i) discover new associations between 92 

biomolecules and ontological terms, and (ii) produce completely new and uncharacterized 93 

gene/protein sequences; curation efforts are having hard time in keeping up with annotation 94 

process. To aid manual curation efforts, automated computational methods come into play. 95 

These computational methods exploit the approaches and techniques widely used in the fields 96 

of data mining, machine learning and statistics, to produce probabilistic associations between 97 

biomedical entities. Critical Assessment of Functional Annotation (CAFA) challenge 98 

(Radivojac et al., 2013; Jiang et al., 2016) aims to evaluate the automated methods that 99 

produce GO and HPO term association predictions for protein entries, on a standard time-100 

held benchmarking dataset. Now after its third instalment, CAFA organization have already 101 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26663v2 | CC BY 4.0 Open Access | rec: 29 Jul 2018, publ: 29 Jul 2018



 5 

brought together a research community, dedicated to elevate the capabilities of automated 102 

function prediction approaches closer to the level of expert review. 103 

Protein function prediction using GO terms is a highly active area of research, where various 104 

types of approaches utilizing: amino acid sequence similarities (Hawkins et al., 2009), 3D 105 

structure analysis (Roy, Yang & Zhang, 2012), semantic similarities between the ontological 106 

terms (Falda et al., 2012), gene expression profiles (Lan et al., 2013), protein-protein 107 

interactions - PPIs (Wass, Barton & Sternberg, 2012), shared functional domains and their 108 

arrangements (Fang & Gough, 2012; Finn et al, 2016; Do�an et al., 2016) and ensemble 109 

approaches that exploit multiple feature types (Wass, Barton & Sternberg, 2012; Cozzetto et 110 

al., 2013; Lan et al., 2013; Rifaioglu et al., 2017); are employed to model the proteins and to 111 

transfer the functional annotations from characterized proteins (i.e., the ones that have 112 

reliable annotation), to the uncharacterized ones with highly similar features. Known GO 113 

associations of genes and proteins are also used in different contexts in the literature. For 114 

example, the method "MedSim" uses the semantic similarities between GO terms for the 115 

prioritization of disease genes (Schlicker, Lengauer & Albrecht, 2010). The method "spgk" 116 

uses a shortest-path graph kernel to compute functional similarities between gene products 117 

using their GO annotations and the term relations on the GO DAG (Alvarez, Qi & Yan, 118 

2011). 119 

Apart from the machine-produced functional predictions for genes/proteins, automated 120 

prediction of the associations between human genes/proteins and phenotype/disease defining 121 

ontological terms is a non-trivial task, which can be utilized to identify large-scale novel 122 

disease-gene-pathway/system relations. The identification of direct disease-gene relations is 123 

a widely studied topic (Moreau & Tranchevent, 2012). A considerable amount of the existing 124 

literature about disease-gene associations involve the calculation of semantic similarities 125 

between gene products, based on the already existing ontological term annotations 126 

(Washington et al., 2009; Smedley et al., 2013; Deng et al., 2015; Rodríguez-García et al., 127 

2017). For example, the method "PhenomeNET" was employed to generate mappings 128 

between the highly related terms across similar ontological systems (Rodríguez-García et al., 129 

2017) such as the HPO, Mammalian Phenotype Ontology – MP (Smith, Goldsmith & Eppig, 130 

2005), Human Disease Ontology – DO (Kibbe et al., 2014) and Orphanet Rare Disease 131 

Ontology – ORDO (Vasant et al., 2014); for discovering novel gene-disease associations. 132 
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However, semantic similarity based approach sometimes suffers from the low coverage of 133 

especially the HPO annotations on the protein space. The authors of two recent studies have 134 

investigated this issue (Kulmanov & Hoehndorf, 2017; Peng et al., 2017). In this context, 135 

increasing the coverage of HPO annotations by predicting gene/protein-HPO term 136 

associations may help semantic similarity based association studies. 137 

There are only a few examples of HPO term-protein association prediction methods in the 138 

literature. In the "dcGO" method, the authors mapped ontological terms (including HPO) to 139 

protein domains, which are the functional units, and transferred the ontology mapping to 140 

proteins according to known domain annotations (Fang & Gough, 2012). The objective in 141 

the "PHENOstruct" method is the prediction of gene-HPO term associations using 142 

heterogeneous biological data consist of  PPIs, GO annotations, literature relations, variants 143 

and known HPO annotations, together with a structured SVM classifier (Kahanda et al., 144 

2015). One of the text mining based CAFA2 challenge participating methods "EVEX", was 145 

employed for protein-HPO term association prediction. Originally, EVEX utilizes text 146 

mining approaches for large-scale integration of heterogeneous biological data and event 147 

extraction to generate a structured resource of relations, to be used in pathway curation (Van 148 

Landeghem et al., 2013). In the context of HPO term prediction, EVEX scans the literature 149 

to detect proteins and phenotypic terms that co-occur on the same text corpus, and associates 150 

them with each other based on certain criteria, similar to other text mining based approaches. 151 

A network based HPO prediction method participated in CAFA2 was the "RANKS", in 152 

which the authors developed a flexible algorithmic scheme for heterogeneous biological 153 

network analysis, and used previously generated functional Interaction and functional human 154 

gene networks for gene-HPO term association prediction (Valentini et al., 2016). According 155 

to the CAFA2 challenge results (Jiang et al., 2016), the participating methods EVEX, 156 

RANKS, PHENOstruct and dcGO  were among the top performers. In a recent study, the 157 

authors proposed two hierarchical ensemble methods: (i) the Hierarchical Top-Down, and 158 

