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The study of biodiversity within the spatiotemporal continuum of evolution, e.g., studying

local communities, population dynamics, or phylogenetic diversity, has been important to

properly identify and describe the current biodiversity crisis. However, it has become clear

that a multi-scale approach 3 from the leaves of phylogenetic trees to its deepest branches

3 is necessary to fully comprehend, and predict, biodiversity dynamics. Massive parallel

DNA sequencing opens up opportunities for bridging multiple dimensions in biodiversity

research, thanks to its efficiency to recover millions of nucleotide polymorphisms, both

under neutral or selective pressure. Here we aim to identify the current status, discuss the

main challenges, and look into future perspectives on biodiversity genomics research

focusing on insects, which arguably constitute the most diverse and ecologically important

group of metazoans. We suggest 10 simple rules that every biologist could follow to 1)

provide a succinct step-by-step guide and best-practices to anyone interested in

biodiversity research through insect genomics, 2) review and show relevant literature to

biodiversity and evolutionary research in the field of entomology, and 3) make available a

perspective on biodiversity studies using insect genomics. Our compilation is targeted at

researchers and students who may not yet be specialists in entomology or genomics, but

plan to carry out own research in insect genomics. We foresee that the genomic revolution

and its application to the study of non-model insect lineages will represent a major leap to

our understanding of insect diversity, and by consequence the largest portion of Earth9s
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biodiversity, and its evolution in time and space.
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30 Abstract: The study of biodiversity within the spatiotemporal continuum of evolution, e.g., 

31 studying local communities, population dynamics, or phylogenetic diversity, has been important 

32 to properly identify and describe the current biodiversity crisis. However, it has become clear 

33 that a multi-scale approach 3 from the leaves of phylogenetic trees to its deepest branches 3 is 

34 necessary to fully comprehend, and predict, biodiversity dynamics. Massive parallel DNA 

35 sequencing opens up opportunities for bridging multiple dimensions in biodiversity research, 

36 thanks to its efficiency to recover millions of nucleotide polymorphisms, both under neutral or 

37 selective pressure. Here we aim to identify the current status, discuss the main challenges, and 

38 look into future perspectives on biodiversity genomics research focusing on insects, which 

39 arguably constitute the most diverse and ecologically important group of metazoans. We suggest 

40 10 simple rules that every biologist could follow to 1) provide a succinct step-by-step guide and 

41 best-practices to anyone interested in biodiversity research through insect genomics, 2) review 

42 and show relevant literature on biodiversity and evolutionary research in the field of entomology, 

43 and 3) make available a perspective on biodiversity studies using insect genomics. Our 

44 compilation is targeted at researchers and students who may not yet be specialists in entomology 

45 or genomics, but plan to carry out own research in insect genomics. We foresee that the genomic 

46 revolution and its application to the study of non-model insect lineages will represent a major 

47 leap to our understanding of insect diversity, and by consequence the largest portion of Earth9s 

48 biodiversity, and its evolution in time and space.

49 Keywords: Biodiversity, evolution, NGS, museomics, taxonomic impediment
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51 Introduction

52 The global decline in biodiversity is unquestionable (Barnosky et al., 2011). The rate of species 

53 diversity loss is comparable to those of ancient mass-extinction events (Ceballos et al., 2015), 

54 but our understanding on the spatiotemporal continuum of biodiversity is still limited (Fig. 1). 

55 Not only the current methodologies to quantify biodiversity at different temporal and spatial 

56 scales need to be profoundly revised (Vellend, 2017), but also a multi-disciplinary effort is 

57 necessary to comprehend species diversity and its evolution. High-throughput DNA 

58 technologies, including massive parallel DNA sequencing, have been used during the past two 

59 decades to study biodiversity. Thus, researchers nowadays have access to standard tools which 

60 can generate unprecedented amounts of genomic information, being cost- and time-efficient 

61 (Lugg et al., 2018), and with the potential to integrate their results with previous efforts.

62 In this article, we aim to briefly review and provide a guideline on the usage of massive parallel 

63 DNA sequencing technologies to bridge the study of biodiversity at different scales, with a focus 

64 on the largest biotic radiation on Earth: insects. These six-legged invertebrates represent more 

65 than half of all known eukaryotic species (Grimaldi & Engel, 2005; Mora et al., 2011; Stork et 

66 al., 2015; Stork, 2018) and they are one of the most important components of eukaryotic 

67 biodiversity in terms of abundance and ecology. However, as much as 80% of insect diversity, 

68 and therefore much of the Earth9s biodiversity, remains to be formally described (Hamilton et al., 

69 2010; Scheffers et al., 2012; Stork, 2018). While there is so much undescribed insect diversity in 

70 the nature, a significant number may already be deposited within museum collections in need of 

71 formal description (Suarez & Tsutsui, 2004; Veijalainen et al., 2012). Therefore, the study of 

72 biodiversity through insect genomics, using entomological mass-sampling techniques in the field 

73 and the archived material, is timely and represents a significant opportunity to advance our 
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74 understanding of life on Earth. This article aims to fill a gap in the literature on a simple 

75 guideline to study biodiversity through insect genomics, thus this review is primarily targeted at 

76 researchers and students who may not yet be experts in entomology or genomics.

77

78 Survey Methodology

79 We reviewed published literature related to biodiversity and evolutionary research using insect 

80 genomics, including but not limited to methods for review and original articles on collecting 

81 insects, specimen preservation and storage, genomic DNA isolation from archived material, and 

82 post-sequencing approaches. We ensure a comprehensive and unbiased procedure by using 

83 primarily PubMed and Google Scholar to search for articles, complemented with searches in 

84 Scopus and Web of Science. We also used a combination of keywords, such as <insect 

85 genomics=, <museum DNA=, <high-throughput sequencing=, and <biodiversity assessment=. 

