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15 Abstract

16 Metabarcoding is a popular application which warrants continued methods optimization. To 

17 maximize barcoding inferences, hierarchy-based sequence classification methods are 

18 increasingly common. We present methods for the construction and curation of a database 

19 designed for hierarchical classification of a 157 bp barcoding region of the arthropod cytochrome 

20 c oxidase subunit I (COI) locus. We produced a comprehensive arthropod COI amplicon dataset 

21 including annotated arthropod COI sequences and COI sequences extracted from arthropod 

22 whole mitochondrion genomes, which provided the only source of representation for Zoraptera, 

23 Callipodida and Holothyrida. The database contains extracted sequences of the target amplicon 

24 from all major arthropod clades, including all insect orders, all arthropod classes and 

25 Onychophora, Tardigrada and Mollusca outgroups. During curation, we extracted the COI region 

26 of interest from approximately 81 percent of the input sequences, corresponding to 73 percent of 

27 the genus-level diversity found in the input data. Further, our analysis revealed a high degree of 

28 sequence redundancy within the NCBI nucleotide database, with a mean of approximately 11 

29 sequence entries per species in the input data. The curated, low-redundancy database is included 

30 in the Metaxa2 sequence classification software (http://microbiology.se/software/metaxa2/). 

31 Using this database with the Metaxa2 classifier, we characterized the relationship between the 

32 Metaxa2 reliability score, an estimate of classification confidence, and classification error 

33 probability. We used this analysis to select a reliability score threshold which minimized error. 

34 We then estimated classification sensitivity, false discovery rate and overclassification, the 

35 propensity to classify sequences from taxa not represented in the reference database. Our work 

36 will help researchers design and evaluate classification databases and conduct metabarcoding on 

37 arthropods and alternate taxa. 
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38 Introduction

39 With the increasing availability of high-throughput DNA sequencing, scientists with a 

40 wide diversity of backgrounds and interests are increasingly utilizing this technology to achieve 

41 a variety of goals. One growing area of interest involves the use of metabarcoding, or amplicon 

42 sequencing, for biomonitoring, biodiversity assessment and community composition inference 

43 (Yu et al. 2012; Guardiola et al. 2015; Richardson et al. 2015). Using universal primers designed 

44 to amplify conserved genomic regions across a broad diversity of taxonomic groups of interest, 

45 researchers are afforded the opportunity to survey biological communities at previously 

46 unprecedented scales. While such advancements hold great promise for improving our 

47 knowledge of the biological world, they also represent new challenges to the scientific 

48 community. 

49 Given that bioinformatic methods for taxonomic inference of metabarcoding sequence 

50 data are relatively new, the development, validation and refinement of appropriate analytical 

51 methods are ongoing. Relatively few studies have characterized the strengths and weaknesses of 

52 different bioinformatic sequence classification protocols (Porter et al. 2012; Bengtsson-Palme et 

53 al. 2015; Peabody et al. 2015; Somervuo et al. 2016; Richardson et al. 2017). Further, 

54 researchers continue to utilize a diversity of methods to draw taxonomic inferences from 

55 amplicon sequence data. Relative to alignment-based nearest-neighbor and lowest common 

56 ancestor-type classification approaches, methods involving hierarchical classification of DNA 

57 sequences are popular as they are often designed to estimate the probabilistic confidence of 

58 taxonomic inferences at each taxonomic rank. However, studies explicitly examining the 

59 accuracy of classification confidence estimates are rare (Somervuo et al. 2016).  
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60 When performing hierarchical classification, the construction, curation and uniform 

61 taxonomic annotation of the reference sequence database is an important methodological 

62 consideration. Database quality can affect classification performance in numerous ways. For 

63 example, artifacts within the taxonomic identifiers of a reference database can represent artificial 

64 diversity and the inclusion of sequence data adjacent to the exact barcoding locus of interest 

65 likely display sequence composition that is unrepresentative of the barcoding locus. Lastly, 

66 sequence redundancy within reference databases increases computational resource use and is 

67 particularly problematic for classification software programs that classify sequences based on a 

68 set number of alignments. In general, such database artifacts have the potential to bias model 

69 selection and confidence estimation both with k-mer style classifiers such as UTAX, SINTAX 

70 and the RDP Naïve Bayesian Classifier (Wang et al. 2007; Edgar 2015; Edgar 2016) and 

71 alignment based classification approaches such as Metaxa2 and Megan (Huson et al. 2011; 

72 Bengtsson-Palme et al. 2015). Thus, it is important to identify and manage reference sequence 

73 database artifacts during curation for optimal downstream classification performance. 