(ii) the True Path Rule, for gene-HPO term associations; in which the hierarchical graph 159 

structure of HPO has been utilized together with the RANKS algorithm and the SVM 160 

classifier (Notaro,  et al., 2017).  161 

The text mining approach is highly effective for predicting gene-disease relations in disease 162 

gene prioritization studies (Krallinger, Valencia & Hirschman, 2008). However, this 163 
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approach suffers from low coverage in some cases, due to knowledge limitation in the 164 

literature. In other words, there is a bias towards detecting highly studied and already known 165 

relations. If a certain abnormality and a gene/protein has not been studied together in the 166 

same concept yet, it is often not possible to identify the relation. Network based methods are 167 

proposed on top of either text-mining results, protein-protein interactions and/or pathway 168 

data (Bromberg, 2013; Guney & Oliva, 2014; Guala & Sonnhammer, 2017) to detect indirect 169 

relations, which greatly increase the coverage; nevertheless, they still moderately rely on the 170 

previously reported relations. It is also important to note that, any predictive approach is 171 

limited by the quality and the coverage of its source information. However, the predictive 172 

output of different approaches often complement each other, contributing to fill different 173 

portions of the missing information in the knowledge space. Due to this reason, developing 174 

novel approaches to complement text mining based methods is crucial for automated 175 

ontological association prediction. The observed low performance of even the best methods 176 

in the HPO term prediction track of the CAFA2 challenge displayed the necessity of novel 177 

approaches for the biomedical entity relation prediction. 178 

In this study, a new approach is proposed to produce phenotypic abnormality HPO term 179 

associations to both GO terms and human genes/proteins with the analysis of co-annotation 180 

fractions between the HPO and GO term combinations. For this, HPO and GO terms that are 181 

continually co-occurring on different proteins as annotations, are linked to each other (i.e., 182 

the system training step), entitled as the HPO2GO mappings. After that, proteins with a 183 

linked GO term annotation receives the corresponding HPO term as the phenotypic term 184 

prediction (i.e., the application step), entitled as the HPO2protein predictions. The idea here 185 

is to associate a HPO term Y with a GO term X in the sense that: "if a protein loses its function 186 

defined by the GO term X (or at least a reduction in the defined functionality) as a result of a 187 

genetic mutation, the loss of function may cause the disease, which is defined by the 188 

phenotype term Y". This idea is based on the nature of annotating genes/proteins with HPO 189 

terms; as for example, only the functionally problematic versions of these genes/proteins 190 

(e.g., disease causing variants) are associated with the relevant genetic diseases and their 191 

defining phenotypic abnormality terms. Mutations often lead to diseases by causing either a 192 

loss of existing functionality or a gain of new functionality in the gene products. As a result, 193 

if the HPO term Y and the GO term X are observed to be frequently co-occurring on different 194 
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proteins, then the lost function, which gave way to the corresponding disease may be the one 195 

defined by the GO term X. This function usually corresponds to a large-scale biological 196 

process. This approach exploits the significantly higher coverage of GO term annotations for 197 

genes/proteins, compared to the HPO term annotations; to produce novel gene/protein - HPO 198 

term associations. 199 

In order to test the biological relevance of this approach, selected HPO2GO mappings were 200 

manually examined. Additionally, the proposed methodology was employed to predict HPO 201 

terms for the human protein target dataset provided in the CAFA2 challenge. Using the 202 

benchmark set, the prediction performance was calculated and compared with the state-of-203 

the-art HPO prediction methods. Another set of HPO2GO mappings were generated for this 204 

test, using the time-held training data provided in CAFA2. Finally, the up-to-date HPO2GO 205 

mappings were employed to generate HPO term predictions to human protein entries in the 206 

UniProtKB/Swiss-Prot database (i.e., HPO2protein predictions). The training and test 207 

datasets, along with the source code of the proposed methodology and the analyses are 208 

available for download at https://github.com/cansyl/HPO2GO. 209 

 210 

  211 
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2. METHODS 212 

Dataset Construction 213 

In order to generate the training sets, which were employed to generate the HPO2GO 214 

mappings, first, gene to HPO term mappings file was downloaded from the HPO web-site 215 

(January 2017 version of the file named: "ALL_SOURCES_ALL_FREQUENCIES_ genes_ 216 

to_phenotype.txt"). This file contained 153,575 annotations between 3,526 human genes and 217 

6,018 HPO terms. This file is shared in the HPO2GO repository with the filename: 218 

"HPO_gene_to_phenotype_annotation_01_2017_ALL_SOURCES_ALL_FREQUENCIES219 

.txt". In HPO, "genes_to_phenotype" file only contains the asserted (i.e., specific) 220 

annotations to genes; whereas "phenotype_to_genes" file contains all annotations propagated 221 

through the root of the HPO DAG, according to the true path rule. As a result, parents of the 222 

asserted terms are included as well. In this study, the asserted annotations are used in the 223 

analysis (in terms of both GO and HPO), in order to make sure the training set includes only 224 

the most reliable annotations. 225 

Subsequently, all GO term annotations to the human proteins (with the experimental evidence 226 

codes: EXP, IDA, IPI, IMP, IGI and IEP) in UniProtKB were downloaded from the UniProt-227 

GOA database 2017_01 version, using QuickGO browser (filename: 228 

"GOA_UniProt_human_protein_annotation.tsv"). After eliminating the repeating (i.e., 229 

redundant) annotations, the finalized file contained 179,651 GO annotations between 18,577 230 

unique human genes and 14,632 GO terms (filename of the finalized GO annotation file: 231 

"GO_annot_human_proteins_UniProtGOA_01_2017.txt"). An additional column 232 

containing the corresponding HGNC symbols (i.e., gene symbols) of the coding genes was 233 

also included in the downloaded GO annotation file. This column was later used to combine 234 

the GO annotations with the HPO annotations, since the HPO annotation file includes the 235 

gene symbols. 236 

 237 

Applied Methodology 238 

The proposed methodology is divided into 2 steps: (i) training of the system (i.e., the 239 

generation of the HPO2GO mappings), and (ii) the application step (i.e., the prediction of 240 
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HPO term-protein associations – HPO2protein, using the previously generated HPO2GO 241 

mappings). 242 

Figure 1 represents the whole HPO2GO mapping (i.e., training) procedure. For the training 243 

of the system, first, the HPO and GO annotation datasets were prepared (Figure 1.1 and 244 