86

87 Ten Simple Steps to Study Biodiversity through Insect Genomics

88 We structure this article in 10 simple rules (Fig. 2) that every biologist should understand to 1) 

89 better interpret the results and conclusions coming from insect biodiversity research, and 2) start 

90 planning a multi-dimensional study of biodiversity using insects as target group and high-

91 throughput genomic tools. Overall, we briefly review the current state in biodiversity and 

92 evolution research through the study of insect genomics, by revisiting pioneering studies that aim 

93 to bridge different spatial and temporal scales. We identify a series of limitations and challenges 
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94 currently faced by insect genomics, but we also find hopeful approaches to comprehend the 

95 origin and dynamics of extant biodiversity.

96

97 Rule 1: Define the questions and scope of the study

98 Producing genomic data is no longer a major challenge for many labs. Instead, many researchers 

99 seem to be producing large amounts of data, without having a clear idea of how to use it 

100 afterwards. Although it may seem obvious, we consider important to stress that careful thinking 

101 is required to define the research questions and hypothesis of any study, and how to best address 

102 them. A few projects might be totally discovery-driven with no prior expectations, but in general 

103 it can be very useful to clearly define the hypotheses to be tested, and how. This will then inform 

104 on the whole chain of methods and analyses, since there is no 8one size fits all9 when it comes to 

105 biodiversity and evolutionary studies.

106 With massive-parallel DNA sequencing technologies, the study of evolutionary relations can be 

107 complemented with fast quantification of diversity, abundances, and species interactions such as 

108 studies on host-parasite interactions (Toju, 2015), in environmental samples (Shokralla et al., 

109 2012) or even from the ethanol used for preservation of historical specimens (Linard et al., 

110 2016). However, economical limitations exist regarding the number of specimens and the extent 

111 of their genomes that could be sequenced  (Wachi, Matsubayashi & Maeto, 2018). Therefore, 

112 researchers should choose from a series of available sequencing approaches that better suits their 

113 research questions. For example, if the focus is on finding potential loci involved in adaptation 

114 and speciation, a reduced representation of the genomes might be cost-efficient because several 

115 individuals from different populations could be pooled in one sequencing experiment, or if the 
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116 aim is to profile many organisms within insect communities, DNA metabarcoding could provide 

117 a fast quantification of diversity and relative abundances.

118

119 Rule 2: Set up your collaborations strategically

120 A major challenge in the study of evolution from populations to species is the lack of non-

121 genomic data, including taxonomic, paleontological, and ecological information. Despite the 

122 abundance of genomic information that can nowadays be generated, evolutionary biologists are 

123 facing the necessity to 1) increase field expeditions in search of the unknown diversity, 2) 

124 incorporate fossil data in the Tree of Life, and 3) study the phenotypes and life history data in 

125 specimen collections. Naturally, the most efficient direction to integrate such different 

126 perspectives is to establish and strengthen a collaborative network. For example, working along 

127 with paleontologists might bring a temporal perspective in the study of evolution and 

128 biodiversity dynamics (Marshall, 2017). In some insect groups, such as Hymenopterans 

129 (sawflies, wasps, bees, ants) and Coleopterans (beetles), the morphologies of ancient, extinct 

130 lineages might be better preserved as inclusions in amber, and even ancient ecologies could be 

131 preserved (Johnson et al., 2001). Other groups such as Lepidoptera (butterflies and moths) are on 

132 the contrary hardly fossilized (Labandeira & Sepkoski, 1993), thus representing a challenge, for 

133 instance, in divergence time analyses when working with phylogenomic data (Wheat & 

134 Wahlberg, 2013). However, other sources of information, such as larval host-plant ages, may 

135 improve divergence time analyses when fossil record is scarce (Chazot et al., 2018).

136 Collaborating closely with ecologists would strengthen the study of adaptation, differentiation, 

137 and the mechanisms of speciation, and a comprehensive knowledge of life history data, insect 
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138 ecologies, or common garden experiments are ideal to tease apart adaptive from non-adaptive 

139 variation. Moreover, Natural History Museums (NHMs) are the repositories of our natural world 

140 and include not only archived specimens but also valuable historical, demographic, life-history, 

141 and genetic data that can add another dimension to evolutionary research (Burrell, Disotell & 

142 Bergey, 2015; Buerki & Baker, 2016). Research on biodiversity will benefit by working closely 

143 along with curators and research assistants at NHMs. For example, population range expansion 

144 in historical times, host-parasite interaction changes after human disturbances, or the effect of 

145 current climate change on the structure of populations, are topics that could be directly benefited 

146 by incorporating the information from NHM collection records (Burrell, Disotell & Bergey, 

147 2015). Moreover, the information that curators might hold on the collection and preservation 

148 methods of specimens is valuable when selecting which specimens should undergo high-

149 throughput sequencing (Kanda et al., 2015; Short, Dikow & Moreau, 2018).

150

151 Rule 3: Go to the field

152 We are worried that the rapid increase of genetic data in public databases might discourage 

153 students and researchers from generating novel data. Instead, we argue that field work is 

154 absolutely essential to the advancement of our field, and should be part of every biologist9s 

155 education as well as routine in advanced careers. Fieldwork will also benefit museum 

156 collections, and vice-versa, museum collections 3through genetic and morphological studies 

157 based on specimens3 will benefit fieldwork. Of course, there might be lines of research that do 

158 not demand fieldwork, but even taxonomists, method developers, and researchers in other 

159 disciplines may profit from the experience of studying and responsibly collecting specimens in 
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160 nature. Extensive field surveys are often required to obtain a representative inventory of insect 

161 assemblages at both local and regional scales; but such surveys represent only a minority within 

162 entomological field studies. Most studies aiming to understand insect diversity patterns only 

163 target a small portion of the species present in a single study location. This is true given the high 

164 species richness and varying abundance, habits and seasonality of insects, including parasitoids, 

165 predators, scavengers, leaf-chewers, sap-suckers, among others. A careful selection of field 

166 sampling methods, along with proper understanding of their function and targeted groups, is thus 

167 critical (Noyes, 1989) (see Table 1 for a non-comprehensive overview of mass-sampling 

168 methods).