74 The use of molecular barcoding and metabarcoding in arthropod community assessment 

75 and gut content analysis has gained popularity in recent years (Corse et al. 2010; Yu et al. 2012; 

76 Mollot et al. 2014; Elbrecht and Leese 2017). However, as with other non-microbial taxonomic 

77 groups of interest, few researchers have developed hierarchical DNA sequence classification 

78 techniques for arthropods (Porter et al. 2014; Tang et al. 2015; Somervuo et al. 2017). Here, we 

79 detail the construction, curation and evaluation of a database designed for hierarchical 

80 classification of amplicon sequences belonging to a 157 bp COI locus commonly used for 

81 arthropod metabarcoding (Zeale et al. 2011). This work will serve as both a resource for those 
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82 conducting experiments using arthropod metabarcoding and as a template for future work 

83 curating and evaluating hierarchical sequence classification databases. 

84 Methods

85 Data collection and curation

86 To produce a comprehensive reference set, all COI annotated sequences from Arthropoda 

87 as well as three sister phyla, Mollusca, Onychophora and Tardigrada, between 250 and 2500 bp 

88 in length were downloaded from the NCBI Nucleotide repository on October 21st, 2016. To 

89 supplement this collection, all arthropod whole mitochondrion genomes were downloaded from 

90 NCBI Nucleotide on March 3rd, 2017. For metagenetic analysis, the inclusion of close outgroup 

91 sequences is useful for estimating the sequence space boundaries between arthropods and 

92 alternate phyla. The Perl script provided in Sickel et al. (2016) was then used along with the 

93 NCBI Taxonomy module (Sayers et al. 2013) to retrieve the taxonomic identity of each sequence 

94 across each of the major Linnaean ranks, from kingdom to species. 

95 After obtaining the available sequences and rank annotations, we created an intermediate 

96 database to obtain extracted barcode amplicons of interest from the reference data using the 

97 Metaxa2 database builder tool (v1.0, beta 4; http://microbiology.se/software/metaxa2/). This tool 

98 creates the hidden Markov models (HMMs) and BLAST reference databases underpinning the 

99 Metaxa2 classification procedures. During extraction, we designated an archetypical reference 

100 sequence trimmed to the exact 157 bp barcode amplicon of interest from the COI gene. This 

101 section of the arthropod COI gene is the amplicon product of the commonly used primers of 

102 Zeale et al. (2011). The reference sequence is used in the database builder tool to define the 

103 range of the barcoding region of interest, and the software then trims the input sequences to this 

104 region using the Metaxa2 extractor (Bengtsson-Palme et al. 2015). To increase the accuracy of 
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105 this process, we split the original input sequences on the basis of length prior to running the 

106 database builder for amplicon extraction, creating four files with sequences of 250-500 bp, 501-

107 600 bp, 601-2500bp and whole mitochondrion genomes. Following sequence extraction, the 

108 database builder tool aligns trimmed sequences using MAFFT (Katoh and Standley 2013) and 

109 from this alignment the conservation of each residue in the sequence is determined. The most 

110 conserved regions are selected for building HMMs using the HMMER package (Eddy 2011). 

111 Input sequences that cover most of the barcoding region and are taxonomically annotated are 

112 used to build a BLAST (Altschul et al. 1997) database for sequence classification. Finally, the 

113 sequences in the BLAST database are aligned using MAFFT, and the intra- and inter-taxonomic 

114 sequence identities are calculated to derive meaningful sequence identity cutoffs at each 

115 taxonomic level. This entire process is described in more detail in the Metaxa2 2.2 manual 

116 (http://microbiology.se/software/metaxa2/) and in Bengtsson-Palme et al. (2018).

117 After extraction, sequences were then curated by removal of duplicate sequences using 

118 the Java code provided with the RDP classifier (v2.11; Wang et al. 2007). At this point, we 

119 conducted extensive curation of the available lineage data for the reference sequence database. 

