A peer-reviewed version of this preprint was published in PeerJ on 30 April 2019.

<u>View the peer-reviewed version</u> (peerj.com/articles/6727), which is the preferred citable publication unless you specifically need to cite this preprint.

Matos-Maraví P, Duarte Ritter C, Barnes CJ, Nielsen M, Olsson U, Wahlberg N, Marquina D, Sääksjärvi I, Antonelli A. 2019. Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies. PeerJ 7:e6727 https://doi.org/10.7717/peerj.6727

Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices, common challenges, and experimental design for genomic studies

Pável Matos-Maraví $^{\text{Corresp., 1, 2}}$, Camila Duarte Ritter $^{\text{1, 2}}$, Christopher J Barnes 3 , Martin Nielsen $^{3, 4}$, Urban Olsson $^{\text{1, 2}}$, Niklas Wahlberg 5 , Daniel Marquina $^{6, 7}$, Ilari Sääksjärvi 8 , Alexandre Antonelli $^{1, 2, 9, 10}$

Corresponding Author: Pável Matos-Maraví Email address: pavelm14@gmail.com

The study of biodiversity within the spatiotemporal continuum of evolution, e.g., studying local communities, population dynamics, or phylogenetic diversity, has been important to properly identify and describe the current biodiversity crisis. However, it has become clear that a multi-scale approach - from the leaves of phylogenetic trees to its deepest branches - is necessary to fully comprehend, and predict, biodiversity dynamics. Massive parallel DNA sequencing opens up opportunities for bridging multiple dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms, both under neutral or selective pressure. Here we aim to identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics research focusing on insects, which arguably constitute the most diverse and ecologically important group of metazoans. We suggest 10 simple rules that every biologist could follow to 1) provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through insect genomics, 2) review and show relevant literature to biodiversity and evolutionary research in the field of entomology, and 3) make available a perspective on biodiversity studies using insect genomics. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or genomics, but plan to carry out own research in insect genomics. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity, and by consequence the largest portion of Earth's

¹ Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

² Gothenburg Global Biodiversity Centre, Gothenburg, Sweden

³ Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

⁴ Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

⁵ Department of Biology, Lund University, Lund, Sweden

⁶ Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden

Department of Zoology, Stockholm University, Stockholm, Sweden

⁸ Biodiversity Unit, University of Turku, Turku, Finland

⁹ Gothenburg Botanical Garden, Gothenburg, Sweden

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States

biodiversity, and its evolution in time and space.

- 1 Author Cover Page
- 2 Article submission to PeerJ
- 3 Manuscript category: Literature Review
- 4 Collection: "Endless forms: Advances in evolutionary analyses of biodiversity"
- 5 Article title: Biodiversity seen through the perspective of insects: 10 simple rules on
- 6 methodological choices, common challenges, and experimental design for genomic studies.
- 8 Authors: Pável Matos-Maraví* (1,2), Camila Duarte Ritter (1,2), Christopher J. Barnes (3), Martin
- 9 Nielsen ^(3,4), Urban Olsson ^(1,2), Niklas Wahlberg ⁽⁵⁾, Daniel Marquina ^(6,7), Ilari Sääksjärvi ⁽⁸⁾,
- 10 Alexandre Antonelli (1,2,9,10)
- 12 Affiliations:

11

- 13 ¹ Gothenburg Global Biodiversity Centre, SE-40530, Gothenburg, Sweden.
- ² Department of Biological and Environmental Sciences, University of Gothenburg, SE-40530,
- 15 Gothenburg, Sweden.
- ³ Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- ⁴ Section for Evolutionary Genomics, Natural History Museum of Denmark, University of
- 18 Copenhagen, 1350 Copenhagen, Denmark
- 19 ⁵ Department of Biology, Lund University, 223 62 Lund, Sweden

- 20 ⁶ Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-10405,
- 21 Stockholm, Sweden
- ⁷ Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
- 23 ⁸ Biodiversity Unit, University of Turku, 20014, Turku, Finland
- ⁹ Gothenburg Botanical Garden, Gothenburg, Sweden.
- 25 ¹⁰ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
- 26 02139, USA.

*Corresponding author: Pável Matos-Maraví, E-mail: pavelm14@gmail.com

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Abstract: The study of biodiversity within the spatiotemporal continuum of evolution, e.g., studying local communities, population dynamics, or phylogenetic diversity, has been important to properly identify and describe the current biodiversity crisis. However, it has become clear that a multi-scale approach – from the leaves of phylogenetic trees to its deepest branches – is necessary to fully comprehend, and predict, biodiversity dynamics. Massive parallel DNA sequencing opens up opportunities for bridging multiple dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms, both under neutral or selective pressure. Here we aim to identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics research focusing on insects, which arguably constitute the most diverse and ecologically important group of metazoans. We suggest 10 simple rules that every biologist could follow to 1) provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through insect genomics, 2) review and show relevant literature on biodiversity and evolutionary research in the field of entomology, and 3) make available a perspective on biodiversity studies using insect genomics. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or genomics, but plan to carry out own research in insect genomics. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity, and by consequence the largest portion of Earth's biodiversity, and its evolution in time and space.

49 **Keywords:** Biodiversity, evolution, NGS, museomics, taxonomic impediment

Introduction

51

52	The global decline in biodiversity is unquestionable (Barnosky et al., 2011). The rate of species
53	diversity loss is comparable to those of ancient mass-extinction events (Ceballos et al., 2015),
54	but our understanding on the spatiotemporal continuum of biodiversity is still limited (Fig. 1).
55	Not only the current methodologies to quantify biodiversity at different temporal and spatial
56	scales need to be profoundly revised (Vellend, 2017), but also a multi-disciplinary effort is
57	necessary to comprehend species diversity and its evolution. High-throughput DNA
58	technologies, including massive parallel DNA sequencing, have been used during the past two
59	decades to study biodiversity. Thus, researchers nowadays have access to standard tools which
60	can generate unprecedented amounts of genomic information, being cost- and time-efficient
61	(Lugg et al., 2018), and with the potential to integrate their results with previous efforts.
62	In this article, we aim to briefly review and provide a guideline on the usage of massive parallel
63	DNA sequencing technologies to bridge the study of biodiversity at different scales, with a focus
64	on the largest biotic radiation on Earth: insects. These six-legged invertebrates represent more
65	than half of all known eukaryotic species (Grimaldi & Engel, 2005; Mora et al., 2011; Stork et
66	al., 2015; Stork, 2018) and they are one of the most important components of eukaryotic
67	biodiversity in terms of abundance and ecology. However, as much as 80% of insect diversity,
68	and therefore much of the Earth's biodiversity, remains to be formally described (Hamilton et al.,
69	2010; Scheffers et al., 2012; Stork, 2018). While there is so much undescribed insect diversity in
70	the nature, a significant number may already be deposited within museum collections in need of
71	formal description (Suarez & Tsutsui, 2004; Veijalainen et al., 2012). Therefore, the study of
72	biodiversity through insect genomics, using entomological mass-sampling techniques in the field
73	and the archived material, is timely and represents a significant opportunity to advance our

74	understanding of life on Earth. This article aims to fill a gap in the literature on a simple
75	guideline to study biodiversity through insect genomics, thus this review is primarily targeted at

researchers and students who may not yet be experts in entomology or genomics.

Survey Methodology

We reviewed published literature related to biodiversity and evolutionary research using insect genomics, including but not limited to methods for review and original articles on collecting insects, specimen preservation and storage, genomic DNA isolation from archived material, and post-sequencing approaches. We ensure a comprehensive and unbiased procedure by using primarily PubMed and Google Scholar to search for articles, complemented with searches in Scopus and Web of Science. We also used a combination of keywords, such as "insect genomics", "museum DNA", "high-throughput sequencing", and "biodiversity assessment".

Ten Simple Steps to Study Biodiversity through Insect Genomics

We structure this article in 10 simple rules (Fig. 2) that every biologist should understand to 1)
better interpret the results and conclusions coming from insect biodiversity research, and 2) start
planning a multi-dimensional study of biodiversity using insects as target group and highthroughput genomic tools. Overall, we briefly review the current state in biodiversity and
evolution research through the study of insect genomics, by revisiting pioneering studies that aim
to bridge different spatial and temporal scales. We identify a series of limitations and challenges

currently faced by insect genomics, but we also find hopeful approaches to comprehend the origin and dynamics of extant biodiversity.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Rule 1: Define the questions and scope of the study

Producing genomic data is no longer a major challenge for many labs. Instead, many researchers seem to be producing large amounts of data, without having a clear idea of how to use it afterwards. Although it may seem obvious, we consider important to stress that careful thinking is required to define the research questions and hypothesis of any study, and how to best address them. A few projects might be totally discovery-driven with no prior expectations, but in general it can be very useful to clearly define the hypotheses to be tested, and how. This will then inform on the whole chain of methods and analyses, since there is no 'one size fits all' when it comes to biodiversity and evolutionary studies. With massive-parallel DNA sequencing technologies, the study of evolutionary relations can be complemented with fast quantification of diversity, abundances, and species interactions such as studies on host-parasite interactions (Toju, 2015), in environmental samples (Shokralla et al., 2012) or even from the ethanol used for preservation of historical specimens (Linard et al., 2016). However, economical limitations exist regarding the number of specimens and the extent of their genomes that could be sequenced (Wachi, Matsubayashi & Maeto, 2018). Therefore, researchers should choose from a series of available sequencing approaches that better suits their research questions. For example, if the focus is on finding potential loci involved in adaptation and speciation, a reduced representation of the genomes might be cost-efficient because several

individuals from different populations could be pooled in one sequencing experiment, or if the

aim is to profile many organisms within insect communities, DNA metabarcoding could provide a fast quantification of diversity and relative abundances.