Figure 1.2) and the initial HPO-GO mappings were generated (Figure 1.3) by identifying the 245 

genes/proteins shared between individual HPO and GO terms (i.e., the cases where HPO and 246 

GO terms are co-annotated to the same genes/proteins). This mapping generated 1,433,208 247 

unique pairs between 6,005 HPO terms and 9,685 GO terms. At this point, it was observed 248 

that some of GO and HPO terms were annotated to high number of proteins, and it was highly 249 

probable to for them to co-occur on the same protein once or twice just by chance. In order 250 

to eliminate the randomly occurred mapping cases, a filtering procedure was required to be 251 

applied. For each HPO-GO term pair, a co-occurrence similarity measure, inspired from 252 

semantic similarity based approaches, has been calculated. The co-occurrence similarity 253 

formulation is given in Equation 1.  254 

 255 

(1) 256 

 257 

Here, SHPOi,GOj is the co-occurrence similarity between the HPO term "HPOi" and the GO 258 

term "GOj", NG HPOi&GOi is the number of genes/proteins where these terms are annotated 259 

together, NG HPOi is the total number of genes with the annotation "HPOi", and NG GOi is the 260 

total number of genes with the annotation "GOi". 261 

The mapping process and the co-occurrence similarity calculation are shown in Figure 2 with 262 

a toy example. Following the calculation of the co-occurrence similarities between all HPO-263 

GO pairs, a thresholding operation was applied in order to distinguish between relevant 264 

mappings and the random ones. Two parameters were used for the thresholding operation: 265 

(i) the co-occurrence similarities (S), and (ii) the number of genes with co-occurring 266 

annotations (n). The aim behind employing a second parameter (i.e., n) was to eliminate the 267 

potential random pairing cases, where the co-occurrence similarity is still high. These cases 268 

are rare; however, it is still possible to observe a few of them especially when n is very small, 269 

due to extremely high number of term combinations. In Figure 2, this situation is represented 270 

�ØØØØ,�Ø� =
2 7 ��	ØØØØ&�Ø�
��	ØØØØ +��	�Ø� 
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on the toy example, here SHPOD,GO4 is equal to SHPOB,GO3; however the HPOD-GO4 mapping 271 

is probably less reliable compared to HPOB-GO3 since nHPOD,GO4 is equal to 1. 272 

Statistical resampling was used to determine the optimal parameter values (to be used as 273 

thresholds), that separate meaningful mappings from random ones. A permutation (i.e., 274 

randomization) test was constructed for this purpose. A randomized HPO-GO term mapping 275 

table was generated (Figure 1.4) by first, shuffling the indices of the original "HPO vs. gene" 276 

and "GO vs. gene" annotation tables; and second, calculating both the randomized co-277 

occurrence similarities (i.e., SR) and the number of genes with co-occurring annotations (i.e., 278 

nR) for each random HPO-GO mapping. For each arbitrarily selected S (i.e., S > 0, S g 0.1, S 279 

g 0.2, …, S g 0.6) and n (i.e., n g 1, n g 2, …, n g 5) threshold value combination, the original 280 

GO-HPO mappings with lower than the threshold S and n values were deleted and a co-281 

occurrence similarity distribution histogram was plotted using the remaining mappings (i.e., 282 

histograms plots in Figure 1 and in Figure 3). The same procedure was applied for the 283 

randomized mapping set as well. Finally, Kolmogorov–Smirnov test -KS test- (Lilliefors, 284 

1967; Hollander, Wolfe & Chicken, 2013) is employed to calculate a test statistic for 285 

estimating whether the samples from the random and the original sets (at each S and n 286 

selection) are from the same distribution or not. KS is a nonparametric test of 1-dimensional 287 

probability distributions that can be used to compare two samples, considering the quantized 288 

distance between the samples. The null hypothesis states that the two samples are drawn from 289 

the same distribution. Here, the distribution (i.e., histogram) of the S values for the original 290 

and the randomized mapping sets represent the two samples. The reason behind using 291 

histograms instead of the actual S values was that, both high and low S values were presented 292 

in both distributions; as a result, the significance test by checking sample distances approach 293 

would not work. However, the frequencies of these high and low S values are different from 294 

each other in the original and the random distributions. If the null hypothesis is accepted at a 295 

selected threshold value pair (S and n), which means that the distributions are not statistically 296 

different from each other, then it is concluded that the selected thresholds failed to eliminate 297 

the random pairings in the original mapping (i.e., a higher threshold is required). The lowest 298 

threshold values, where the samples from the two distributions became significantly different 299 

from each other, were selected as the official thresholds. Excessive threshold values were not 300 

considered in order not to eliminate too many GO-HPO mappings. After the determination 301 
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of the parameter values (i.e., S and n thresholds), the HPO2GO mappings were finalized, 302 

which ended the training process. 303 

HPO2protein prediction step was a simple procedure, where query proteins were annotated 304 

with the HPO terms, by taking their already existing GO annotations into account. HPO2GO 305 

mappings were employed for this purpose. There were a total of 3 application runs in this 306 

study using: (i) CAFA2 targets as the query set (for the performance tests and for the 307 

comparison with the state-of-the-art), (ii) CAFA3 targets as the query set (to officially 308 

participate to the CAFA3 challenge, the results of which are yet to be announced), and (iii) 309 

all human protein entries in the UniProtKB/Swiss-Prot database (to generate the 310 

HPO2protein predictions). 311 

 312 

Performance Evaluation Metrics 313 

In this study, it was not possible to use a standard fold based cross-validation to measure the 314 

performance and to determine the parameter values in the training procedure, since in most 315 

cases, the number of genes/proteins that have a co-occurring HPO-GO term annotations were 316 

so low. As a result, it was impossible to separate the samples into training and validation sets. 317 