120 For references lacking complete annotation at midpoints within the Linnaean lineage, we used 

121 Perl regular expression-based substitution to complete the annotation according to established 

122 taxonomic authorities, including MilliBase (Sierwald 2017), the Integrated Taxonomic 

123 Information System (http://www.itis.gov) and the phylogenomic analysis of Regier et al. (2010). 

124 Table 1 shows the substitutions made. Further, we removed ranks containing annotations 

125 reflective of open nomenclature, such as sp., cf. and Incertae sedis, as well as ranks annotated as 

126 8undef.9 Lastly, we removed entries containing more than two consecutive uncalled base pairs. 
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127 Upon analyzing the representativeness of this initial database across arthropod classes 

128 and insect orders, we found that amplicon sequences from two insect orders, Strepsiptera and 

129 Embioptera, were not present in the curated database, likely due to their poor sequence similarity 

130 to the reference sequence used to designate the amplicon barcode region of interest. To add 

131 Strepsiptera and Embioptera COI amplicons, all NCBI COI sequences belonging to these orders 

132 were downloaded on October 10th, 2017, curated and added to the Metaxa2 COI database. To 

133 improve recovery of amplicons from these insect orders during curation, a representative 

134 sequence from both Embioptera and Strepsiptera, representing the 157 bp COI amplicon of 

135 interest, was used when building the Metaxa2 database. This retrospective addition of sequences 

136 belonging to Strepsiptera and Embioptera contributed 102 and 3 non-redundant reference 

137 sequences to the database, respectively. 

138 To assess the degree to which our amplicon sequence extraction, dereplication and 

139 curation procedures worked, we took inventory of the number of sequences per species and 

140 genera present in the data at three points during curation: 1) in the initial input data, 2) following 

141 Metaxa2 database builder-based amplicon sequence extraction and 3) in the final database 

142 following dereplication and taxonomic curation.  

143 Classifier performance evaluation

144 For performance evaluations, the methods used were highly similar to those of 

145 Richardson et al. (2017). With the final set of curated amplicon reference sequences, we 

146 randomly sampled 10 percent of the sequences to obtain testing data, using the remaining 90 

147 percent of sequences to train the Metaxa2 classifier for performance evaluations. To assess the 

148 effect of sequence length on classifier performance, we used a Python script to crop the test case 

149 sequences to 80 bp in length, approximately half the median length of the original reference 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26662v1 | CC BY 4.0 Open Access | rec: 12 Mar 2018, publ: 12 Mar 2018



150 sequence dataset. Evaluating classification performance on these short sequences provides a test 

151 of the classifiers robustness to sequence length variation and enables estimation of the potential 

152 for classifying sequences from short, high-throughput technology, such as 100 cycle single-end 

153 Illumina HiSeq sequencing. We then performed the following analyses on both the full-length 

154 (157 bp) and half-length (80 bp) test case sequences, separately. 

155 To characterize the relationship between the Metaxa2 reliability score, an estimate of 

156 classification confidence, and the probability of classification error, we used the COI trained 

157 classifier to classify the testing datasets, requiring the software to classify to the family rank 

158 regardless of the reliability score of the assignment. After comparing the known taxonomic 

159 identity of each reference test case to the Metaxa2 predicted taxonomic identity, we regressed 

160 5,000 randomly chosen binary classification outcomes, 819 representing an incorrect 

161 classification and 809 representing a correct classification, against the Metaxa2 reliability score 

162 using local polynomial logistic regression in R (v3.3.1; R Core Team 2014). 

163 To assess classifier sensitivity and accuracy on all testing data, we analyzed both testing 

164 datasets using Metaxa2 with an e-value threshold (-E) of 1e-25 and a reliability score threshold (-

165 R) of 75. With the resulting classifications, we compared the known taxonomic identity of each 

166 reference test case to its Metaxa2 classification, from species to order, to assess the proportion of 

167 sequences classified and the proportion of incorrect taxonomic assignments as well as the false 

168 discovery rate, or errors per assignment. Lastly, to assess the rate of taxonomic overclassification 

169 at the genus level, we searched the testing dataset for sequence cases belonging to arthropod 

170 genera not represented in the training database. We then determined the proportion of these 

171 sequences classified to the genus level, or overclassified. Further, we assessed family level error 

172 and sensitivity for these test cases. 
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173 Results

174 Following curation and extraction, we obtained 199,206 reference amplicon sequences 

175 belonging to 51,416 arthropod species. Over 90 percent of the references were between 142 and 