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

116

117

Rule 2: Set up your collaborations strategically

A major challenge in the study of evolution from populations to species is the lack of nongenomic data, including taxonomic, paleontological, and ecological information. Despite the abundance of genomic information that can nowadays be generated, evolutionary biologists are facing the necessity to 1) increase field expeditions in search of the unknown diversity, 2) incorporate fossil data in the Tree of Life, and 3) study the phenotypes and life history data in specimen collections. Naturally, the most efficient direction to integrate such different perspectives is to establish and strengthen a collaborative network. For example, working along with paleontologists might bring a temporal perspective in the study of evolution and biodiversity dynamics (Marshall, 2017). In some insect groups, such as Hymenopterans (sawflies, wasps, bees, ants) and Coleopterans (beetles), the morphologies of ancient, extinct lineages might be better preserved as inclusions in amber, and even ancient ecologies could be preserved (Johnson et al., 2001). Other groups such as Lepidoptera (butterflies and moths) are on the contrary hardly fossilized (Labandeira & Sepkoski, 1993), thus representing a challenge, for instance, in divergence time analyses when working with phylogenomic data (Wheat & Wahlberg, 2013). However, other sources of information, such as larval host-plant ages, may improve divergence time analyses when fossil record is scarce (Chazot et al., 2018). Collaborating closely with ecologists would strengthen the study of adaptation, differentiation, and the mechanisms of speciation, and a comprehensive knowledge of life history data, insect

ecologies, or common garden experiments are ideal to tease apart adaptive from non-adaptive variation. Moreover, Natural History Museums (NHMs) are the repositories of our natural world and include not only archived specimens but also valuable historical, demographic, life-history, and genetic data that can add another dimension to evolutionary research (Burrell, Disotell & Bergey, 2015; Buerki & Baker, 2016). Research on biodiversity will benefit by working closely along with curators and research assistants at NHMs. For example, population range expansion in historical times, host-parasite interaction changes after human disturbances, or the effect of current climate change on the structure of populations, are topics that could be directly benefited by incorporating the information from NHM collection records (Burrell, Disotell & Bergey, 2015). Moreover, the information that curators might hold on the collection and preservation methods of specimens is valuable when selecting which specimens should undergo high-throughput sequencing (Kanda et al., 2015; Short, Dikow & Moreau, 2018).

Rule 3: Go to the field

We are worried that the rapid increase of genetic data in public databases might discourage students and researchers from generating novel data. Instead, we argue that field work is absolutely essential to the advancement of our field, and should be part of every biologist's education as well as routine in advanced careers. Fieldwork will also benefit museum collections, and vice-versa, museum collections—through genetic and morphological studies based on specimens— will benefit fieldwork. Of course, there might be lines of research that do not demand fieldwork, but even taxonomists, method developers, and researchers in other disciplines may profit from the experience of studying and responsibly collecting specimens in

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

nature. Extensive field surveys are often required to obtain a representative inventory of insect assemblages at both local and regional scales; but such surveys represent only a minority within entomological field studies. Most studies aiming to understand insect diversity patterns only target a small portion of the species present in a single study location. This is true given the high species richness and varying abundance, habits and seasonality of insects, including parasitoids, predators, scavengers, leaf-chewers, sap-suckers, among others. A careful selection of field sampling methods, along with proper understanding of their function and targeted groups, is thus critical (Noves, 1989) (see Table 1 for a non-comprehensive overview of mass-sampling methods). For some cases, such as in biodiversity assessment, it may be enough to conduct simple and rapid field surveys. For example, in a recent tropical large-scale species inventory, Borkent & Brown (2015) investigated local species richness of cloud forest Diptera (true flies) by using only two Malaise traps and a one-week intensive "Diptera-Blitz" conducted by several experts. In other cases, such as when studying diversity dynamics through time and space, greater masssampling efforts may be needed, requiring a combination of multiple methods, longer term inventories and wide expertise, together with effective ways to estimate true species richness based on collected samples (Vogel, 2017). For example, Gómez et al. (2018) sampled the Western Amazonian local parasitoid wasp diversity by using 41 Malaise traps, with a total sampling effort of 230 Malaise-trap months (one Malaise-trap month corresponds to one trap collecting in the field for a period of one month). In this case, despite the tremendous sampling effort, cumulative species curves suggested that a significant portion of the local parasitoid diversity remained unobserved; a fact that may be generalized for many other tropical insect groups as well. Reviews of entomological collection methods for both mass-sampling and group-

specific research are available in the literature and are essential reading before field collections (Agosti et al., 2000; Basset et al., 2003; Lamarre et al., 2012; Larsen, 2016). Needless to say, be a sensible collector; many insects are rare and threatened, so every collecting effort should be associated with a risk assessment, even informally if not required. There are also many federal and international regulations to follow, such as those stipulated under the Nagova Protocol under the Convention on Biological Diversity (https://www.cbd.int/abs/about/) and the CITES legislation (https://www.cites.org/). Researchers should all follow all good practices for Access and Benefit Sharing (e.g., https://naturwissenschaften.ch/organisations/biodiversity/abs/goodpractice).

Rule 4: Treat your specimens well to enhance its use

The amount and quality of isolated genomic DNA from insect collections depend on a myriad of factors, including killing reagents, preservation of specimens in the field, and final voucher storage conditions (Kanda et al., 2015; Short, Dikow & Moreau, 2018). For example, Dillon et al., (1996) (see also Reiss, Schwert & Ashworth, 1995; Gilbert et al., 2007b) found that specimens killed with ethanol yielded significantly higher quantities of higher quality DNA compared to other killing/preservation agents such as ethyl acetate vapor, formalin or ethylene glycol. Moreover, rapid and effective drying of the specimens in the field, especially in the tropics, is a very important step for voucher preservation and may be an alternative to cryopreservation (Prendini, Hanner & DeSalle, 2002). Preservation of specimens in ethanol and at low temperatures would be ideal, but may cause logistic problems during transportation and make the collections highly flammable. Propylene glycol may be a safer alternative and

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

logistically easier to transport than ethanol (Ferro & Park, 2013), and it might even be used to attract certain arthropod species (Höfer et al., 2015). Moreover, initiatives to implement large cryobanks are important (Koebler, 2013), though these technologies are yet restricted to very few and large NHMs (Corthals & Desalle, 2005). The use of ethylene glycol may provide reasonable amounts of DNA regardless of specimen age. and with lesser risks in the field (Dillon, Austin & Bartowsky, 1996), though the age of specimen seems not to be a critical factor for obtaining minimal amount of DNA for massive-parallel sequencing (Ruane & Austin, 2017) (see Table 2 for an overview of published studies using archived insects). In fact, ancient beetle genomic DNA (ca. 560,000 to 5,960 years old) has been successfully isolated (Heintzman et al., 2014). However, due to the fragmented nature of ancient DNA, PCR-based techniques are overall not successful to recover genetic data. Fortunately, evidence suggests that fragmented DNA due to age or preservation reagents does not dramatically affect the performance of PCR-free, massive-parallel sequencing (Tin, Economo & Mikheyev, 2014; Timmermans et al., 2016). However, the success of current sequencing approaches still depends in some cases on the quality of isolated DNA, such as in RAD-seq, thus minimal damage in the field and during storage is advisable.

221

223

224

225

226

222 Rule 5: Work closely with taxonomists

Genomic data is only one component of biodiversity, but in order to reach the general public biodiversity needs as well to be tangible. The tasks of taxonomists, including the identification, description, and classification of species in meaningful groupings, are unfortunately sometimes neglected. The high diversity and density of insects, coupled with laborious taxonomic

assessment and lack of resources for taxonomists, makes the morphological identification of every specimen sampled by mass-collecting techniques a difficult and high resource-consuming task. The so-called "taxonomic impediment" (di Castri, Vernhes & Younes, 1992) encompasses two general difficulties: 1) not enough resources and training are allocated to taxonomic work and 2) few people are working in taxonomy (thus slowing down the rate of species discovery, identification, and classification), which may be a consequence of the former difficulty (Wheeler, Raven & Wilson, 2004; de Carvalho et al., 2007; Ebach, Valdecasas & Wheeler, 2011; Audisio, 2017). Indeed, we may be in the midst of a revolution in taxonomy, as evidenced by the intense debate on its epistemological and methodological grounds (Dubois, 2011; Ceríaco et al., 2016; Garnett & Christidis, 2017; Raposo et al., 2017; Thorpe, 2017), but it is also clear that in the meantime entomological research must use complementary approaches to reliably estimate diversity through time and among places and environments. Therefore, taxonomists should be part of biodiversity studies using insect genomics, and the DNA sequences generated by such studies should be seen as a necessary supplement to the work of taxonomists.