Instead, the optimal parameter values were determined by using statistical resampling. 318 

However, a performance test was still required in order to assess the success of the proposed 319 

approach. For this, CAFA2 challenge benchmark set was employed. Due to the fact that 320 

CAFA2 challenge was long before the analysis done in this study, HPO2GO mappings were 321 

re-generated using the training data provided in CAFA2. This was followed by the production 322 

of the HPO-protein association predictions on the CAFA2 target gene set. This analysis both 323 

served as a performance test with time-held data (one of the hardest and most informative 324 

tests for predictive models) and a performance comparison with the state-of-the-art (i.e., other 325 

HPO prediction methods participated in CAFA2). The most basic definitions of the 326 

evaluation metrics used in this test; recall, precision and Fmax, are shown in Equation 2, 3 327 

and 4. 328 

 329 

(2) 330 ��ØØ = ��ØØ
��ØØ + ��ØØ 
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 331 

(3) 332 

 333 

(4) 334 

 335 

In equations 2,3 and 4; TPÇi, FNÇi, FPÇi, RcÇi and PrÇi represent the number of true positives, 336 

the number of false negatives, the number of false positives, recall and precision values, 337 

respectively; at the ith probabilistic score threshold. Fmax correspond to the maximum of the 338 

F-score values (i.e., harmonic mean of precision and recall, shown inside the curly brackets 339 

in Equation 4) calculated for each arbitrarily selected probabilistic score threshold. Finally, 340 

i=1...N represents there are N different arbitrarily selected probabilistic score thresholds. 341 

In the proposed method, probabilistic scores for each HPO-protein association prediction is 342 

calculated using the term co-occurrence similarity scores in Equation 1. If the mapping 343 

between the terms HPOi and GOj received the co-occurrence similarity score �ØØØØ,�Ø� , then 344 

all proteins that receive the HPOi prediction due to the presence of GOj annotation obtains 345 

the probabilistic prediction score: �ØØØØ,�Ø�. The calculation of the score in Equation 1 is set 346 

to range between 0 and 1; as a result, it can directly be used as a probabilistic score. Apart 347 

from that, probabilistic score thresholds represent values, under which the predictions are 348 

discarded. This way, a different set of predictions are given for each arbitrarily selected 349 

probabilistic score thresholds, leading to different precision and recall values. It is important 350 

to note that, probabilistic score thresholds are different from the thresholds we used to filter 351 

out unreliable HPO2GO mappings during the training process. The probabilistic score 352 

thresholds are used here (i.e., after the production of HPO2protein predictions) to produce 353 

binary predictions from continuous prediction scores, to be able to calculate performances. 354 

More details regarding the CAFA2 evaluation metrics are given in Jiang et al., 2016. 355 

  356 
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3. RESULTS 357 

Statistical Analysis of the Mappings 358 

The initial HPO to GO mappings were generated according to the procedure explained in the 359 

Methods section (Figure 2). The initial mapping of the original set resulted in 1,433,208 360 

mappings between 6,005 HPO terms and 9,685 GO terms. The same procedure for the 361 

randomized set produced 1,543,917 mappings between 5,995 HPO terms and 9,685 GO 362 

terms. The initial HPO-GO mappings for both the original and the randomized sets are 363 

available for download in the repository of the study (respective filenames: 364 

"HPO_GO_Raw_Original_Mapping.txt" and "HPO_GO_Random_Mapping.txt"). It was 365 

expected that the mappings generated from the random set would have lower co-occurrence 366 

similarity values on average compared to the original set mappings; in other words, they 367 

would contain less number of mappings for a particular co-occurrence similarity value. Table 368 

1 displays the comparison of the number of mappings for different co-occurrence similarity 369 

values, between the original and the randomized sets. As observed from Table 1, when S > 0 370 

there is no difference between the mappings; however as S is increased, the difference 371 

between the mappings becomes clear. Also, when S is increased, the number of mapped HPO 372 

and GO terms were decreased since many terms did not have any mappings that satisfied the 373 

stringent S values. The parameter n was not taken into account while calculating the statistics 374 

in Table 1 (i.e., n g 1 for all values in the table). 375 

The histograms in Figure 3 display the co-occurrence similarity distributions (i.e., S) for 376 

arbitrarily selected n values. As observed from the histograms, when the mappings with low 377 

n values are eliminated, the distributions shift to the right (i.e., the mean of S increases), 378 

which can be interpreted as the mappings became more reliable. However, excessive values 379 

of n thresholds leave only a few mappings to work with, especially at n=25 and n=75 (please 380 

see the number of mappings at the vertical axis of Figure 3.C and D). Histograms in Figure 381 

3 also show that thresholding the mappings using only n (not using S at all) would not be 382 

sufficient because there are mappings with very low S values even at very high n thresholds 383 

(i.e., 25 and 75). This observation verified the decision to use both of the parameters for the 384 

filtering operation. At this point, the statistical resampling (i.e., KS test) was applied since it 385 
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was not possible to determine the optimal n threshold by just manually checking the 386 

histograms. 387 

In order to find the minimum S and n values that significantly separate the original mapping 388 

from the randomized mapping, 35 different distributions, all combinations of the selected n 389 

(i.e., n g 1, 2, …, 5)  and S (i.e., S > 0, S g 0.1, …, 0.6) values, were prepared and tested 390 

individually against the co-occurrence distribution of the random mapping, generated with 391 

the same S and n thresholds. This test resulted in 35 different p-value calculations and the 392 

minimum parameter values that satisfied the statistical significance (i.e., rejection of the null 393 

hypothesis, which states that the two samples are from the same distribution) were selected. 394 

Table 2 displays the significance results of all KS tests. The cells with "NaN" indicate the 395 

cases, where the test could not be completed due insufficient number of samples to calculate 396 

the statistic. However, incomplete tests were not a problem since the aim here was observing 397 

the minimum threshold values, where the distributions significantly diverge from each other 398 