176 149 bp in length, with a minimum reference sequence length of 94 bp. For the final database 

177 creation and classifier training procedure, many reference amplicons were shorter than the 157 

178 bp region of interest due to the incompleteness of some reference sequences and the trimming of 

179 taxonomically uninformative ends during Metaxa2 training. Prior to this step, 82 percent of the 

180 sequences were between 150 and 157 bp in length following the original extraction and these 

181 longer sequences can be found at https://github.com/RTRichar/Zeale_COI_Database. The 

182 taxonomic representativeness of the database across different arthropod classes and insect orders, 

183 including the number of families, genera and species in each, are presented in Tables 2 and 3. 

184 Analyzing the number of sequences per species in the input reference sequence data, we 

185 observed a heavily right-skewed distribution, with a median of 2 and a mean of 11.1 sequences 

186 per species (Figure 1A). Further, 32.0 percent of species were represented by 5 or more 

187 sequences and 40 species, including Bemisia tabaci and Delia platura, were represented by 

188 between 1,000 and 9,736 entries. After conducting amplicon sequence extraction using the 

189 Metaxa2 database builder tool, we were able to extract the COI region of interest from 80.8 

190 percent of the input sequences, which corresponded to 73.4 percent of the genus-level diversity 

191 found in the original input data. Following sequence dereplication, removal of sequences with 

192 three or more ambiguous base calls and taxonomic lineage curation, our final database contained 

193 approximately 13 percent of the input extracted sequences, which represented 98.2 percent of the 

194 genus-level richness of the input extracted reference amplicon sequences (Figure 1B and 1C)    
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195 Regressing classification outcome against the Metaxa2 reliability score yielded a similar 

196 best fit model for both the 80 bp and full length test sequence datasets (Figure 2). For both 

197 regressions, the probability of sequence mis-assignment was below 10 percent for reliability 

198 scores above 70. For the remainder of our evaluations, we chose a reliability score of 75, which 

199 corresponded to family-level error probabilities of approximately 5.4 percent and 3.8 percent for 

200 80 bp and full length sequences, respectively. 

201 In evaluating the performance of our classification database when used with Metaxa2, we 

202 found generally low rates of proportional error and false discovery and variable sensitivity, 

203 though these estimates varied by taxonomic rank (Figure 2A). Interestingly, Metaxa2 displayed 

204 low variance in classification sensitivity when classifying 80 bp sequences relative to the full 

205 length sequences of 147 bp in median length. Overall, sensitivity was greatest at the order level, 

206 the lowest resolution rank tested, wherein 90 and 96 percent of sequences were assigned for 80 

207 bp and full length sequences, respectively. Sensitivity was decreased at higher resolution ranks 

208 with only 20 to 22 percent of sequences being classified to species. Conversely, proportional 

209 error varied more strongly by sequence length and was greatest at lower taxonomic levels. At the 

210 species level, 1.97 percent of 80 bp sequences were misclassified, compared to only 1.13 percent 

211 for full length sequences. At the order level, the percent of sequences misclassified was 0.59 and 

212 0.65 for 80 bp and full length sequences, respectively. Considering both the number of sequences 

213 assigned and mis-assigned, the classification false discovery rate was similarly highest at the 

214 species level, with 8.82 and 5.66 percent of assignments being incorrect for 80 bp and full length 

215 sequences, respectively. False discovery rates decreased to 0.66 and 0.68 percent of assignments 

216 being incorrect at the order level for 80 bp and full length sequences, respectively.     
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217 During our evaluation of taxonomic overclassification, we found 650 sequence test cases 

218 belonging to genera not represented in the reference training database. Of these cases, Metaxa2 

219 overclassified 11.5 and 9.7 percent of 80 bp and full length sequences, respectively. At the 

220 family level, Metaxa2 misclassified 6.15 and 7.08 percent of 80 bp and full length test 

221 sequences, respectively. Lastly, family level sensitivity for these test cases was 19.4 and 28.6 

222 percent for 80 bp and full length sequences, respectively (Figure 2B).  

223 Discussion

224 While species-specific PCR and immunohistochemistry-based methods have been useful 

225 in documenting arthropod food webs (Stuart and Greenstone, 1990; Symondson 2002; Weber et 

226 al. 2006; Blubaugh et al. 2016), the narrow species-by-species nature of such approaches has 

227 limited their utility for answering large-scale or open-ended ecological questions. With the 

228 increasing availability of high-throughput sequencing, arthropod metabarcoding will continue to 

229 become more broadly applicable to scientific questions spanning a diversity of research areas. 