169 For some cases, such as in biodiversity assessment, it may be enough to conduct simple and 

170 rapid field surveys. For example, in a recent tropical large-scale species inventory, Borkent & 

171 Brown (2015) investigated local species richness of cloud forest Diptera (true flies) by using 

172 only two Malaise traps and a one-week intensive <Diptera-Blitz= conducted by several experts. 

173 In other cases, such as when studying diversity dynamics through time and space, greater mass-

174 sampling efforts may be needed, requiring a combination of multiple methods, longer term 

175 inventories and wide expertise, together with effective ways to estimate true species richness 

176 based on collected samples (Vogel, 2017). For example, Gómez et al. (2018) sampled the 

177 Western Amazonian local parasitoid wasp diversity by using 41 Malaise traps, with a total 

178 sampling effort of 230 Malaise-trap months (one Malaise-trap month corresponds to one trap 

179 collecting in the field for a period of one month). In this case, despite the tremendous sampling 

180 effort, cumulative species curves suggested that a significant portion of the local parasitoid 

181 diversity remained unobserved; a fact that may be generalized for many other tropical insect 

182 groups as well. Reviews of entomological collection methods for both mass-sampling and group-
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183 specific research are available in the literature and are essential reading before field collections 

184 (Agosti et al., 2000; Basset et al., 2003; Lamarre et al., 2012; Larsen, 2016).

185 Needless to say, be a sensible collector; many insects are rare and threatened, so every collecting 

186 effort should be associated with a risk assessment, even informally if not required. There are also 

187 many federal and international regulations to follow, such as those stipulated under the Nagoya 

188 Protocol under the Convention on Biological Diversity (https://www.cbd.int/abs/about/) and the 

189 CITES legislation (https://www.cites.org/). Researchers should all follow all good practices for 

190 Access and Benefit Sharing (e.g., 

191 https://naturwissenschaften.ch/organisations/biodiversity/abs/goodpractice).

192

193 Rule 4: Treat your specimens well to enhance its use

194 The amount and quality of isolated genomic DNA from insect collections depend on a myriad of 

195 factors, including killing reagents, preservation of specimens in the field, and final voucher 

196 storage conditions (Kanda et al., 2015; Short, Dikow & Moreau, 2018). For example, Dillon et 

197 al., (1996) (see also Reiss, Schwert & Ashworth, 1995; Gilbert et al., 2007b) found that 

198 specimens killed with ethanol yielded significantly higher quantities of higher quality DNA 

199 compared to other killing/preservation agents such as ethyl acetate vapor, formalin or ethylene 

200 glycol. Moreover, rapid and effective drying of the specimens in the field, especially in the 

201 tropics, is a very important step for voucher preservation and may be an alternative to 

202 cryopreservation (Prendini, Hanner & DeSalle, 2002). Preservation of specimens in ethanol and 

203 at low temperatures would be ideal, but may cause logistic problems during transportation and 

204 make the collections highly flammable. Propylene glycol may be a safer alternative and 
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205 logistically easier to transport than ethanol (Ferro & Park, 2013), and it might even be used to 

206 attract certain arthropod species (Höfer et al., 2015). Moreover, initiatives to implement large 

207 cryobanks are important (Koebler, 2013), though these technologies are yet restricted to very few 

208 and large NHMs (Corthals & Desalle, 2005).

209 The use of ethylene glycol may provide reasonable amounts of DNA regardless of specimen age, 

210 and with lesser risks in the field (Dillon, Austin & Bartowsky, 1996), though the age of specimen 

211 seems not to be a critical factor for obtaining minimal amount of DNA for massive-parallel 

212 sequencing (Ruane & Austin, 2017) (see Table 2 for an overview of published studies using 

213 archived insects). In fact, ancient beetle genomic DNA (ca. 560,000 to 5,960 years old) has been 

214 successfully isolated (Heintzman et al., 2014). However, due to the fragmented nature of ancient 

215 DNA, PCR-based techniques are overall not successful to recover genetic data. Fortunately, 

216 evidence suggests that fragmented DNA due to age or preservation reagents does not 

217 dramatically affect the performance of PCR-free, massive-parallel sequencing (Tin, Economo & 

218 Mikheyev, 2014; Timmermans et al., 2016). However, the success of current sequencing 

219 approaches still depends in some cases on the quality of isolated DNA, such as in RAD-seq, thus 

220 minimal damage in the field and during storage is advisable.

221

222 Rule 5: Work closely with taxonomists

223 Genomic data is only one component of biodiversity, but in order to reach the general public 

224 biodiversity needs as well to be tangible. The tasks of taxonomists, including the identification, 

225 description, and classification of species in meaningful groupings, are unfortunately sometimes 

226 neglected. The high diversity and density of insects, coupled with laborious taxonomic 
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227 assessment and lack of resources for taxonomists, makes the morphological identification of 

228 every specimen sampled by mass-collecting techniques a difficult and high resource-consuming 

229 task. The so-called <taxonomic impediment= (di Castri, Vernhes & Younes, 1992) encompasses 

230 two general difficulties: 1) not enough resources and training are allocated to taxonomic work 

231 and 2) few people are working in taxonomy (thus slowing down the rate of species discovery, 

232 identification, and classification), which may be a consequence of the former difficulty 

233 (Wheeler, Raven & Wilson, 2004; de Carvalho et al., 2007; Ebach, Valdecasas & Wheeler, 2011; 

234 Audisio, 2017). Indeed, we may be in the midst of a revolution in taxonomy, as evidenced by the 

235 intense debate on its epistemological and methodological grounds (Dubois, 2011; Ceríaco et al., 

236 2016; Garnett & Christidis, 2017; Raposo et al., 2017; Thorpe, 2017), but it is also clear that in 

237 the meantime entomological research must use complementary approaches to reliably estimate 

238 diversity through time and among places and environments. Therefore, taxonomists should be 

239 part of biodiversity studies using insect genomics, and the DNA sequences generated by such 

240 studies should be seen as a necessary supplement to the work of taxonomists.