(NaNs are located far away from this point). In Table 2, the cell with the p-value written in 399 

bold font (i.e., 0.0057) signifies the point, where the corresponding thresholds n g 2 and S g 400 

0.1 yielded the required significance (p-value < 0.01); and thus, these values were selected 401 

as the finalized thresholds. This means that, all of the mappings with n < 2 and S < 0.1 were 402 

considered unreliable and eliminated from the initial HPO-GO mappings.  403 

Figure 4 displays the total number of unique mappings (vertical axis) with co-occurrence 404 

similarity values greater than the corresponding threshold value (horizontal axis), for the 405 

original and the randomized distributions on the blue and red coloured curves, respectively. 406 

Figure 4.A shows the plot for the combination with greater than or equal to one co-annotated 407 

gene (i.e., n g 1), Figure 4.B displays the same value for n g 2, Figure 4.C and D for n g 3 408 

and 4; respectively. The differences between Figure 3 and Figure 4 is that, (i) in Figure 4 409 

cumulative number of mappings are given (i.e., all mappings left after thresholding with S g 410 

0.1, 0.2, …), whereas in Figure 3, the number of mappings that fall into each S bin is given; 411 

and (ii) in Figure 4, plots are given for n g 1, 2, 3 and 4 since the aim was to display the 412 

curves around the selected threshold n value; whereas in Figure 3, there are plots for n g 1, 413 

5, 25 and 75 to visually indicate the distribution shifts especially at high n values (i.e., n=25 414 

and n=75). Figure 4 was drawn as a visual representation of the likeness between the original 415 

and the randomized distributions at different parameter selections. As observed from Figure 416 
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4, the distributions diverged from each other at n g 2, which also is consistent with the KS 417 

test results. Considering the co-occurrence similarity parameter, S g 0.1 produced a clear 418 

separation between the original and the randomized distributions as long as n is greater than 419 

1. Following the HPO-GO mapping elimination according to the selected thresholds, 420 

finalized HPO2GO mappings contained 45,805 associations between 3,693 HPO terms and 421 

2,801 GO terms. HPO2GO mappings are available for download in the repository of the 422 

study (filename: "HPO2GO_Finalized_Mapping.txt"). 423 

It was only possible to use a small portion of the input GO annotations for the generation of 424 

the HPO2GO mappings because the number of HPO annotated genes were only 3,526; 425 

whereas, the number of GO annotated human genes were 18,577. Since mappings can be 426 

done over the genes/proteins with co-occurring GO and HPO annotations, only  3,526 427 

genes/proteins were used in the process. The remaining 15,051 human genes with GO 428 

annotations were only used in the application step (i.e., HPO2protein), to predict HPO term 429 

associations. 430 

 431 

The Biological Relevance of the Selected HPO2GO Mappings – A Case Study 432 

Two different examples were selected and examined to discuss the biological relevance of 433 

HPO2GO mappings. The first case is the mapping between the phenotypic abnormality HPO 434 

term "absence of bactericidal oxidative respiratory burst in phagocytes" (HP:0002723) and 435 

the GO term "respiratory burst after phagocytosis" (GO:0045730), which is in the BP 436 

category. The exact definition of this GO term in the UniProt-GOA database is: "A phase of 437 

elevated metabolic activity, during which oxygen consumption increases; this leads to the 438 

production, by an NADH dependent system, of hydrogen peroxide (H2O2), superoxide 439 

anions and hydroxyl radicals" (URL: https://www.ebi.ac.uk/QuickGO/term/GO:0045730). 440 

These two terms are mapped to each other in HPO2GO with high confidence (i.e., S = 0.89 441 

and n = 4). The symbols of the co-annotated genes were CYBA, CYBB, NCF2 and NCF1. As 442 

observed from the names of both terms and from the description of the GO term, the HPO 443 

term defines an abnormal condition that corresponds to the absence of the biological process 444 

portrayed by the mapped GO term. This is in accordance with the logic behind mapping HPO 445 

terms with GO terms, which stated the occurrence of an abnormality (i.e., the HPO term) due 446 
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to the loss of the biomolecular function defined by the mapped GO term. There also is a GO 447 

term named "respiratory burst after phagocytosis" (GO:0045728), which is related to the 448 

mapped term (GO:0045730) on the GO DAG. This term (GO:0045728) defines a more 449 

specific function that is the exact opposite of the mapped HPO term (HP:0002723), 450 

semantically. There also is an evidence for the relation between HP:0002723 and 451 

GO:0045728 in the OBO formatted term definitions of HPO (URL: 452 

http://purl.obolibrary.org/obo/hp.obo). However, in HPO2GO, GO:0045728 could not be 453 

mapped to HP:0002723 due to low coverage in the source GO annotation set. GO:0045728 454 

was only annotated to one gene (symbol: HCK), which was not annotated to HP:0002723, as 455 

a result, the mapping could not be generated. Nevertheless, the mapped GO term 456 

(GO:0045730) still defined a sufficiently related function. 457 

The second selected case was the mapping between the HPO term "cerebellar hemisphere 458 

hypoplasia" (HP:0100307) and the MF category GO term "tRNA-intron endonuclease 459 

activity" (GO:0000213). The exact definition of this specific GO term in the UniProt-GOA 460 

database is: "Catalysis of the endonucleolytic cleavage of pre-tRNA, producing 5'-hydroxyl 461 

and 2',3'-cyclic phosphate termini, and specifically removing the intron" (URL: 462 

https://www.ebi.ac.uk/QuickGO/term/GO:0000213). These two terms were mapped to each 463 

other in HPO2GO with high confidence (i.e., S = 0.86 and n = 3). The symbols of the co-464 

annotated genes were TSEN2, TSEN34 and TSEN54. The HPO term HP:0100307 is 465 

associated with the disease entry "Pontocerebellar Hypoplasia, Type 2C (PCH2C)" 466 