Rule 6: Isolate DNA in the right way

Most recent studies using massive-parallel DNA sequencing, even those on ancient insects, have used commercial kits for DNA isolation, thus reducing time, complexity, and health risks in laboratory procedures (Staats et al., 2013; Heintzman et al., 2014; Kanda et al., 2015; Blaimer et al., 2016; Pitteloud et al., 2017). However, in-house methods might be more effective than commercial kits when working with ancient samples having little and highly-degraded DNA (Gilbert et al., 2007c; Meyer et al., 2016). On the other hand, non-destructive protocols for DNA

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

isolation are preferable when working with valuable, archived specimens or with bulk samples such as those coming from insect mass-collecting techniques that later need to be taxonomically curated. However, there is surprisingly little data available comparing the efficiency of destructive vs. non-destructive protocols applied to insects (Gilbert et al., 2007a; Nieman et al., 2015). A number of non-destructive DNA isolation protocols have been published (e.g., (Thomsen et al., 2009; Castalanelli et al., 2010; Tin, Economo & Mikheyev, 2014), but in general they vary depending on the targeted insect group. For example, insects whose external structure are not delicate, including Diptera, Hymenoptera and Coleoptera, tend to be more resistant to submergence of whole specimen in extraction buffers, giving better results (Heintzman et al., 2014; Tin, Economo & Mikheyev, 2014). In other more delicate groups such as Lepidoptera, the use of abdomens is advisable, given that in many cases the abdomens need to be removed from the individual for genitalia preparation (Knölke et al., 2005). In other insect groups that hold sufficient starting material for DNA isolation in particular tissues, such as muscles in the massive legs of Orthoptera (grasshoppers, locusts, crickets), grinding one leg might not be a significant loss to the collection (Tagliavia et al., 2011). Although curators at NHMs may be reluctant to provide specimens for molecular studies, with valid reasons considering that most species might consist of singletons or very rare collections (Lim, Balke & Meier, 2012), the design of selective sampling, minimizing the damage of collections especially of those very rare specimens, is therefore crucial. As a side note, there has not been any discussion in the literature about the suitability for massive-parallel sequencing using the hundreds of thousands, or perhaps millions, DNA aliquots generated in the past three decades for Sanger-sequencing work. In principle, old DNA aliquots of low quantities and potentially fragmented DNA may face the same constraints of using archived specimens from

NHMs, and might thus be processed with protocols designed for archived samples (e.g., library 272 preparation, sequencing approach) (Tin, Economo & Mikheyev, 2014; Kanda et al., 2015; 273 Suchan et al., 2016; Timmermans et al., 2016). 274 275 276 Rule 7: Revise your DNA sequencing approach At this point, you should already have decided which sequencing approach will be best suitable 277 to address your research question(s), but now you should carefully evaluate the quality of DNA 278 that you de facto were able to obtain, and decide on which sequencing approach to really follow. 279 280 Reviews on massive-parallel DNA sequencing approaches can be found in the literature 281 (Mamanova et al., 2010; Metzker, 2010; Mardis, 2017). Below, we categorize and briefly 282 describe available massive-parallel DNA sequencing technologies of potential interest for entomological biodiversity research (see Table 3 for a summary of such methods and key 283 publications). The current leading short-read DNA sequencing technology is Illumina. We have 284 grouped the main approaches used in the study of entomological biodiversity into three 285 categories: 1) targeted-sequencing, 2) non-targeted, reduced-representation of whole genome, 286 and 3) whole-genome skimming. In addition, single-molecule DNA sequencing technologies 287 such as Oxford Nanopore and PacBio can accelerate the amount of DNA data recovery in real 288 289 time and from highly-degraded starting DNA material (Thompson & Milos, 2011). We thus consider these technologies as promising, and we briefly introduce them here. 290 291 Target Sequencing: It is highly-efficient when the aim is to recover only DNA markers with a 292 particular rate of evolution (fast and slow) or under different selective pressures (Lemmon & 293 Lemmon, 2013). Moreover, because it targets only a tiny subset of the whole genome, targeted

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

sequencing is cost-effective as tens or hundreds of specimens can be pooled together in a single sequencing experiment (Mamanova et al., 2010). This is particularly useful when working with environmental samples, such as those coming from mass-sampling techniques (Morinière et al., 2016). For example, metabarcoding, an approach that targets a barcoding region such as the COI mitochondrial gene, can be useful in the study of evolution among local environments and in biodiversity assessment because it might be more reliable, fast and replicable than traditional biodiversity surveys (Ji et al., 2013; Zhou et al., 2013; Vesterinen et al., 2016). There are two usual ways to target particular loci, 1) through PCR or 2) by using "baits"-based in-vitro capture. PCR has the advantage of being cheap but the development of universal primers is the main limitation because sequence specificity to desired loci decreases through mutation and long divergence times among lineages. Target capture using "baits" can be expensive ("baits" need to be specially synthesized) but has the advantages of 1) simplify laboratory procedures (one can pool several specimens for the capture experiment), 2) target a wider range of lineages despite evolutionary distance among them, and 3) reduce amplification biases due to PCR primer design and relative abundance of DNA molecules in a pool of specimens. However, prior genomic information either published annotated genomes or transcriptomes are needed to design target-enrichment probes. Therefore, probe kits targeting conserved regions primarily for phylogenomic purposes have been published for those insect orders having good reference databases (Faircloth et al., 2015; Faircloth, 2016; Young et al., 2016; Breinholt et al., 2018). Furthermore, recent attempts to integrate "baits"-based capture into metabarcoding have had disparate degree of success; such as the sequencing of non-target organisms or pseudogenes on the negative side (Shokralla et al., 2016), or the recovery of sequences of very rare species in a

(Dowle et al., 2016). 317 Random reduced-representation of genome: Restriction-site-associated DNA (RAD) sequencing 318 has proven to be an efficient and cheap approach to obtain millions of single nucleotide 319 polymorphisms (SNPs), both neutral and under selection (Andrews et al., 2016). However, 320 restriction enzyme sites may not be conserved for a long evolutionary time, thus this approach 321 seems to be restricted to population or species complexes. However, a recent protocol targeting 322 RAD-seq markers (hyRAD) may ameliorate the lack of phylogenetic conservation of restriction 323 enzyme sites across divergent lineages (Suchan et al., 2016). The amount and quality of DNA 324 might impose a second limitation to RAD-seq. For example, Tin, Economo & Mikheyev (2014) 325 using ant specimens as old as 100 years were able to recover SNPs but were unsuccessful at 326 genome mapping due to the extremely short DNA fragments and imprecise DNA size selection. 327 Overall, RAD-seq is promising in the study of insect diversity and evolution because it generates 328 a large amount of SNPs, is cheap and can be run on pools of specimens, as long as genomic 329 DNA is of good quality (long DNA fragments are needed for an efficient restriction enzyme 330 activity) and taxa of interest are not evolutionarily distant. 331 Whole-genome skimming: It is the simplest approach in terms of sequence library preparation. It 332 consists of randomly, shallow sequencing the whole-genome of an individual, including both 333 334 mitochondria and nuclear content. Furthermore, when working with historical specimens with highly-fragmented DNA, one can skip the step of fragmentation in library preparation (Suchan et 335 al., 2016; Timmermans et al., 2016). Whole-genome skimming has been applied in a number of 336 insect studies, proving that the method is fast and can recover entire mitochondrial genomes 337 from even old museum material (Staats et al., 2013), and low-copy nuclear protein-coding genes 338

pool of samples and the quantification of relative abundance and biomass on the positive side

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

(Maddison & Cooper, 2014; Kanda et al., 2015). With the expected decrease in sequencing prices, target sequencing approaches may no longer be a cost-effective choice in the future. For instance, recent studies have identified the benefits of mitochondrial metagenomics (MMG), including longer barcodes with larger amount of SNPs (use of mitogenomes instead of the COI fragment), and PCR-free library preparation (no amplicons would be needed) with the advantages of using highly-fragmented DNA from old specimens and a more reliable quantification of relative abundance (biomass) in mass-sampling collections (Crampton-Platt et al., 2015, 2016; Cicconardi et al., 2017; Gómez-Rodríguez et al., 2017). However, it was noted that having a reference genome is important to improve mapping and discovery of homologous SNPs in the nuclear genome (Tin, Economo & Mikheyev, 2014), which may yet restrict the use of whole-genome skimming and the recovery of nuclear data in insect groups with poor genomic knowledge. Single-molecule sequencing approaches such as PacBio and Oxford Nanopore. The two main advantages are related to a better assembly of genomes with low quantities of poor quality DNA and the portability of some devices (e.g., MinION), which can generate DNA sequences in realtime and in any place in the world, including remote field locations. Moreover, laboratory protocols are simplified and DNA amplification is not at all necessary, which is beneficial for a more accurate quantification of DNA molecules present in the sample pool (Thompson & Milos, 2011). However, technological improvement is needed to reduce the high sequencing error rates (>10 %) (Mardis, 2017; Shendure et al., 2017). Nonetheless, single-molecule sequencing promises to drastically reduce sequencing costs, thus the age where having complete genome sequences for any living insect may be even closer (Kelley et al., 2014). Moreover, the long reads that single-molecule sequencing approaches generate might help resolve long repeat

elements in the genome, thus providing invaluable scaffold for short reads to improve accuracy in assembly and annotation of insect genomes (Richards & Murali, 2015).