241

242 Rule 6: Isolate DNA in the right way

243 Most recent studies using massive-parallel DNA sequencing, even those on ancient insects, have 

244 used commercial kits for DNA isolation, thus reducing time, complexity, and health risks in 

245 laboratory procedures (Staats et al., 2013; Heintzman et al., 2014; Kanda et al., 2015; Blaimer et 

246 al., 2016; Pitteloud et al., 2017). However, in-house methods might be more effective than 

247 commercial kits when working with ancient samples having little and highly-degraded DNA 

248 (Gilbert et al., 2007c; Meyer et al., 2016). On the other hand, non-destructive protocols for DNA 
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249 isolation are preferable when working with valuable, archived specimens or with bulk samples 

250 such as those coming from insect mass-collecting techniques that later need to be taxonomically 

251 curated. However, there is surprisingly little data available comparing the efficiency of 

252 destructive vs. non-destructive protocols applied to insects (Gilbert et al., 2007a; Nieman et al., 

253 2015). A number of non-destructive DNA isolation protocols have been published (e.g., 

254 (Thomsen et al., 2009; Castalanelli et al., 2010; Tin, Economo & Mikheyev, 2014), but in 

255 general they vary depending on the targeted insect group. For example, insects whose external 

256 structure are not delicate, including Diptera, Hymenoptera and Coleoptera, tend to be more 

257 resistant to submergence of whole specimen in extraction buffers, giving better results 

258 (Heintzman et al., 2014; Tin, Economo & Mikheyev, 2014). In other more delicate groups such 

259 as Lepidoptera, the use of abdomens is advisable, given that in many cases the abdomens need to 

260 be removed from the individual for genitalia preparation (Knölke et al., 2005). In other insect 

261 groups that hold sufficient starting material for DNA isolation in particular tissues, such as 

262 muscles in the massive legs of Orthoptera (grasshoppers, locusts, crickets), grinding one leg 

263 might not be a significant loss to the collection (Tagliavia et al., 2011).

264 Although curators at NHMs may be reluctant to provide specimens for molecular studies, with 

265 valid reasons considering that most species might consist of singletons or very rare collections 

266 (Lim, Balke & Meier, 2012), the design of selective sampling, minimizing the damage of 

267 collections especially of those very rare specimens, is therefore crucial. As a side note, there has 

268 not been any discussion in the literature about the suitability for massive-parallel sequencing 

269 using the hundreds of thousands, or perhaps millions, DNA aliquots generated in the past three 

270 decades for Sanger-sequencing work. In principle, old DNA aliquots of low quantities and 

271 potentially fragmented DNA may face the same constraints of using archived specimens from 
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272 NHMs, and might thus be processed with protocols designed for archived samples (e.g., library 

273 preparation, sequencing approach) (Tin, Economo & Mikheyev, 2014; Kanda et al., 2015; 

274 Suchan et al., 2016; Timmermans et al., 2016).

275

276 Rule 7: Revise your DNA sequencing approach

277 At this point, you should already have decided which sequencing approach will be best suitable 

278 to address your research question(s), but now you should carefully evaluate the quality of DNA 

279 that you de facto were able to obtain, and decide on which sequencing approach to really follow.

280 Reviews on massive-parallel DNA sequencing approaches can be found in the literature 

281 (Mamanova et al., 2010; Metzker, 2010; Mardis, 2017). Below, we categorize and briefly 

282 describe available massive-parallel DNA sequencing technologies of potential interest for 

283 entomological biodiversity research (see Table 3 for a summary of such methods and key 

284 publications). The current leading short-read DNA sequencing technology is Illumina. We have 

285 grouped the main approaches used in the study of entomological biodiversity into three 

286 categories: 1) targeted-sequencing, 2) non-targeted, reduced-representation of whole genome, 

287 and 3) whole-genome skimming. In addition, single-molecule DNA sequencing technologies 

288 such as Oxford Nanopore and PacBio can accelerate the amount of DNA data recovery in real 

289 time and from highly-degraded starting DNA material (Thompson & Milos, 2011). We thus 

290 consider these technologies as promising, and we briefly introduce them here.

291 Target Sequencing: It is highly-efficient when the aim is to recover only DNA markers with a 

292 particular rate of evolution (fast and slow) or under different selective pressures (Lemmon & 

293 Lemmon, 2013). Moreover, because it targets only a tiny subset of the whole genome, targeted 
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294 sequencing is cost-effective as tens or hundreds of specimens can be pooled together in a single 

295 sequencing experiment (Mamanova et al., 2010). This is particularly useful when working with 

296 environmental samples, such as those coming from mass-sampling techniques (Morinière et al., 

297 2016). For example, metabarcoding, an approach that targets a barcoding region such as the COI 

298 mitochondrial gene, can be useful in the study of evolution among local environments and in 

299 biodiversity assessment because it might be more reliable, fast and replicable than traditional 

300 biodiversity surveys (Ji et al., 2013; Zhou et al., 2013; Vesterinen et al., 2016).