(OMIM:612390) in the OMIM database. According to the disease definition, pontocerebellar 467 

hypoplasia is a heterogeneous group of neurodegenerative disorders associated with 468 

abnormally small cerebellum and brainstem, and the type 2C is characterized by a 469 

progressive microcephaly from child birth (Barth, 1993). The occurrence of the disease is 470 

associated with missense mutations in either TSEN2, TSEN34 or TSEN54 genes, which are 471 

parts of the tRNA splicing endonuclease complex (Budde et al., 2008). It was reported that, 472 

due to the abovementioned mutations, there was a partial loss in the function of cleaving the 473 

pre-tRNAs by the endonuclease complex (Budde et al., 2008). This is another clear example 474 

for a HPO term defining an abnormal condition, that is caused by the perturbation in the 475 

function defined by the mapped GO term. 476 

 477 
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Performance Comparison with the State-of-the-art 478 

The test for the comparison with the state-of-the-art had two objectives: (i) measuring the 479 

performance of the method on a time-held dataset to observe the relevance of the proposed 480 

approach, and (ii) investigating how the proposed method competes with the best performing 481 

methods in the literature. For this, we have re-generated the HPO2GO mappings using the 482 

CAFA2 training set, which contained  133,175 annotations between 5,586 HPO terms and 483 

4,418 proteins, from October 2015. Whereas, CAFA2 evaluation set (i.e., benchmarking set) 484 

contained 37,090 annotations between 2,838 HPO terms and 440 proteins. The reason behind 485 

the presence of low number of annotations (and proteins) in the evaluation set was that, only 486 

the HPO annotations produced between the time of the challenge participation deadline and 487 

the end of the annotation collection period (a total duration of nearly 8 months) were used to 488 

generate the time-held evaluation set. All of the datasets, the source code and the 489 

supplementary files used in the CAFA2 challenge, and thus in this benchmarking experiment, 490 

is available through the CAFA project repositories (URLs: 491 

https://github.com/yuxjiang/CAFA2 and https://ndownloader.figshare.com/files/3658395). 492 

HPO2GO mappings generated using the CAFA2 training set contained 27,424 mappings 493 

between 2,640 HPO terms and 2,488 GO terms. Considering the whole CAFA2 human target 494 

protein set, this mapping produced 1,922,333 HPO predictions for 16,256 proteins and 2,640 495 

HPO terms. The calculated performance of this prediction set was low (Fmax = 0.30), mainly 496 

due to high number of false positive (FP) hits. However, it is also probable that many of these 497 

false positives were actually non-documented HPO annotations of the corresponding protein, 498 

as the benchmark annotation set is incomplete. Increasing the thresholds with the aim of 499 

reducing the number of false positives resulted in a matching increase in the number of false 500 

negatives (FN), with a similar Fmax value. With the aim of enriching the mappings (to be 501 

able to reduce FPs without a significant increase in FNs), HPO annotations of genes from 502 

January 2014 (i.e., the CAFA2 training set) were propagated to the root of HPO DAG 503 

according to the true path rule. The propagated training set contained 379,513 annotations 504 

between 4,418 human proteins and 6,576  HPO terms; as opposed to 133,175 annotations 505 

between 4,418 human proteins and 5,586 HPO terms in the asserted CAFA2 set. As observed 506 

from the dataset statistics, propagating the annotations have only added about one thousand 507 

new terms to the set; however, the number of annotations were significantly increased. 508 
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Repeating the CAFA2 benchmark analysis using propagated HPO annotations and the same 509 

GO annotations set resulted in the same performance (Fmax = 0.30). Next, automated GO 510 

annotations (i.e., evidence code: IEA) have been included in the source GO annotation set, 511 

which increased the number of unique GO annotations from 128,947 to 214,235 (a 66% 512 

increase). Using the propagated HPO annotations together with enlarged GO annotation set, 513 

the new HPO-GO mappings, namely "HPOprop2GOall", were generated. The finalized 514 

HPOprop2GOall contained 198,928 mappings between 4,780 HPO terms and 5,196 GO 515 

terms; as opposed to 27,424 mappings between 2,640 HPO terms and 2,488 GO terms in the 516 

original mappings. The drastic difference between the numbers have indicated the 517 

enrichment provided by annotation propagation and GO set enlargement. Subsequently, 518 

HPOprop2GOall mappings were used to predict HPO associations for all CAFA2 targets, 519 

producing 13,022,574 predictions (as opposed to 1,922,333 predictions with the asserted set). 520 

Considering only the CAFA2 benchmark proteins, the predictions generated by using the 521 

optimized parameters (i.e., n g 170 and S g 0.11) resulted in 34,486 HPO predictions for 221 522 

benchmark proteins and 235 HPO terms, with a performance of Fmax = 0.35 (no-knowledge 523 

benchmark sequences in the full evaluation mode), which is among the top performances 524 

considering all of the models from 38 participating groups in the CAFA2 HPO prediction 525 

track. The Fmax performance of the top model in the challenge was 0.36 (Jiang et al., 2016), 526 

and the performance of the naïve baseline classifier was also the same. In Figure 5, each bar 527 

displays the overall performance (Fmax) of the CAFA2 participators, baseline classifiers and 528 

HPO2GO. At this point in the study, additional HPO2GO mapping sets were generated using 529 

different n and S threshold selections, and tested on the CAFA2 benchmark; however, these 530 

mappings produced performances slightly inferior to the one generated using the optimal 531 

thresholds (data not shown). HPO2GO CAFA2 benchmark test prediction results are 532 

available in the repository of the study (filename: 533 

"HPO_CAFA2_benchmark_predictions.txt").  534 

 535 

The Application of the Method to Generate Finalized HPO2protein Predictions 536 

Up-to-date HPO2GO mappings were employed to predict HPO terms for the human protein 537 

entries in the UniProtKB/Swiss-Prot database (i.e., 20,258 protein records), and the resulting 538 
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prediction set was marked as the finalized HPO2protein predictions. This set contained 539 