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

362

363

Rule 8: Choose the most suitable tools for data analyses

Although genomic sequencing is becoming easier and more affordable, processing the data generated remains a major bottleneck in many projects. Bioinformatic pipelines have been implemented during the past two decades of massive parallel sequencing, thus researchers nowadays count with standard procedures to analyze genomic DNA. However, there exist a number of limitations and challenges that remain to be explored. For example, genomic missing data, as in supermatrices for phylogenomic studies, might hinder statistical power in the inference of species relations, but its effects in systematic bias is yet unclear (Misof et al., 2014a,b). Moreover, taxonomic sampling in phylogenomics is usually lower than in the published Sanger-sequencing work, a fact that might bias systematic inference in insect higherlevel phylogenies (Behura, 2015). On the other hand, a number of pipelines have been published for analyzing target-sequencing data from environmental samples (Schloss et al., 2009; Caporaso et al., 2010; Boyer et al., 2016). Such programs provide a delimitation of Operational Taxonomic Units (OTUs), the analogs of species, derived from sequence similarity of typically 97 %. However, assigning thresholds to define analogs of species is problematic because 1) there is a risk to artificially increase or decrease local diversity, 2) inflated OTU richness might be related to sequence chimeras and sequencing errors, and 3) there exist a lack of standardization of threshold values (Huse et al., 2010; Oliver et al., 2015; Alberdi et al., 2018). The shortcomings of using thresholds to define OTUs might even escalate when studying the entomofauna of

hyperdiverse regions such as the tropics. In those cases, there are usually no good estimates of 384 genetic variability between species and a large portion of tropical insects are not represented in 385 reference databases. However, recent advances might alleviate in part the variability caused by 386 sequencing errors by incorporating other observed patterns such as OTUs co-occurrence (Frøslev 387 et al., 2017). In any case, the preservation and morphological study of vouchers are critical to 388 389 validate taxonomic assignments and thresholds. Mitochondrial metagenomics (MMG) could in principle improve OTU assignment and species 390 delimitation because contigs would span different barcode regions (COI, ND2, 16S rDNA) (Liu 391 et al., 2016) and risks of primer-related biases are ameliorated (Taberlet et al., 2012; Tang et al., 392 2014). Moreover, whilst approaches such as log-binomial normalizations (through DeSeq2 and 393 CSS) have attempted to normalize metabarcoding data (McMurdie & Holmes, 2014), results via 394 PCR-based approaches remain semi-quantitative at best (Pawluczyk et al., 2015). However, 395 metagenomic studies of insects have generally been limited only to their microbiomes (Cox-396 Foster et al., 2007; Suen et al., 2010; Shi et al., 2013), but it is difficult to assess the convenience 397 of metagenomics in more complex environmental insect samples (but see (Crampton-Platt et al., 398 2015, 2016; Cicconardi et al., 2017; Gómez-Rodríguez et al., 2017). Nonetheless, studies on soil 399 and fecal MMG have shown that the assembly of mitogenomes from environmental DNA 400 (eDNA) remains challenging and is not yet as cost-effective as compared to target sequencing 401 (Tedersoo et al., 2015; Srivathsan et al., 2016). 402

403

404 Rule 9: Make your data and results publicly available

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

From a practical viewpoint, what is not in a database does not exist (or nearly so). Databases are not only the repositories of genomic information, but also an indispensable tool in the study of biodiversity and evolution. They also allow the reproduction of results and use for other purposes such as in biodiversity assessment. Furthermore, the study of populations, their mechanisms of adaptation and speciation, is an active field given the opportunities that represent the hundreds of insect genome projects published and registered in GenBank (Yeates et al., 2016). Moreover, in the study of species interactions, such as host-parasite and feeding habits, the recovery of cryptic diversity necessitates a reference database because in many cases the identification of taxa through morphological comparison becomes impossible; for example, internal parasites (Schoonvaere et al., 2016), gut microbiota (Hammer et al., 2017), and highly-degraded organic material such as dietary content in gut (Pompanon et al., 2012). Furthermore, initiatives such as BOLD (Ratnasingham & Hebert, 2007) and the usage of the COI barcode can shed more lights in the assignments of OTU thresholds when studying tropical communities (García-Robledo et al., 2013). However, building local databases including several markers might complement metabarcoding studies in the identification and delimitation of species (Deagle et al., 2014). National reference databases have also been implemented, such as the newly initiated DNAmark project in Denmark. This project aims to provide a reference database for 1,000 species with full mitochondrial sequences, along with nuclear sequences derived from shotgun sequencing (http://dnamark.ku.dk/). Other initiatives to catalogue national biodiversity have also been put forward in Germany (Hendrich et al., 2015), Norway (NorBOL, http://www.norbol.org/) and Finland (FinBOL; http://www.finbol.org/), to further expand the BOLD project.

427

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

428 Rule 10: Disseminate your findings

Research articles are the standard way to communicate results to the scientific community. However, misinterpretations of scientific findings can be commonly found in the literature aimed for the general public and decision-makers. Thus, public outreach of our findings needs to be explicitly considered as part of our project design. Moreover, because scientific research is a collaborative enterprise (see Rule 2), it is important to discuss and reach a consensus with collaborators before spreading findings to the general public. This is particularly important given the recent misunderstandings on biodiversity research that have been reported, and the urge to include both factual evidence and ethical arguments in communications to the general public (Antonelli & Perrigo, 2018). Given that diversity estimates can fluctuate significantly depending on the way results are treated (e.g., as in metabarcoding (Frøslev et al., 2017; Alberdi et al., 2018)) special care should be taken when presenting these findings, and in general we advocate for a conservative approach which does not artificially inflate diversity estimates. Furthermore, the access of scientific knowledge and data by governmental bodies is still restricted, especially in low and lowermiddle income countries. Biodiversity research is a cornerstone for Environmental Impact Assessments, but hyperdiverse animal groups such as insects remain underrepresented in

446

447

Perspectives and Conclusions

In this article we have identified general challenges, including: 1) *insufficient evaluation of non-*destructive methods applied to insects to get good quantity and quality DNA from fresh, mass-

biodiversity assessments in species-rich countries (Ritter et al., 2017).

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

collections and archived specimens, 2) limitations to genomic data analysis, including assembly of reads, missing genomic information from datasets, methods for estimating diversity and abundance in environmental samples, and inference of population and species evolution, 3) taxonomic, ecological, and life history knowledge generation is not at the same pace as the genomic revolution. Insects are ideal study organisms because they show remarkable diversity in species numbers and ecologies, being the dominant eukaryotic group in terrestrial and freshwater environments. The integration of ecology and evolution is achievable with the new genomic techniques, which offer the possibility to generate datasets that can be used in the study of biodiversity at different spatiotemporal scales. For example, the evolutionary framework of local insect communities can now be inferred in a single sequencing effort (Crampton-Platt et al., 2015), while the study of populations and speciation using massive-parallel sequencing can be better understood with a comprehensive knowledge of local variations (Jiggins, 2016). Altogether, we expect that the increase of molecular data together with taxonomic and ecological studies will allow a better biodiversity and evolutionary comprehension which is essential for conservation and to understand biological dynamics.

466

467

468

469

470

Acknowledgements

This article is a product of the workshop organized by the Gothenburg Global Biodiversity Centre (GGBC), in Gothenburg, Sweden, in March 2017. We are grateful to Sven Toresson for his help in organizing the logistics of the workshop.