301 There are two usual ways to target particular loci, 1) through PCR or 2) by using <baits=-based 

302 in-vitro capture. PCR has the advantage of being cheap but the development of universal primers 

303 is the main limitation because sequence specificity to desired loci decreases through mutation 

304 and long divergence times among lineages. Target capture using <baits= can be expensive 

305 (<baits= need to be specially synthesized) but has the advantages of 1) simplify laboratory 

306 procedures (one can pool several specimens for the capture experiment), 2) target a wider range 

307 of lineages despite evolutionary distance among them, and 3) reduce amplification biases due to 

308 PCR primer design and relative abundance of DNA molecules in a pool of specimens. However, 

309 prior genomic information either published annotated genomes or transcriptomes are needed to 

310 design target-enrichment probes. Therefore, probe kits targeting conserved regions primarily for 

311 phylogenomic purposes have been published for those insect orders having good reference 

312 databases (Faircloth et al., 2015; Faircloth, 2016; Young et al., 2016; Breinholt et al., 2018). 

313 Furthermore, recent attempts to integrate <baits=-based capture into metabarcoding have had 

314 disparate degree of success; such as the sequencing of non-target organisms or pseudogenes on 

315 the negative side (Shokralla et al., 2016), or the recovery of sequences of very rare species in a 
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316 pool of samples and the quantification of relative abundance and biomass on the positive side 

317 (Dowle et al., 2016).

318 Random reduced-representation of genome: Restriction-site-associated DNA (RAD) sequencing 

319 has proven to be an efficient and cheap approach to obtain millions of single nucleotide 

320 polymorphisms (SNPs), both neutral and under selection (Andrews et al., 2016). However, 

321 restriction enzyme sites may not be conserved for a long evolutionary time, thus this approach 

322 seems to be restricted to population or species complexes. However, a recent protocol targeting 

323 RAD-seq markers (hyRAD) may ameliorate the lack of phylogenetic conservation of restriction 

324 enzyme sites across divergent lineages (Suchan et al., 2016). The amount and quality of DNA 

325 might impose a second limitation to RAD-seq. For example, Tin, Economo & Mikheyev (2014) 

326 using ant specimens as old as 100 years were able to recover SNPs but were unsuccessful at 

327 genome mapping due to the extremely short DNA fragments and imprecise DNA size selection. 

328 Overall, RAD-seq is promising in the study of insect diversity and evolution because it generates 

329 a large amount of SNPs, is cheap and can be run on pools of specimens, as long as genomic 

330 DNA is of good quality (long DNA fragments are needed for an efficient restriction enzyme 

331 activity) and taxa of interest are not evolutionarily distant.

332 Whole-genome skimming: It is the simplest approach in terms of sequence library preparation. It 

333 consists of randomly, shallow sequencing the whole-genome of an individual, including both 

334 mitochondria and nuclear content. Furthermore, when working with historical specimens with 

335 highly-fragmented DNA, one can skip the step of fragmentation in library preparation (Suchan et 

336 al., 2016; Timmermans et al., 2016). Whole-genome skimming has been applied in a number of 

337 insect studies, proving that the method is fast and can recover entire mitochondrial genomes 

338 from even old museum material (Staats et al., 2013), and low-copy nuclear protein-coding genes 
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339 (Maddison & Cooper, 2014; Kanda et al., 2015). With the expected decrease in sequencing 

340 prices, target sequencing approaches may no longer be a cost-effective choice in the future. For 

341 instance, recent studies have identified the benefits of mitochondrial metagenomics (MMG), 

342 including longer barcodes with larger amount of SNPs (use of mitogenomes instead of the COI 

343 fragment), and PCR-free library preparation (no amplicons would be needed) with the 

344 advantages of using highly-fragmented DNA from old specimens and a more reliable 

345 quantification of relative abundance (biomass) in mass-sampling collections (Crampton-Platt et 

346 al., 2015, 2016; Cicconardi et al., 2017; Gómez-Rodríguez et al., 2017). However, it was noted 

347 that having a reference genome is important to improve mapping and discovery of homologous 

348 SNPs in the nuclear genome (Tin, Economo & Mikheyev, 2014), which may yet restrict the use 

349 of whole-genome skimming and the recovery of nuclear data in insect groups with poor genomic 

350 knowledge.

351 Single-molecule sequencing approaches such as PacBio and Oxford Nanopore. The two main 

352 advantages are related to a better assembly of genomes with low quantities of poor quality DNA 

353 and the portability of some devices (e.g., MinION), which can generate DNA sequences in real-

354 time and in any place in the world, including remote field locations. Moreover, laboratory 

355 protocols are simplified and DNA amplification is not at all necessary, which is beneficial for a 

356 more accurate quantification of DNA molecules present in the sample pool (Thompson & Milos, 

357 2011). However, technological improvement is needed to reduce the high sequencing error rates 

358 (>10 %) (Mardis, 2017; Shendure et al., 2017). Nonetheless, single-molecule sequencing 

359 promises to drastically reduce sequencing costs, thus the age where having complete genome 

360 sequences for any living insect may be even closer (Kelley et al., 2014). Moreover, the long 

361 reads that single-molecule sequencing approaches generate might help resolve long repeat 
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362 elements in the genome, thus providing invaluable scaffold for short reads to improve accuracy 

363 in assembly and annotation of insect genomes (Richards & Murali, 2015).