230 The development of improved methods for drawing maximal inferences from sequence data is an 

231 important area for further methodological development. In creating a highly curated COI 

232 reference amplicon sequence database and evaluating its performance when used with the 

233 Metaxa2 taxonomic classifier, we have developed a new method to aid researchers in the 

234 analysis of arthropod metabarcoding data. 

235 Though predictions vary greatly, researchers have estimated the species richness of 

236 arthropods to be between 2.5 to 3.7 million (Hamilton et al. 2010). Further, according to the 

237 literature review of Porter et al. (2014), 72,618 insect genera have been described to date. Thus 

238 the 51,416 species and 17,039 genera represented in our database account for only a small 

239 fraction of arthropod biodiversity. The limited representativeness of currently available, high 
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240 quality reference sequence amplicons for the COI region highlights the need for continued 

241 efforts to catalogue arthropod biodiversity with molecular techniques. Despite this current 

242 limitation, the combination of molecular gut content analysis with high-throughput sequencing is 

243 a promising path toward investigating arthropod trophic ecology and biodiversity monitoring 

244 with greater sensitivity and accuracy relative to alternate approaches. 

245 The results of our inventory of sequences per species and genus-level richness at various 

246 stages in the database curation process revealed that our amplicon extraction procedure was 

247 highly sensitive, extracting and trimming approximately 81 percent of the input sequences down 

248 to the 157 bp region of interest. Further, approximately 87 percent of these extracted sequences 

249 represented sequence redundancies and were removed during dereplication. As mentioned 

250 previously, the trimming of sequence residues adjacent to the barcode of interest and removal of 

251 redundant sequences not only makes computational analysis less resource intensive, it can also 

252 improve classification performance. For k-mer style classifiers, extraneous sequence residues can 

253 bias model selection during classifier training, while abundant sequence duplicates can result in 

254 an overwhelming number of identical top hit alignments for alignment-based classifiers. Overall, 

255 the best fit local regression models summarizing the relationship between the Metaxa2 reliability 

256 score and the probability of classification error were useful in that the probability of 

257 misclassification was always less than what would be expected based on the reliability score. For 

258 example, a reliability score of 90 corresponded to only a 3.7 percent chance of family-level 

259 misclassification for full length sequences. We selected a reliability score of 75 for subsequent 

260 analysis as this provided a balanced trade-off between sensitivity and accuracy. Using this 

261 reliability score we observed minimal false positive rates and overall proportions of 

262 misclassification when comparing our results to those of similar studies (Porter et al. 2014; 
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263 Bengtsson-Palme et al. 2015; Edgar 2016; Richardson et al. 2017). Given that the family-level 

264 probability of error was only 8.6 percent at a reliability score of 68, a lower reliability score 

265 threshold may be justifiable for certain research situations. However, further testing should be 

266 conducted to ensure that the relationship between reliability score and classification confidence 

267 is similar across taxonomic ranks and between different DNA barcoding loci. 

268 With respect to sensitivity using a reliability score of 75, our results were highly 

269 dependent upon the rank being analyzed, with sensitivities above 60 percent only being achieved 

270 at the family and order ranks. These sensitivity estimates likely reflect a large degree of database 

271 incompleteness at the genus and species ranks. However, to our knowledge, no other studies 

272 have reported classification sensitivity data for this COI amplicon locus, making it difficult to 

273 ascertain if Metaxa2 is exhibiting low sensitivity or if this locus is limited in discriminatory 

274 power. The short length of the locus relative to other barcoding regions such as the 18S rRNA 

275 gene and the ITS regions (Hugerth et al. 2014; Wang et al. 2015) could be a cause of such 

276 limited discriminatory power. 