3,468,582 HPO predictions for 18,101 proteins and 3,693 HPO terms. HPO2protein 540 

predictions are available in the repository of the study (filename: 541 

"HPO2protein_Predictions.txt"). 542 

Finally, up-to-date HPO2GO model was run on the CAFA3 human protein targets, which 543 

produced 3,453,130 predictions on 16,609 human proteins with 3,719 HPO terms. A more 544 

stringent subset of this prediction set (i.e., predictions produced from mappings with S g 0.2) 545 

has been officially submitted to the CAFA3 challenge. HPO2GO CAFA3 target predictions 546 

are available in the repository of the study (filename: 547 

"HPO_CAFA3_target_predictions.txt"). There was a small difference between the number 548 

of query proteins in HPO2protein and the CAFA3 target sets (20,258 as opposed to 20,197, 549 

respectively). At the time of writing this manuscript, the CAFA3 challenge results have not 550 

been announced yet. 551 

  552 
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4. DISCUSSION 553 

As a part of the main HPO project, a sub-set of the HPO terms had already been mapped to 554 

the relevant terms from different ontology systems (e.g., anatomy, Gene Ontology process 555 

or cell type) to yield semantic interoperability with these systems. However, this mapping 556 

has been done by manually comparing the term definitions, only for a sub-set of GO terms; 557 

as a result, the coverage of this mapping was quite limited. In our approach, we linked all 558 

GO-HPO term combinations that satisfy the co-occurrence similarity tests. This way, the 559 

non-documented relations are also identified. In this sense, it is expected that the HPO2GO 560 

mappings will be valuable for the research community. It would also be interesting to 561 

compare the HPO2GO mappings with the abovementioned manually curated associations; 562 

however, it is not possible to access this data in the HPO repository anymore. 563 

In this study, individual terms from both ontologies are mapped to each other considering the 564 

co-annotated genes/proteins. However, the initial design of the experiment considered the 565 

mapping of an HPO term to a trio of GO terms, one from each GO category (i.e., biological 566 

process – BP, molecular function – MF and cellular component – CC). This way, the 567 

corresponding phenotypic abnormality would be associated with a problem in a specific 568 

molecular event (defined by the MF term), as a part of a defined large-scale process (BP 569 

term), occurring at a particular sub-cellular location (CC term). This approach would have 570 

been more biologically relevant compared to the current design; however, the initial design 571 

failed due to the scarcity of both HPO annotations and GO annotations containing MF, BP 572 

and CC term trios (data not shown). After that, a second option was considered, where HPO 573 

terms were mapped to MF and BP term pairs to enrich the set of proteins with the required 574 

GO annotations (i.e., MF and BP at the same time); nevertheless, the same problem was 575 

encountered again. Reliable annotation sets with higher coverage, which may become 576 

available in the future with more curation efforts, may solve this problem and make the 577 

abovementioned mapping approach practical. However at present, even for the currently 578 

applied one to one term mapping approach, the main challenge is the low coverage of the 579 

predicted associations due to the small size of the source annotation sets. There can be a few 580 

alternative solutions to this problem. First of all, the training sets with enriched GO 581 

annotation (for the genes/proteins with HPO annotations) may be obtained by including the 582 

annotations with evidence codes of reduced reliability (e.g., IEA – electronically generated). 583 
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Another option for enlarging the GO annotation set can be incorporating the genes (and their 584 

respective annotations) from other organisms, that are orthologous to human genes. Scaling 585 

up the coverage of HPO set can be provided by propagating the annotations to the parent 586 

terms according to the hierarchical structure of HPO. Another option here would be taking a 587 

more elaborate approach in the mapping procedure by taking the hierarchical term 588 

relationships into account while generating the HPO2GO mappings (i.e., the parent and child 589 

terms of the target HPO-GO term pair, that are co-annotated to different genes/proteins, will 590 

also contribute to the calculation of the co-occurrence similarity of the target HPO-GO pair). 591 

The official CAFA2 challenge results have indicated that, the methods based on sequence 592 

similarities (e.g., the baseline classifier BLAST and a few models from the participating 593 

groups) can achieve a good predictive performance considering the GO terms in the 594 

molecular function (MF) category. This was expected since it is possible to detect most of 595 

the signatures related to the molecular functions by analysing the amino acid sequence. 596 

However, most of the sequence-similarity based methods failed in predicting the cellular 597 

component (CC) GO term and HPO term associations. This can be explained for CC terms 598 

as either by the cleavage of the signals from the sequence post-translationally or the 599 

difficulties in detecting weak signals used for directing proteins to different compartments. 600 

Considering the HPO prediction, the case may completely be different. As opposed to GO 601 

terms, which define the attributes the proteins contain, HPO terms define phenotypic 602 

abnormalities caused by the protein when it loses one (or more) of its functions, usually due 603 

to certain mutations in the gene that codes the protein. Due to this reason, transferring a HPO 604 

annotation from one protein to another based on sequence similarity does not have a 605 

biological relevance, which explains the poor performance of the BLAST classifier. 606 

An important observation regarding the CAFA tests done in this study is that, there was a 607 

large difference between the number of HPO predictions for CAFA2 and CAFA3 targets, 608 

using HPO2GO with default parameters (i.e., 1,922,333 in CAFA2 as opposed to 3,453,130 609 

in CAFA3). There was also an increase in the number of predicted HPO terms (i.e., 2,640 in 610 

CAFA2 as opposed to 3,719 in CAFA3), and there were no significant increase in the number 611 

of targets. The increase in the number of predictions and the predicted HPO terms can be 612 

attributed to the training set getting larger and more informative in time. The training set used 613 

for CAFA2 contained 133,175 annotations; whereas, it was 153,575 for CAFA3. The 614 
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comparison of the predictive performances of HPO2GO trained by the CAFA2 and the 615 