364

365 Rule 8: Choose the most suitable tools for data analyses

366 Although genomic sequencing is becoming easier and more affordable, processing the data 

367 generated remains a major bottleneck in many projects. Bioinformatic pipelines have been 

368 implemented during the past two decades of massive parallel sequencing, thus researchers 

369 nowadays count with standard procedures to analyze genomic DNA. However, there exist a 

370 number of limitations and challenges that remain to be explored. For example, genomic missing 

371 data, as in supermatrices for phylogenomic studies, might hinder statistical power in the 

372 inference of species relations, but its effects in systematic bias is yet unclear (Misof et al., 

373 2014a,b). Moreover, taxonomic sampling in phylogenomics is usually lower than in the 

374 published Sanger-sequencing work, a fact that might bias systematic inference in insect higher-

375 level phylogenies (Behura, 2015). On the other hand, a number of pipelines have been published 

376 for analyzing target-sequencing data from environmental samples (Schloss et al., 2009; Caporaso 

377 et al., 2010; Boyer et al., 2016). Such programs provide a delimitation of Operational Taxonomic 

378 Units (OTUs), the analogs of species, derived from sequence similarity of typically 97 %. 

379 However, assigning thresholds to define analogs of species is problematic because 1) there is a 

380 risk to artificially increase or decrease local diversity, 2) inflated OTU richness might be related 

381 to sequence chimeras and sequencing errors, and 3) there exist a lack of standardization of 

382 threshold values (Huse et al., 2010; Oliver et al., 2015; Alberdi et al., 2018). The shortcomings 

383 of using thresholds to define OTUs might even escalate when studying the entomofauna of 
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384 hyperdiverse regions such as the tropics. In those cases, there are usually no good estimates of 

385 genetic variability between species and a large portion of tropical insects are not represented in 

386 reference databases. However, recent advances might alleviate in part the variability caused by 

387 sequencing errors by incorporating other observed patterns such as OTUs co-occurrence (Frøslev 

388 et al., 2017). In any case, the preservation and morphological study of vouchers are critical to 

389 validate taxonomic assignments and thresholds.

390 Mitochondrial metagenomics (MMG) could in principle improve OTU assignment and species 

391 delimitation because contigs would span different barcode regions (COI, ND2, 16S rDNA) (Liu 

392 et al., 2016) and risks of primer-related biases are ameliorated (Taberlet et al., 2012; Tang et al., 

393 2014). Moreover, whilst approaches such as log-binomial normalizations (through DeSeq2 and 

394 CSS) have attempted to normalize metabarcoding data (McMurdie & Holmes, 2014), results via 

395 PCR-based approaches remain semi-quantitative at best (Pawluczyk et al., 2015). However, 

396 metagenomic studies of insects have generally been limited only to their microbiomes (Cox-

397 Foster et al., 2007; Suen et al., 2010; Shi et al., 2013), but it is difficult to assess the convenience 

398 of metagenomics in more complex environmental insect samples (but see (Crampton-Platt et al., 

399 2015, 2016; Cicconardi et al., 2017; Gómez-Rodríguez et al., 2017). Nonetheless, studies on soil 

400 and fecal MMG have shown that the assembly of mitogenomes from environmental DNA 

401 (eDNA) remains challenging and is not yet as cost-effective as compared to target sequencing 

402 (Tedersoo et al., 2015; Srivathsan et al., 2016).

403

404 Rule 9: Make your data and results publicly available
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405 From a practical viewpoint, what is not in a database does not exist (or nearly so). Databases are 

406 not only the repositories of genomic information, but also an indispensable tool in the study of 

407 biodiversity and evolution. They also allow the reproduction of results and use for other purposes 

408 such as in biodiversity assessment. Furthermore, the study of populations, their mechanisms of 

409 adaptation and speciation, is an active field given the opportunities that represent the hundreds of 

410 insect genome projects published and registered in GenBank (Yeates et al., 2016). Moreover, in 

411 the study of species interactions, such as host-parasite and feeding habits, the recovery of cryptic 

412 diversity necessitates a reference database because in many cases the identification of taxa 

413 through morphological comparison becomes impossible; for example, internal parasites 

414 (Schoonvaere et al., 2016), gut microbiota (Hammer et al., 2017), and highly-degraded organic 

415 material such as dietary content in gut (Pompanon et al., 2012).

416 Furthermore, initiatives such as BOLD (Ratnasingham & Hebert, 2007) and the usage of the COI 

417 barcode can shed more lights in the assignments of OTU thresholds when studying tropical 

418 communities (García-Robledo et al., 2013). However, building local databases including several 

419 markers might complement metabarcoding studies in the identification and delimitation of 

420 species (Deagle et al., 2014). National reference databases have also been implemented, such as 

421 the newly initiated DNAmark project in Denmark. This project aims to provide a reference 

422 database for 1,000 species with full mitochondrial sequences, along with nuclear sequences 

423 derived from shotgun sequencing (http://dnamark.ku.dk/). Other initiatives to catalogue national 

424 biodiversity have also been put forward in Germany (Hendrich et al., 2015), Norway (NorBOL, 

425 http://www.norbol.org/) and Finland (FinBOL; http://www.finbol.org/), to further expand the 

426 BOLD project.

427
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428 Rule 10: Disseminate your findings

429 Research articles are the standard way to communicate results to the scientific community. 

430 However, misinterpretations of scientific findings can be commonly found in the literature aimed 

431 for the general public and decision-makers. Thus, public outreach of our findings needs to be 

432 explicitly considered as part of our project design. Moreover, because scientific research is a 

433 collaborative enterprise (see Rule 2), it is important to discuss and reach a consensus with 

434 collaborators before spreading findings to the general public. This is particularly important given 

435 the recent misunderstandings on biodiversity research that have been reported, and the urge to 

436 include both factual evidence and ethical arguments in communications to the general public 

437 (Antonelli & Perrigo, 2018). 

438 Given that diversity estimates can fluctuate significantly depending on the way results are treated 

439 (e.g., as in metabarcoding (Frøslev et al., 2017; Alberdi et al., 2018)) special care should be 

440 taken when presenting these findings, and in general we advocate for a conservative approach 

441 which does not artificially inflate diversity estimates. Furthermore, the access of scientific 

442 knowledge and data by governmental bodies is still restricted, especially in low and lower-

443 middle income countries. Biodiversity research is a cornerstone for Environmental Impact 

444 Assessments, but hyperdiverse animal groups such as insects remain underrepresented in 

445 biodiversity assessments in species-rich countries (Ritter et al., 2017).