471

472 References

- 473 Agosti D., Majer JD., Alonso LE., Schultz TR. 2000. Ants. Standard methods for measuring and
- 474 *monitoring biodiversity*. Washington, DC.: Smithsonian Institution Press.
- Alberdi A., Aizpurua O., Gilbert MTP., Bohmann K. 2018. Scrutinizing key steps for reliable
- metabarcoding of environmental samples. *Methods in Ecology and Evolution* 9:134–147.
- 477 DOI: 10.1111/2041-210X.12849.
- Andrews KR., Good JM., Miller MR., Luikart G., Hohenlohe PA. 2016. Harnessing the power of
- 479 RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics* 17:81–92.
- 480 DOI: 10.1038/nrg.2015.28.
- 481 Antonelli A., Perrigo A. 2018. The science and ethics of extinction. *Nature Ecology &*
- 482 *Evolution*:In Press. DOI: 10.1038/s41559-018-0500-z.
- Audisio P. 2017. Insect taxonomy, biodiversity research and the new taxonomic impediments.
- *Fragmenta Entomologica* 49:121–124. DOI: 10.4081/fe.2017.252.
- Barnosky AD., Matzke N., Tomiya S., Wogan GOU., Swartz B., Quental TB., Marshall C.,
- McGuire JL., Lindsey EL., Maguire KC., Mersey B., Ferrer EA. 2011. Has the Earth's sixth
- mass extinction already arrived? *Nature* 471:51–57. DOI: 10.1038/nature09678.
- Basset Y., Novotny V., Miller SE., Kitching RL. 2003. Methodological advances and limitations
- in canopy entomology. In: Basset Y, Novotny V, Miller SE, Kitching RL eds. Arthropods of
- 490 Tropical Forests: Spatio-temporal dynamics and resource use in the canopy. Cambridge,
- 491 UK: Cambridge University Press, 7–16.
- Behura SK. 2015. Insect phylogenomics. *Insect Molecular Biology* 24:403–411. DOI:

10.1111/imb.12174. 493 Blaimer BB., Lloyd MW., Guillory WX., Brady SG. 2016. Sequence capture and phylogenetic 494 utility of genomic ultraconserved elements obtained from pinned insect specimens. *PLoS* 495 ONE 11:e0161531. DOI: 10.1371/journal.pone.0161531. 496 Borkent A., Brown B V. 2015. How to inventory tropical flies (Diptera) - One of the 497 megadiverse orders of insects. Zootaxa 3949:301–322. DOI: 10.11646/zootaxa.3949.3.1. 498 Boyer F., Mercier C., Bonin A., Le Bras Y., Taberlet P., Coissac E. 2016. OBITOOLS: a UNIX-499 inspired software package for DNA metabarcoding. *Molecular Ecology Resources* 16:176– 500 501 182. DOI: 10.1111/1755-0998.12428. 502 Breinholt JW., Earl C., Lemmon AR., Lemmon EM., Xiao L., Kawahara AY. 2018. Resolving relationships among the megadiverse butterflies and moths with a novel pipeline for 503 anchored phylogenomics. Systematic Biology 67:78–93. DOI: 10.1093/sysbio/syx048. 504 Buerki S., Baker WJ. 2016. Collections-based research in the genomic era. *Biological Journal of* 505 the Linnean Society 117:5–10. DOI: 10.1111/bij.12721. 506 Burrell AS., Disotell TR., Bergey CM. 2015. The use of museum specimens with high-507 throughput DNA sequencers. *Journal of Human Evolution* 79:35–44. DOI: 508 10.1016/j.jhevol.2014.10.015. 509 510 Caporaso JG., Kuczynski J., Stombaugh J., Bittinger K., Bushman FD., Costello EK., Fierer N., Peña AG., Goodrich JK., Gordon JI., Huttley GA., Kelley ST., Knights D., Koenig JE., Ley 511 RE., Lozupone CA., Mcdonald D., Muegge BD., Pirrung M., Reeder J., Sevinsky JR., 512 513 Turnbaugh PJ., Walters WA., Widmann J., Yatsunenko T., Zaneveld J., Knight R. 2010.

QIIME allows analysis of high-throughput community sequencing data. *Nature Methods* 514 7:335–336. DOI: 10.1038/nmeth0510-335. 515 de Carvalho MR., Bockmann FA., Amorim DS., Brandao CRF., de Vivo M., de Figueiredo JL., 516 Britski HA., de Pinna MCC., Menezes NA., Marques FPL., Papavero N., Cancello EM., 517 Crisci J V., McEachran JD., Schelly RC., Lundberg JG., Gill AC., Britz R., Wheeler OD., 518 Stiassny MLJ., Parenti LR., Page LM., Wheeler WC., Faivovich J., Vari RP., Grande L., 519 520 Humphries CJ., DeSalle R., Ebach MC., Nelson GJ. 2007. Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-521 automation paradigm. Evolutionary Biology 34:140–143. DOI: 10.1007/s11692-007-9011-522 6. 523 524 Castalanelli MA., Severtson DL., Brumley CJ., Szito A., Foottit RG., Grimm M., Munyard K., Groth DM. 2010. A rapid non-destructive DNA extraction method for insects and other 525 arthropods. *Journal of Asia-Pacific Entomology* 13:243–248. DOI: 526 10.1016/j.aspen.2010.04.003. 527 di Castri F., Vernhes JR., Younes T. 1992. The network approach for understanding global 528 biodiversity. Biology International. The News Magazine of the International Union of 529 Biological Sciences (IUBS) 25:3–9. 530 Ceballos G., Ehrlich PR., Barnosky AD., García A., Pringle RM., Palmer TM. 2015. Accelerated 531 modern human-induced species losses: entering the sixth mass extinction. Sciences 532 Advances 1:e1400253. DOI: 10.1126/sciadv.1400253. 533 Ceríaco LMP., Gutiérrez EE., Dubois A., Abdala CS., Algarni AS., Adler K., Adriano EA., 534 535 Aescht E., Agarwal I., Agatha S., Agosti D., Aguiar AJC., Aguiar JJM., Ahrens D., Aleixo

A., Alves MJ., Do Amaral FR., Ananieva N., Andrade MC., De Andrade MB., Andreone F., 536 Aguino PPU., Araujo PB., Arnaud H., Arroyave J., Arthofer W., Artois TJ., Astúa D., 537 Azevedo C., Bagley JC., Baldo D., Barber-James HM., Bärmann E V., Bastos-Silveira C., 538 Bates MF., Bauer AM., Bauer F., Benine RC., Bennett DJ., Bentlage B., Berning B., Bharti 539 D., Biondo C., Birindelli J., Blick T., Boano G., Bockmann FA., Bogdanowicz W., Böhme 540 541 W., Borgo E., Borkin L., Bornschein MR., Bour R., Branch WR., Brasileiro CA., Braun JK., Bravo GA., Brendonck L., Brito GRR., Britto MR., Buckup PA., Burckhardt D., 542 Burkhardt U., Busack SD., Campos LA., Canard A., Cancello EM., Caramaschi U., 543 Carpenter JM., Carr M., Carrenho R., Cartaxana A., Carvajal MA., Carvalho GS., De 544 Carvalho MR., Chaabane A., Chagas C., Chakrabarty P., Chandra K., Chatzimanolis S., 545 Chordas SW., Christoff AU., Cianferoni F., Claramunt S., Cogalniceanu D., Collette BB., 546 Colli GR., Colston TJ., Conradie W., Constant J., Constantino R., Cook JA., Cordeiro D., 547 Correia AM., Cotterill FPD., Coyner B., Cozzuol MA., Cracraft J., Crottini A., Cuccodoro 548 G., Curcio FF., D'Udekem D'Acoz C., D'Elía G., D'Haese C., Das I., Datovo A., Datta-549 Roy A., David P., Day JG., Daza JD., De Bisthoven LJ., De La Riva De La Viña IJ., De 550 Muizon C., De Pinna M., Piacentini VDQ., De Sá RO., De Vivo M., Decher J., Dekoninck 551 W., Delabie JHC., Delfino M., Delmastro GB., Delsinne T., Denys C., Denzer W., 552 Desutter-Grandcolas L., Deuti K., De Resbecq TD., Di Dario F., Dinets V., DoNascimiento 553 C., Donoso DA., Doria G., Drewes RC., Drouet E., Duarte M., Durette-Desset MC., 554 555 Dusoulier F., Dutta SK., Engel MS., Epstein M., Escalona M., Esselstyn JA., Eto K., Faivovich J., Falaschi RL., Falin ZH., Faundez EI., Feijó A., Feitosa RM., Fernandes DS., 556 557 Fikáček M., Fisher BL., FitzPatrick MJ., Forero D., Franz I., Freitag H., Frétey T., Fritz U., 558 Gallut C., Gao S., Garbino GST., Garcete-Barrett BR., García-Prieto L., García FJ., Garcia