CAFA3 training sets may reveal more about the situation. 616 

  617 
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5. CONCLUSION 618 

In this study, a simple and effective strategy, HPO2GO, is proposed to semantically map 619 

phenotypic abnormality defining HPO terms with biomolecular function defining GO terms, 620 

considering the cross-ontology annotation co-occurrences on different genes/proteins. This 621 

approach can easily be translated into novel HPO term predictions for genes/proteins, as well 622 

as into new HPO-disease or gene-disease associations. A literature based case study was 623 

carried to discuss the biological relevance of the selected HPO2GO mappings. This work 624 

also presents an application of the cross-ontology term mapping approach by generating 625 

HPO-protein associations. HPO2GO was benchmarked on CAFA2 challenge protein targets 626 

and it was revealed that the method was among the best performers of the HPO term 627 

prediction track participators (i.e., the state-of-the-art methods). Also, the up-to-date trained 628 

system was employed to predict HPO associations for all human proteins in the 629 

UniProtKB/Swiss-Prot database (i.e., HPO2protein predictions). The methodology proposed 630 

here was only meant to support the already established approaches (e.g., text mining), since 631 

different techniques with different data sources and perspectives produce results that 632 

complement distinct missing pieces of the knowledge space. It would also be interesting to 633 

analyse the complementarity between the results of the proposed method and the results of 634 

the conventional approaches participated in CAFA2 challenge; however, this was not 635 

possible since the actual predictions of the participant groups are not publicly available. 636 

As for the future work, it is first planned to map the HPO terms to GO term trios (i.e., MF, 637 

BP and CC terms at the same time) using enriched annotation datasets, as explained at the 638 

Discussion section. Another future task is the integration of HPO2GO mappings to our freely 639 

available GO based automated protein function prediction tool/server UniGOPred (Rifaioglu 640 

et al., 2018); so that, query proteins that receive a GO term prediction will be automatically 641 

associated with the HPO term(s) that are mapped to the corresponding GO term. It is expected 642 

that this approach would produce large-scale HPO predictions for uncharacterized proteins 643 

without any curated annotation, where the only available information is the amino acid 644 

sequence. The knowledge extraction methodology proposed here can easily be combined 645 

with various types of protein features employed in other predictive methods (e.g., variant 646 

information, PPIs, gene expression profiles, etc.) to generate an ensemble HPO term 647 

prediction tool that produces novel HPO-gene/protein-disease associations.  648 
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 30 

Table 1. Statistics of the initial (i.e., raw) original and randomized HPO-GO mappings (n g 1). 769 

S 

# of mappings # of mapped HPO terms # of mapped GO terms 

Original 

mapping 

Random 

mapping 

Original 

mapping 

Random 

mapping 

Original 

mapping 

Random 

mapping 

= 1 2 433 1 898 844 877 1 108 1 265 

g 0.9 2 440 1 898 848 877 1 109 1 265 

g 0.8 2 658 1 899 962 878 1 179 1 266 

g 0.7 2 805 1 899 1 028 878 1 212 1 266 

g 0.6 7 355 5 249 1 941 1 653 2 577 2 844 

g 0.5 8 075 5 252 2 188 1 655 2 712 2 847 

g 0.4 15 462 9 724 3 014 2 243 4 053 4 207 

g 0.3 32 393 21 615 4 082 3 017 6 011 6 081 

g 0.2 63 439 43 593 5 032 3 662 7 569 7 490 

g 0.1 181 048 134 038 5 920 5 199 8 884 9 005 

> 0.0 1 433 208 1 543 917 6 005 5 995 9 685 9 685 
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 31 

Table 2. KS test significance values for the comparison of original vs. randomized distributions at 772 

different co-occurrence similarity (S) and the number of co-annotated genes (n) thresholds. 773 

KS test statistic 
Co-occurrence similarity threshold 

S > 0 S g 0.1 S g 0.2 S g 0.3 S g 0.4 S g 0.5 S g 0.6 

# of co-

annotated 

genes 

threshold 

n g 1 0.6882 0.6884 0.4536 0.2366 0.3921 0.3484 0.3113 

n g 2 0.0423 0.0057 0.0005 0.0001 0.0002 0.0038 NaN 

n g 3 0.2636 0.0045 0.0000 NaN NaN NaN NaN 

n g 4 0.2830 0.0039 0.0000 NaN NaN NaN NaN 

n g 5 0.3349 0.0105 0.0000 NaN NaN NaN NaN 
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 776 

Figure 1. Schematic representation of the whole HPO2GO mapping (i.e., training) procedure. 777 
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 779 

Figure 2. Representation of the initial HPO-GO mapping process together with the calculation of co-780 

occurrence similarities (S) and the number of genes with co-occurring annotations (n), on a toy 781 

example. 782 
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 784 

Figure 3. HPO-GO initial mappings co-occurrence similarity distributions. Each plot is drawn for a 785 

different value of the number of co-annotated genes (i.e., n). 786 
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 788 

Figure 4. Cumulative plots displaying the number of HPO-GO mappings for the original (blue curve) 789 

and the randomized (red curve) distributions. Horizontal axis displays the arbitrarily selected co-790 

occurrence similarity thresholds (i.e., ÇS), and the vertical axis represents the logarithm of the total 791 

number of mappings left after the application of the corresponding threshold. Each plot is drawn for 792 

a different value of the number of co-annotated genes (i.e., n). As the threshold (i.e., the minimum 793 

required co-occurrence similarity value to keep a mapping in the system) increase, more mappings 794 

are eliminated; thus, a monotonic decrease was observed for all plots. 795 
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 797 

Figure 5. F1-score performance results (Fmax) of the top performing groups (grey bars), baseline 798 

classifiers (red and blue bars) and HPO2GO (dark grey bar) in CAFA2 HPO prediction benchmark. 799 

The lengths of the bars are directly proportional to the performance. 800 
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