446

447 Perspectives and Conclusions

448 In this article we have identified general challenges, including: 1) insufficient evaluation of non-

449 destructive methods applied to insects to get good quantity and quality DNA from fresh, mass-
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450 collections and archived specimens, 2) limitations to genomic data analysis, including assembly 

451 of reads, missing genomic information from datasets, methods for estimating diversity and 

452 abundance in environmental samples, and inference of population and species evolution, 3) 

453 taxonomic, ecological, and life history knowledge generation is not at the same pace as the 

454 genomic revolution.

455 Insects are ideal study organisms because they show remarkable diversity in species numbers 

456 and ecologies, being the dominant eukaryotic group in terrestrial and freshwater environments. 

457 The integration of ecology and evolution is achievable with the new genomic techniques, which 

458 offer the possibility to generate datasets that can be used in the study of biodiversity at different 

459 spatiotemporal scales. For example, the evolutionary framework of local insect communities can 

460 now be inferred in a single sequencing effort (Crampton-Platt et al., 2015), while the study of 

461 populations and speciation using massive-parallel sequencing can be better understood with a 

462 comprehensive knowledge of local variations (Jiggins, 2016). Altogether, we expect that the 

463 increase of molecular data together with taxonomic and ecological studies will allow a better 

464 biodiversity and evolutionary comprehension which is essential for conservation and to 

465 understand biological dynamics.

466
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984 Community ecology research usually focus at local scale (Lx), but may be mislead if not taking 

985 into account higher-level patterns such as fluctuation of population/species ranges over time 

986 (e.g., distributional change due to environmental shift or biotic interaction) and space (e.g., local 

987 pool of species depends on the regional diversity and its evolution). At a higher scale (Vx), 

988 inferences on population/species evolutionary dynamics may be mislead if not taking into 

989 account reduced-scale patterns such as local extinction (e.g., its rate and magnitude, whether 

990 local, regional or global) and biotic interaction (e.g., as in diversity-dependent diversification, or 

991 continuous replacement of species with similar ecologies over time). Vx is any area of interest 
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992 (local, regional, or global) that changes over time (V1, V2 & Vn). A, R, and N are distributional 

993 ranges of three different populations/species of interest. Hypothetical sampling sites remain 

994 geographically constant over time, whether at geological or ecological scales (L1, L2, and L3).

995

996 Figure 2: Flowchart summarizing the 10 rules to study biodiversity through insect 

997 genomics and discussed in the paper. 
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Representative description of methods for mass sampling of insects and their

application for NGS

Note that this is not a comprehensive list and is only aimed at providing an overview of

available possibilities of widespread use. In the Costs of equipments, we roughly categorized

them as Low (approx. < US $50), Medium (approx. US $50 3 $100), High (approx. > US

$100).
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Method Example Taxa targeted Costs Suitability for genomic research Sampling effort Limitations

Trap-sampling Van Someren-Rydon
Fruit-feeding butterflies, from 

forest floor to canopy

Low; negligible if 

self-built

Yes; no killing reagent; 

baits such as fermented fruit

Minimum: 5 traps in forest, 10 traps in open areas;

Collection: once or twice per day;

Personnel: 2 people, collection and record;

Complement with opportunistic hand collection

Need for long-term data because different 

butterfly communities throughout the year;

Other feeding guilts are missing, such as 

nectar-feeding

Trap-sampling Pitfall
Forest floor insects such as 

dung beetles, flies, ants

Low; negligible if 

self-built

Depending on killing reagent; could be done 

with detergent and water, propylen glycol;

baits such as human dung

Minimum: 20 traps per day; linear transect;

Collection: at least once per day;

Personnel: 1 person;

Complement with flight intercept traps

Specimens with a lot of water from pitfall 

trap, thus a lot of ethanol replaced every week 

is needed to prevent DNA decay

Leaf-litter collector Mini-Winkler
Leaf-litter and soil insects, 

such as ants, beetles
Medium

Yes; 95% EtOH most commonly used as killing 

reagent

Minimum: 20 collectors, each with 1m
2
 leaf litter;

Collection: once, if extraction run in parallel;

Personnel: 2 people recommended;

Complement with bait-traps and hand collecting

Limited to forested areas, and not suitable 

during height of dry or rain season;

Not sampling of vegetation-associated, canopy 

or subterranean insects

Flying-insect collector Malaise
Strong-flying insects, such as 

Hymenoptera and Diptera
High

Yes; 95% EtOH most commonly used as killing 

reagent

Minimum: 2 traps for fast surveys;

Collection: little care, leave in field for 234 weeks;

Personnel: 1 person;

Complement with flight interception traps

Placement of trap in "likely" flight paths, thus 

a component of subjectivity is introduced

Flying-insect collector Flight interception
Flying insects, such as beetles, 

cockroaches, crickets

Low; negligible if 

self-built

Depending on killing reagent; could be done 

in salt-saturated water and detergent, propylen 

glycol; formaldehyde solutions but in detriment 

of DNA recovery

Minimum: 2 traps for fast surveys;

Collection: once or twice per day;

Personnel: 1 person;

Complement with bait and light traps

Ideal for slow-flying insects, which hit the 

plastic sheet and fall in the container with 

killing reagent

Insecticidal knockdown Canopy fogging Arboreal insect community High Yes; insecticide as killing reagent

Collection: laborious and problems with 

pseudoreplication;

Complement with canopy light trapping and flight 

interception traps

Canopy access still limited;

High demand on logistics;

Environmentally dependent

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26661v1 | CC BY 4.0 Open Access | rec: 11 Mar 2018, publ: 11 Mar 2018



Table 2(on next page)