277 As expected, analyzing cases of overclassification in our data revealed that sequences 

278 from taxa lacking representation in the database are far more likely to be misclassified relative to 

279 sequences from well-represented taxa. This is supported by an approximately 10 percent 

280 probability of genus level misclassification for sequences from unrepresented genera relative to a 

281 1 to 2 percent probability, depending on sequence length, for all sequence test cases. While this 

282 level of overclassification is not desirable, it is considerably lower than genus level 

283 overclassification estimates for the RDP classifier, which range from 21.3 percent to 67.8 percent 

284 depending on the database, locus analyzed and cross-validation approach used (Edgar 2016; 

285 Richardson et al. 2017). Further, the observed degree of genus level overclassification using 
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286 Metaxa2 with our COI database was similar to or less than that of the recently developed 

287 SINTAX classifier (Edgar 2016). However, such comparisons should be approached with 

288 caution as multiple factors can affect classification performance, such as locus discriminatory 

289 power and database completeness. Ultimately, direct comparisons of classification methods 

290 using standardized loci and databases are needed to more rigorously compare performance.

291 With respect to Metaxa2 classification of full-length relative to half-length amplicon 

292 sequences, we observed surprisingly small differences in performance. In general, the proportion 

293 of misclassified sequences was greater for half-length sequences. However, this was not the case 

294 for all ranks. At the order level, a greater proportion of sequences were misclassified, likely an 

295 artifact of the greater proportion of sequences assigned to the order level. When considering 

296 error and sensitivity together, the false discovery rate for full-length sequences was consistently 

297 less than or equal to that achieved during the classification of half-length sequences. Further, 

298 with respect to the classification of test sequence cases belonging to genera not represented in the 

299 reference training database, proportional genus-level overclassification and family-level 

300 misclassification were similar for both full-length and half-length sequences, while family-level 

301 sensitivity was considerably greater for full-length sequences, 28.6 percent, relative to half-

302 length sequences, 19.4 percent. Lastly, when considering the relationship between the Metaxa2 

303 reliability score and the probability of classification error at the family-level, we noted highly 

304 similar local polynomial regression models of error probability for both full-length and half-

305 length sequences. 

306 In summary, we assembled a highly curated database of arthropod COI reference 

307 amplicon sequences, trained a recently developed hierarchical DNA sequence classifier using the 

308 database and conducted extensive performance evaluations on the resulting classification 
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309 pipeline. The limited representativeness of the database with respect to arthropod biodiversity 

310 indicates that additional sequencing effort is needed to further improve the performance of 

311 arthropod metabarcoding techniques. To evaluate classification performance, we characterized 

312 classification sensitivity, false discovery rate and classification confidence. Based on this 

313 evaluation, researchers will be better prepared to gauge the strengths and limitations of different 

314 approaches to arthropod metabarcoding. Further, the COI database produced as a part of this 

315 work will be useful for researchers searching for improved methods for arthropod COI sequence 

316 classification.   
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446 Tables

447 Table 1: Summary of taxonomic annotations made for references which had undefined ranks at 

448 midpoints in their respective taxonomic lineages

Undefined 

Rank

Higher Resolution Assignment Assignment Made Authority Used

Order Family Sphaerotheriidae Order Sphaerotheriida

Order Family Zephroniidae Order Sphaerotheriida

MilliBase

Order Family Lepidotrichidae Order Zygentoma

Order Family Lepismatidae Order Zygentoma

Order Family Nicoletiidae Order Zygentoma

Class Order Pauropoda Class Myriapoda

Genus Genus Pseudocellus Family Ricinididae

Genus Genus Chanbria Family Eremobatidae

Species Species Tanypodinae spp. Genus Tanypodinae

Species Species Ennominae spp. Genus Ennominae

Genus Genus Dichelesthiidae Family Dichelesthiidae

Genus Genus Phallocryptus Family Thamnocephalidae

ITIS

Class Order Symphyla Class Myriapoda

Order Family Peripatidae Order Onychophora

Class Family Peripatidae Class Onychophora

Order Family Peripatopsidae Order Onychophora

Class Family Peripatopsidae Class Onychophora

Regier et al. 2010

Genus Genus Lasionectes Family Speleonectidae

Family Family Speleonectidae Order Nectiopoda

Genus Genus Prionodiaptomus Family Diaptomidae

Family Family Diaptomidae Order Calanoida

Order Order Calanoida Class Maxillopoda

WoRMS

449 Table 2: Summary of taxonomic representation across all arthropod classes and associated sister 

450 groups. Numbers may include sub and super groupings. 
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Class Number of 