PCA., Gardner AL., Gardner SL., Garrouste R., Geiger MF., Giarla TC., Giri V., 559 Glaubrecht M., Glotzhober RC., Godoi FSP., Gofas S., Gonçalves PR., Gong J., Gonzalez 560 VH., González-Orej JA., González-Santillán E., González-Soriano E., Goodman SM., 561 Grandcolas P., Grande L., Greenbaum E., Gregorin R., Grillitsch H., Grismer LL., 562 Grootaert P., Grosjean S., Guarino FM., Guayasamin JM., Guénard B., Guevara L., Guidoti 563 564 M., Gupta D., Gvoždík V., Haddad CFB., Hallermann J., Hassanin A., Hausmann A., Heaney LR., Heinicke MP., Helgen KM., Henle K., Hirschmann A., Holmes MW., 565 Hołyńska M., Hołyński R., Hormiga G., Huber BA., Hugot JP., Hutterer R., Iskandar D., 566 567 Iverson JB., Jäger P., Janssen R., Jerep F., Jocqué R., Jungfer KH., Justine J Lou., Kamei RG., Kamiński MJ., Karner M., Kearney T., Khot R., Kieckbusch M., Köhler J., Koepfli 568 KP., Kondorosy E., Krogmann L., Krolow TK., Krüger M., Kucharzewski C., Kullander 569 SO., Kumar S., Kupfer A., Kuramoto M., Kurina O., Kury A., Kvist S., La Marca E., La 570 Terza A., LaVal R., Lacher TE., Lamas CJE., Lambert MR., Landry B., Langeani F., 571 Langone JA., Lattke JE., Lavilla EO., Leenders T., Lees DC., Leite YLR., Lehmann T., 572 Lhano MG., Lim BK., Lin X., Löbl I., De Lucena CAS., De Lucena ZMS., Lucinda P., 573 Lujan NK., Luporini P., Luz DR., Lynch JD., Machado LF., Mahony S., Malabarba LR., 574 575 Manuel-Santos M., Marinho-Filho J., Marini M., Marques AC., Marques MP., Mateus O., Matsui M., Mazuch T., McCranie J., McKellar RC., McMahan CD., Mecke S., Meißner K., 576 Mendoza-Becerril MA., Mendoza-Palmero CA., Merker S., Mezzasalma M., Midgley JM., 577 578 Miller J., Miller MJ., Mincarone MM., Minet J., Miralles A., Miranda TP., Missoup AD., Modrý D., Molinari J., Monadjem A., Montreuil O., Moratelli R., Moreira CR., Moreira 579 FFF., Mourer-Chauviré C., Mulieri PR., Munroe TA., Naomi SI., Nascimento F., Nässig 580 581 WA., Neifar L., Netto-Ferreira AL., Niamir A., Nielsen S V., Nihei SS., Nistri A.,

582 Oceguera-Figueroa A., Odierna G., Ohler A., Ojanguren-Affilastro AA., De Oliveira FF., De Oliveira ML., De Oliveira OMP., Oliveira SS., Olson LE., Ong'ondo GO., Orlov N., 583 Ornelas-García CP., Ortega H., Ortega-Andrade M., Ota H., Pariselle A., Passos P., Pastana 584 MNL., Patterson BD., Patitucci LD., Patton JL., Pavan AC., Pavan SE., Pavia M., Peloso 585 PLV., Pelzer A., Pereyra MO., Perez-Gonzalez A., Pérez-Luz B., Pérez CHF., Peterhans 586 JK., Peterson AT., Pétillon J., Philips TK., Picariello O., Pie MR., Pikart TG., Pine RH., 587 Pinheiro U., Pinho LC., Pinto ÂP., Costa LP., Poggi R., Pombal JP., Prabhu M., Prendini 588 E., Prendini L., Purushothaman J., Pyron RA., Quintela-Alonso P., Quinteros AS., Quiroga-589 590 Carmona M., Rabitsch W., Raffaëlli J., Rage JC., Rajaei H., Ramírez MJ., Raposo MA., Py-Daniel LHR., Rasplus JY., Ratcliffe BC., Reddy S., Reis RE., Remsen J V., Richards LR., 591 Richling I., Robillard T., Rocha MS., Rocha RM., Rödder D., Rödel MO., Rodrigues FP., 592 Rodriguez E., Rogers DS., Rojas-Runjaic FJM., Röll B., Rosenberger AL., Rowley J., Roza 593 AS., Ruedi M., Salazar-Bravo J., Salcedo NJ., Samyn Y., Santana SE., Santoferrara L., 594 Santos BF., Santos CMD., Santos JC., Santos MPD., Sargis EJ., Schargel WE., Schätti B., 595 Scherz MD., Schlick-Steiner BC., Schmidt RC., Schmitt T., Schodde R., Schoeman CS., 596 Schweiger S., Schwertner CF., Seamark ECJ., Semedo TBF., Shin MK., Siler CD., Silveira 597 598 LF., Simison WB., Simões M., Sites JW., Smith BT., Smith KT., Song W., Soulier-Perkins A., Sousa LM., Sparks JS., Stampar SN., Steiner FM., Steyer JS., Stiassny MLJ., Stoeck T., 599 Stopiglia R., Streicher JW., Sturaro MJ., Stys P., Swierk L., Taeger A., Takiya DM., 600 601 Taphorn DC., Tavares M., Tavares VDC., Taylor PJ., Tello JG., Teta P., Tillack F., Timm RM., Tokaryk T., Tominaga A., Tonini JFR., Tornabene L., Torres-Carvajal O., Townsend 602 J., Trape JF., Rodrigues MT., Trusch R., Tschopp E., Uhl D., Upham NS., Vacher JP., 603 604 Valdesalici S., Van Bocxlaer B., Van Cakenberghe V., Van De Kamp T., Van De Velde I.,

Van Den Spiegel D., Vanhove MPM., Vasudevan K., Veerappan D., Velazco PM., Verdade 605 VK., Verheyen E., Vieira LM., Victoriano PF., Vitt LJ., Wagner P., Watkins-Colwell GJ., 606 Weisse T., Werneck FP., Wheeler WC., Wilson DE., Valero KCW., Wood PL., Woodman 607 N., Quetzalli HDY., Yoshikawa N., Zaher H., Ziegler T., Zima J., Zink RM., Zug G. 2016. 608 Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for 609 610 biological sciences. Zootaxa 4196:435–445. DOI: 10.11646/zootaxa.4196.3.9. 611 Chazot N., Wahlberg N., Freitas AVL., Mitter C., Labandeira C., Sohn J-C., Sahoo RK., Seraphim N., de Jong R., Heikkilä M. 2018. The trials and tribulations of priors and 612 posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. 613 bioRxiv 259184. DOI: 10.1104/pp.110.169599. 614 615 Cicconardi F., Borges PAV., Strasberg D., Oromí P., López H., Pérez-Delgado AJ., Casquet J., Caujapé-Castells J., Fernández-Palacios JM., Thébaud C., Emerson BC. 2017. MtDNA 616 metagenomics reveals large-scale invasion of belowground arthropod communities by 617 introduced species. Molecular Ecology 26:3104–3115. DOI: 10.1111/mec.14037. 618 Corthals A., Desalle R. 2005. An application of tissue and DNA banking for genomics and 619 conservation: the Ambrose Monell Cryo-Collection (AMCC). Systematic Biology 54:819— 620 823. DOI: 10.1080/10635150590950353. 621 Cox-Foster DL., Conlan S., Holmes EC., Palacios G., Evans JD., Moran NA., Quan P-L., Briese 622 T., Hornig M., Geiser DM., Martinson V., Kalkstein AL., Drysdale A., Hui J., Zhai J., Cui 623 L., Hutchison SK., Simons JF., Egholm M., Pettis JS., Lipkin WI. 2007. A metagenomic 624 625 survey of microbes in honey bee Colony Collapse Disorder. Science 318:283–288. 626 Crampton-Platt A., Timmermans MJTN., Gimmel ML., Kutty SN., Cockerill TD., Khen CV.,