Overview of massively parallel DNA sequencing methods applied to insect museum

specimens
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Authors Taxon group Specimens Sequencing approach Output

Staats et al . (2013) Flies and beetles

Number: 3 specimens;

Age: 199231995;
Tissue: 133 legs, thorax, whole specimen (destructive 
protocol)

Shotgun whole genome skimming;

Illumina HiSeq 2000

Read depth: 3.5x 3 146.1x (mt genome);
% Mapping: 0.002 3 0.82 (mt genome);
Contamination: 1 specimen extensive bacteriophage & fungal 

DNA

Tin et al . (2014) Flies and ants

Number: 11 specimens;

Age: 191031976;
Tissue: whole specimen (non-destructive protocol)

Shotgun whole genome skimming;

RAD-tag;

Illumina MySeq & HiSeq 2500

Read depth: 0.08x 3 1.0x (whole genome);
% Mapping: 19 3 76 (whole genome);
Contamination: not reported

Heintzman et al . (2014) Beetles

Number: 4 specimens;

Age: Late Pleistocene (C
14), 187531950 (museum);

Tissue: 1 hind leg, pronotum, elytron (destructive 

protocol)

Shotgun whole genome skimming;

Illumina HiSeq 2000

Reads aligned to reference: 0.009% 3 0.225x (mt genome & 5 
nuclear loci);

% Insect contigs: 0.25 3 46.5;
Contamination: Up to ca. 20% mammalian sequence in contigs

Maddison & Cooper (2014) Beetles

Number: 1 specimen;

Age: 1968;

Tissue: whole specimen (non-destructive protocol)

Shotgun whole genome skimming;

Illumina HiSeq 2000

Read depth: not reported (8 gene targets);

% Gene length coverage: 95 3 100 (8 gene targets);
Contamination: not reported

Kanda et al . (2015) Beetles

Number: 13 specimens;

Age: 192932010;
Tissue: whole specimen (non-destructive protocol)

Shotgun whole genome skimming;

Illumina HiSeq 2000 (2 lanes)

Read depth: 0.44x 3 4.64x (67 gene targets);
N50: 280 3 700 (67 gene targets);
Contamination: Possible in some specimens but not quantified

Timmermans et al . (2016) Butterflies

Number: 35 specimens;

Age: 198032005;
Tissue: 1 leg (destructive protocol)

Shotgun whole genome skimming;

Illumina MySeq (1/3 flow cell)

% Coverage: 0 3 100 (mt coding loci);
Contamination: not reported;

Failure rate: 4 out of 35 specimens any reads matching mt 

genomes

Suchan et al . (2016)
Butterflies and 

grasshoppers

Number: 60 specimens;

Age: 190831997;
Tissue: legs (destructive protocol)

Target capture of RAD probes;

Illumina MySeq & HiSeq (one lane each)

Median depth: 10x (for each SNP);

% Matrix fullness: 52 3 72.5 (RAD loci);
Contamination: ca. 9 % of contigs were of exogenous origin

Blaimer et al . (2016) Carpenter bees

Number: 51 specimens;

Age: 189432013;
Tissue: 1 leg (destructive protocol)

Target capture of Hymenopteran UCEs;

Illumina MySeq

Average coverage: 7.4x 3 182.4x (UCE loci);
Recovered loci: 6 3 972 (UCE per sample);
Contamination: not reported

Pitteloud et al . (2017) Butterflies

Number: 32 specimens;

Age: 192932012;
Tissue: legs (destructive protocol)

PCR Multiplex & Shotgun sequencing;

Illumina MySeq

Length sequences (bp): 109 3 7297 (mt and rDNA loci);
Contamination: not reported
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Non-comprehensive overview of massively parallel DNA sequencing methods applied to

insects
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Approach Case reference Topic Taxon group Impact

Whole-transcriptome shotgun Misof et al . (2014) Phylogenomics Class Insecta First phylogenomic study to cover all hexapod orders

Whole-genome shotgun Tang et al . (2014) Mito-metagenomics Several insect orders
Pioneering proof-of-concept study to show feasibility of PCR-free 

mitogenome sequence in bulk samples

RAD-seq Tin et al . (2014) Phylogenetics; Museomics Flies and ants
One of the first insect museomic studies using massive parallel sequencing, 

and a guideline for non-destructive DNA isolation and library preparation

Target capture Suchan et al . (2016) Phylogeography
Butterflies and 

grasshoppers

New method to target RAD probes (hyRAD). Proof-of-concept using 

divergent taxa and archived specimens

Target capture Faircloth et al . (2015) Phylogenomics Hymenoptera Enrichment of Ultraconserved Elements (UCE) of the Hymenoptera order

Single-molecule Kelley et al . (2014) Comparative Genomics Antarctic midge Single-molecule real time whole-genome sequencing using PacBio
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Figure 1(on next page)

Schematic of the spatiotemporal continuum of biodiversity and evolution

Community ecology research usually focus at local scale (Lx), but may be mislead if not

taking into account higher-level patterns such as fluctuation of population/species ranges

over time (e.g., distributional change due to environmental shift or biotic interaction) and

space (e.g., local pool of species depends on the regional diversity and its evolution). At a

higher scale (Vx), inferences on population/species evolutionary dynamics may be mislead if

not taking into account reduced-scale patterns such as local extinction (e.g., its rate and

magnitude, whether local, regional or global) and biotic interaction (e.g., as in diversity-

dependent diversification, or continuous replacement of species with similar ecologies over

time). Vx is any area of interest (local, regional, or global) that changes over time (V1, V2 &

Vn). A, R, and N are distributional ranges of three different populations/species of interest.

Hypothetical sampling sites remain geographically constant over time, whether at geological

or ecological scales (L1, L2, and L3).
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Figure 2(on next page)

Flowchart summarizing the 10 rules to study biodiversity through insect genomics and

discussed in the paper
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