Orders

Number of 

Families

Number of 

Genera

Number of 

Species

Heterotardigrada 1 2 2 1

Eutardigrada 1 3 12 20

Onychophora 1 2 17 42

Pycnogonida 1 10 27 89

Cephalopoda 1 1 1 1

Merostomata 1 1 3 4

Arachnida 17 226 740 1804

Myriapoda 2 4 7 9

Chilopoda 5 16 53 172

Diplopoda 11 33 95 181

Ostracoda 2 6 19 40

Branchiopoda 3 25 76 254

Malacostraca 13 256 969 2654

Maxillopoda 11 85 240 568

Cephalocarida 1 1 2 1

Remipedia 1 2 5 8

Protura 1 4 12 13

Diplura 1 5 7 11

Collembola 4 18 98 203

Insecta 29 789 14654 45341

Total 107 1489 17039 51416

451 Table 3: Summary of insect taxa included in the arthropod COI database following curation. 

452 Numbers may include sub and super groupings. 

Order Number 

of 

Families

Number 

of Genera

Number 

of 

Species

Archaeognatha 2 15 18

Zygentoma 3 3 3

Odonata 34 243 488

Ephemeroptera 26 108 378

Zoraptera 1 1 1

Dermaptera 4 6 7

Plecoptera 15 84 199

Orthoptera 30 299 603

Mantophasmatodea 1 1 1

Grylloblattodea 1 1 0

Embioptera 1 2 2

Phasmatodea 6 20 28

Mantodea 11 74 76

Blattodea 8 82 95

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26662v1 | CC BY 4.0 Open Access | rec: 12 Mar 2018, publ: 12 Mar 2018



Isoptera 6 91 186

Thysanoptera 3 14 30

Hemiptera 101 1245 2730

Psocoptera 12 17 19

Hymenoptera 74 1500 4418

Raphidioptera 2 9 11

Megaloptera 2 10 22

Neuroptera 14 65 153

Strepsiptera 3 10 36

Coleoptera 124 2287 7452

Trichoptera 43 320 1269

Lepidoptera 134 6554 21626

Siphonaptera 6 14 20

Mecoptera 4 5 10

Diptera 118 1574 5460

Total 789 14654 45341

453 Figures

454 Figure 1: A percent density histogram of the number of sequences per species (A) shows the 

455 distribution of redundancy within the NCBI Nucleotide entries used. The dashed blue line and 

456 solid red line indicate the median and mean number of sequences per species, respectively. 

457 Inventories of the number of sequences (A) and genera (B) input into the curation process, 

458 following Metaxa2 extraction and following dereplication of redundant sequences and curation 

459 of taxonomic lineages. 

460 Figure 2: A logistic regression analysis of case-by-case classification accuracy, 819 indicating a 

461 false-positive identification and 809 indicating a true-positive identification, regressed against 

462 classification reliability score. A best fit local polynomial regression line was used to estimate 

463 the relationship between reliability score and the probability of mis-classification.  

464 Figure 3: Proportional accuracy, sensitivity and false discovery rate for classification of all test 

465 reference sequences, conducted on both the full-length and half-length sequences (A). 

466 Proportional genus-level overclassification rate, family-level error and family-level sensitivity 

467 for test cases belonging to genera not represented in the Metaxa2 COI reference training data 

468 (B).    
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Figure 1(on next page)

Inventory of database size and diversity at various stages in the curation process

A percent density histogram of the number of sequences per species (A) shows the

distribution of redundancy within the NCBI Nucleotide entries used. The dashed blue line and

solid red line indicate the median and mean number of sequences per species, respectively.

Inventories of the number of sequences (A) and genera (B) input into the curation process,

following Metaxa2 extraction and following dereplication of redundant sequences and

curation of taxonomic lineages.
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Figure 2(on next page)

Relationship between Metaxa2 reliability score and classification error probability

A logistic regression analysis of case-by-case classification accuracy, 819 indicating a false-

positive identification and 809 indicating a true-positive identification, regressed against

classification reliability score. A best fit local polynomial regression line was used to estimate

the relationship between reliability score and the probability of mis-classification.
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Figure 3(on next page)

Evaluation of classification performance

Proportional accuracy, sensitivity and false discovery rate for classification of all test

reference sequences, conducted on both the full-length and half-length sequences (A).

Proportional genus-level overclassification rate, family-level error and family-level sensitivity

for test cases belonging to genera not represented in the Metaxa2 COI reference training

data (B).
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