Vogler AP. 2015. Soup to tree: the phylogeny of beetles inferred by mitochondrial 627 metagenomics of a Bornean rainforest sample. Molecular Biology and Evolution 32:2302-628 2316. DOI: 10.1093/molbev/msv111. 629 Crampton-Platt A., Yu DW., Zhou X., Vogler AP. 2016. Mitochondrial metagenomics: letting 630 the genes out of the bottle. *GigaScience* 5:15. DOI: 10.1186/s13742-016-0120-y. 631 Deagle BE., Jarman SN., Coissac E., Pompanon F., Taberlet P. 2014. DNA metabarcoding and 632 the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 633 10:20140562. DOI: 10.1098/rsbl.2014.0562. 634 635 Dillon N., Austin AD., Bartowsky E. 1996. Comparison of preservation techniques for DNA extraction from hymenopterous insects. *Insect Molecular Biology* 5:21–24. DOI: 636 10.1111/j.1365-2583.1996.tb00036.x. 637 Dowle EJ., Pochon X., C Banks J., Shearer K., Wood SA. 2016. Targeted gene enrichment and 638 high-throughput sequencing for environmental biomonitoring: a case study using freshwater 639 macroinvertebrates. Molecular Ecology Resources 16:1240-1254. DOI: 10.1111/1755-640 0998.12488. 641 642 Dubois A. 2011. The *International Code of Zoological Nomenclature* must be drastically improved before it is too late. *Bionomina* 2:1–104. DOI: 10.11646/bionomina.2.1.1. 643 Ebach MC., Valdecasas AG., Wheeler QD. 2011. Impediments to taxonomy and users of 644 taxonomy: accessibility and impact evaluation. *Cladistics* 27:550–557. DOI: 645 646 10.1111/j.1096-0031.2011.00348.x. 647 Faircloth BC. 2016. Identifying conserved genomic elements and designing universal probe sets

to enrich them. bioRxiv:77172. DOI: 10.1101/077172. 648 Faircloth BC., Branstetter MG., White ND., Brady SG. 2015. Target enrichment of 649 ultraconserved elements from arthropods provides a genomic perspective on relationships 650 among Hymenoptera. Molecular Ecology Resources 15:489–501. DOI: 10.1111/1755-651 0998.12328. 652 Ferro ML., Park J-S. 2013. Effect of propylene glycol concentration on mid-term DNA 653 preservation of Coleoptera. The Coleopterists Bulletin 67:581–586. DOI: 10.1649/0010-654 065X-67.4.581. 655 656 Frøslev TG., Kjøller R., Bruun HH., Ejrnæs R., Brunbjerg AK., Pietroni C., Hansen AJ. 2017. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity 657 estimates. Nature Communications 8:1188. DOI: 10.1038/s41467-017-01312-x. 658 García-Robledo C., Erickson DL., Staines CL., Erwin TL., Kress WJ. 2013. Tropical plant-659 660 herbivore networks: reconstructing species interactions using DNA barcodes. PLoS ONE 8:e52967. DOI: 10.1371/journal.pone.0052967. 661 Garnett ST., Christidis L. 2017. Taxonomy anarchy hampers conservation. *Nature* 546:25–27. 662 663 DOI: 10.1038/546025a. Gilbert MTP., Moore W., Melchior L., Worebey M. 2007a. DNA extraction from dry museum 664 beetles without conferring external morphological damage. *PLoS ONE* 2:e272. DOI: 665 10.1371/journal.pone.0000272. 666 Gilbert MTP., Sanchez JJ., Haselkorn T., Jewell LD., Lucas SB., Van Marck E., Børsting C., 667 Morling N., Worobey M. 2007b. Multiplex PCR with minisequencing as an effective high-668

throughput SNP typing method for formalin-fixed tissue. *Electrophoresis* 28:2361–2367. 669 DOI: 10.1002/elps.200600589. 670 Gilbert MTP., Tomsho LP., Rendulic S., Packard M., Drautz DI., Sher A., Tikhonov A., Dalén 671 L., Kuznetsova T., Kosintsev P., Campos PF., Higham T., Collins MJ., Wilson AS., 672 Shidlovskiy F., Buigues B., Ericson PGP., Germonpré M., Götherström A., Iacumin P., 673 Nikolaev V., Nowak-Kemp M., Willerslev E., Knight JR., Irzyk GP., Perbost CS., 674 Fredrikson KM., Harkins TT., Sheridan S., Miller W., Schuster SC. 2007c. Whole-genome 675 shotgun sequencing of mitochondria from ancient hair shafts. Science 317:1927–1930. DOI: 676 10.1126/science.1146971. 677 Gómez-Rodríguez C., Timmermans MJTN., Crampton-Platt A., Vogler AP. 2017. Intraspecific 678 679 genetic variation in complex assemblages from mitochondrial metagenomics: comparison with DNA barcodes. Methods in Ecology and Evolution 8:248-256. DOI: 10.1111/2041-680 210X.12667. 681 Gómez IC., Sääksjärvi IE., Mayhew PJ., Pollet M., Rey del Castillo C., Nieves-Aldrey JL., 682 Broad GR., Roininen H., Tuomisto H. 2018. Variation in the species richness of parasitoid 683 wasps (Ichneumonidae: Pimplinae and Rhyssinae) across sites on different continents. 684 Insect Conservation and Diversity:In Press. DOI: 10.1111/icad.12281. 685 Grimaldi D., Engel MS. 2005. Evolution of the Insects. New York, USA: Cambridge University 686 Press. 687 Hamilton AJ., Basset Y., Benke KK., Grimbacher PS., Miller SE., Novotný V., Samuelson GA., 688 689 Stork NE., Weiblen GD., Yen JDL. 2010. Quantifying uncertainty in estimation of tropical 690 arthropod species richness. The American Naturalist 176:90–95. DOI: 10.1086/652998.

- Hammer TJ., Janzen DH., Hallwachs W., Jaffe SP., Fierer N. 2017. Caterpillars lack a resident
- gut microbiome. *Proceedings of the National Academy of Sciences* 114:9641–9646. DOI:
- 693 10.1073/pnas.1707186114.
- Heintzman PD., Elias SA., Moore K., Paszkiewicz K., Barnes I. 2014. Characterizing DNA
- preservation in degraded specimens of *Amara alpina* (Carabidae: Coleoptera). *Molecular*
- 696 *Ecology Resources* 14:606–615. DOI: 10.1111/1755-0998.12205.
- 697 Hendrich L., Morinière J., Haszprunar G., Hebert PDN., Hausmann A., Köhler F., Balke M.
- 698 2015. A comprehensive DNA barcode database for Central European beetles with a focus
- on Germany: adding more than 3500 identified species to BOLD. *Molecular Ecology*
- 700 Resources 15:795–818. DOI: 10.1111/1755-0998.12354.
- Höfer H., Astrin J., Holstein J., Spelda J., Meyer F., Zarte N. 2015. Propylene glycol a useful
- capture preservative for spiders for DNA barcoding. *Arachnologische Mitteilungen* 50:30–
- 703 36. DOI: 10.5431/aramit5005.
- Huse SM., Welch DM., Morrison HG., Sogin ML. 2010. Ironing out the wrinkles in the rare
- biosphere through improved OTU clustering. *Environmental Microbiology* 12:1889–1898.
- 706 DOI: 10.1111/j.1462-2920.2010.02193.x.
- 707 Ji Y., Ashton L., Pedley SM., Edwards DP., Tang Y., Nakamura A., Kitching R., Dolman PM.,
- Woodcock P., Edwards FA., Larsen TH., Hsu WW., Benedick S., Hamer KC., Wilcove
- DS., Bruce C., Wang X., Levi T., Lott M., Emerson BC., Yu DW. 2013. Reliable, verifiable
- and efficient monitoring of biodiversity via metabarcoding. *Ecology Letters* 16:1245–1257.
- 711 DOI: 10.1111/ele.12162.

- 712 Jiggins CD. 2016. The Ecology and Evolution of Heliconius Butterflies. Oxford, U.K.: Oxford
- 713 University Press. DOI: 10.1093/acprof:oso/9780199566570.001.0001.
- Johnson C., Agosti D., Delabie JH., Dumpert K., Williams DJ., Von Tschirnhaus M., Maschwitz
- 715 U. 2001. Acropyga and Azteca ants (Hymenoptera: Formicidae) with scale insects
- 716 (Sternorrhyncha: Coccoidea): 20 million years of intimate symbiosis. *American Museum*
- 717 *Novitates* 3335:1–18.
- 718 Kanda K., Pflug JM., Sproul JS., Dasenko MA., Maddison DR. 2015. Successful recovery of
- 719 nuclear protein-coding genes from small insects in museums using Illumina sequencing.
- 720 *PLoS ONE* 10:e0143929. DOI: 10.1371/journal.pone.0143929.
- Kelley JL., Peyton JT., Fiston-Lavier AS., Teets NM., Yee MC., Johnston JS., Bustamante CD.,
- Lee RE., Denlinger DL. 2014. Compact genome of the Antarctic midge is likely an
- adaptation to an extreme environment. *Nature Communications* 5:4611. DOI:
- 724 10.1038/ncomms5611.
- Knölke S., Erlacher S., Hausmann A., Miller MA., Segerer AH. 2005. A procedure for combined
- genitalia dissection and DNA extraction in Lepidoptera. *Insect Systematics and Evolution*
- 727 35:401–409. DOI: 10.1163/187631204788912463.
- Koebler J. 2013. Earth's life-forms collected to aid in genetic research. *National Geographic*
- 729 *News*:USA.
- Labandeira CC., Sepkoski J. J. 1993. Insect diversity in the fossil record. *Science* 261:310–315.
- Lamarre GPA., Molto Q., Fine PVA., Baraloto C. 2012. A comparison of two common flight
- interception traps to survey tropical arthropods. *ZooKeys* 216:43–55. DOI:

- 733 10.3897/zookeys.216.3332.
- Tasen TH. 2016. Core standardized methods for rapid biological field assessment. Arlington,
- VA: Conservation International. DOI: 10.1017/CBO9780511525438.
- Lemmon EM., Lemmon AR. 2013. High-throughput genomic data in systematics and
- phylogenetics. *Annual Review of Ecology, Evolution, and Systematics* 44:99–121. DOI:
- 738 10.1146/annurev-ecolsys-110512-135822.
- 739 Lim GS., Balke M., Meier R. 2012. Determining species boundaries in a world full of rarity:
- Singletons, species delimitation methods. *Systematic Biology* 61:165–169. DOI:
- 741 10.1093/sysbio/syr030.
- Linard B., Arribas P., Andújar C., Crampton-Platt A., Vogler AP. 2016. Lessons from genome
- skimming of arthropod-preserving ethanol. *Molecular Ecology Resources* 16:1365–1377.
- 744 DOI: 10.1111/1755-0998.12539.
- Liu S., Wang X., Xie L., Tan M., Li Z., Su X., Zhang H., Misof B., Kjer KM., Tang M., Niehuis
- O., Jiang H., Zhou X. 2016. Mitochondrial capture enriches mito-DNA 100 fold, enabling
- PCR-free mitogenomics biodiversity analysis. *Molecular Ecology Resources* 16:470–479.
- 748 DOI: 10.1111/1755-0998.12472.
- Lugg WH., Griffiths J., van Rooyen AR., Weeks AR., Tingley R. 2018. Optimal survey designs
- for environmental DNA sampling. *Methods in Ecology and Evolution*:In Press. DOI:
- 751 10.1111/ijlh.12426.
- 752 Maddison DR., Cooper KW. 2014. Species delimitation in the ground beetle subgenus
- 753 *Liocosmius* (Coleoptera: Carabidae: *Bembidion*), including standard and next-generation

- sequencing of museum specimens. *Zoological Journal of the Linnean Society* 172:741–770.
- 755 DOI: 10.1111/zoj.12188.
- 756 Mamanova L., Coffey AJ., Scott CE., Kozarewa I., Turner EH., Kumar A., Howard E., Shendure
- J., Turner DJ. 2010. Target-enrichment strategies for next-generation sequencing. *Nature*
- 758 *Methods* 7:111–118. DOI: 10.1038/nmeth.1419.
- 759 Mardis ER. 2017. DNA sequencing technologies: 2006-2016. Nature Protocols 12:213-218.
- 760 DOI: 10.1038/nprot.2016.182.
- Marshall CR. 2017. Five palaeobiological laws needed to understand the evolution of the living
- 762 biota. *Nature Ecology and Evolution* 1:165. DOI: 10.1038/s41559-017-0165.
- 763 McMurdie PJ., Holmes S. 2014. Waste not, want not: why rarefying microbiome data is
- inadmissible. *PLoS Computational Biology* 10:e1003531. DOI:
- 765 10.1371/journal.pcbi.1003531.
- Metzker ML. 2010. Sequencing technologies the next generation. *Nature Reviews Genetics*
- 767 11:31–46. DOI: 10.1038/nrg2626.
- 768 Meyer M., Arsuaga JL., De Filippo C., Nagel S., Aximu-Petri A., Nickel B., Martínez I., Gracia
- A., De Castro JMB., Carbonell E., Viola B., Kelso J., Prüfer K., Pääbo S. 2016. Nuclear
- DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. *Nature*
- 531:504–507. DOI: 10.1038/nature17405.
- 772 Misof B., Liu S., Meusemann K., Peters RS., Donath A., Mayer C., Frandsen PB., Ware J.,
- Flouri T., Beutel RG., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust J.,
- Aberer AJ., Aspöck U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A., Buckley TR.,

- Calcott B., Chen J., Friedrich F., Fukui M., Fujita M., Greve C., Grobe P., Gu S., Huang Y.,
- Jermiin LS., Kawahara AY., Krogmann L., Kubiak M., Lanfear R., Letsch H., Li Y., Li Z.,
- Li J., Lu H., Machida R., Mashimo Y., Kapli P., McKenna DD., Meng G., Nakagaki Y.,
- Navarrete-Heredia JL., Ott M., Ou Y., Pass G., Podsiadlowski L., Pohl H., von Reumont
- BM., Schütte K., Sekiya K., Shimizu S., Slipinski A., Stamatakis A., Song W., Su X.,
- Szucsich NU., Tan M., Tan X., Tang M., Tang J., Timelthaler G., Tomizuka S., Trautwein
- 781 M., Tong X., Uchifume T., Walzl MG., Wiegmann BM., Wilbrandt J., Wipfler B., Wong
- 782 TKF., Wu Q., Wu G., Xie Y., Yang S., Yang Q., Yeates DK., Yoshizawa K., Zhang Q.,
- Zhang R., Zhang W., Zhang Y., Zhao J., Zhou C., Zhou L., Ziesmann T., Zou S., Li Y., Xu
- X., Zhang Y., Yang H., Wang J., Wang J., Kjer KM., Zhou X. 2014a. Phylogenomics
- resolves the timing and pattern of insect evolution. *Science* 346:763–767. DOI:
- 786 10.1126/science.1257570.
- 787 Misof B., Meusemann K., von Reumont BM., Kück P., Prohaska SJ., Stadler PF. 2014b. A priori
- assessment of data quality in molecular phylogenetics. *Algorithms for Molecular Biology*
- 789 9:22. DOI: 10.1186/s13015-014-0022-4.
- 790 Mora C., Tittensor DP., Adl S., Simpson AGB., Worm B. 2011. How many species are there on
- earth and in the ocean? *PLoS Biology* 9:e1001127. DOI: 10.1371/journal.pbio.1001127.
- 792 Morinière J., Cancian de Araujo B., Lam AW., Hausmann A., Balke M., Schmidt S., Hendrich
- L., Doczkal D., Fartmann B., Arvidsson S., Haszprunar G. 2016. Species identification in
- Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix.
- 795 *Plos ONE* 11:e0155497. DOI: 10.1371/journal.pone.0155497.
- Nieman CC., Yamasaki Y., Collier TC., Lee Y. 2015. A DNA extraction protocol for improved

DNA yield from individual mosquitoes. F1000Research 4:1314. DOI: 797 10.12688/f1000research.7413.1. 798 Noves JS. 1989. A study of five methods of sampling Hymenoptera (Insecta) in a tropical 799 rainforest, with special reference to the Parasitica. Journal of Natural History 23:285–298. 800 DOI: 10.1080/00222938900770181. 801 Oliver AK., Brown SP., Callaham MA., Jumpponen A. 2015. Polymerase matters: non-802 proofreading enzymes inflate fungal community richness estimates by up to 15 %. Fungal 803 Ecology 15:86–89. DOI: 10.1016/j.funeco.2015.03.003. 804 805 Pawluczyk M., Weiss J., Links MG., Egaña Aranguren M., Wilkinson MD., Egea-Cortines M. 2015. Quantitative evaluation of bias in PCR amplification and next-generation sequencing 806 derived from metabarcoding samples. Analytical and Bioanalytical Chemistry 407:1841– 807 808 1848. DOI: 10.1007/s00216-014-8435-y. 809 Pitteloud C., Arrigo N., Suchan T., Mastretta-Yanes A., Vila R., Dinca V., Hernandez-Roldan J., Brockmann E., Chittaro Y., Kleckova I., Fumagalli L., Buerki S., Alvarez N. 2017. Climatic 810 niche evolution is faster in sympatric than allopatric lineages of the butterfly genus *Pyrgus*. 811 Proceedings of the Royal Society B: Biological Sciences 284:20170208. 812 813 Pompanon F., Deagle BE., Symondson WOC., Brown DS., Jarman SN., Taberlet P. 2012. Who is eating what: diet assessment using next generation sequencing. *Molecular Ecology* 814 815 21:1931–1950. DOI: 10.1111/j.1365-294X.2011.05403.x. 816 Prendini L., Hanner R., DeSalle R. 2002. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. In: DeSalle R, Giribet G, Wheeler W eds. Techniques 817

in Molecular Systematics and Evolution. Basel, Switzerland: Birkhäuser Verlag, 176–248. 818 DOI: 10.1007/978-3-0348-8125-8 11. 819 Raposo MA., Stopiglia R., Brito GRR., Bockmann FA., Kirwan GM., Gayon J., Dubois A. 2017. 820 What really hampers taxonomy and conservation? A riposte to Garnett and Christidis 821 (2017). Zootaxa 4317:179–184. DOI: 10.11646/zootaxa.4317.1.10. 822 Ratnasingham S., Hebert PDN, 2007, BOLD: the Barcode of Life Data System 823 (www.barcodinglife.org). Molecular Ecology Notes 7:355–364. DOI: 10.1111/j.1471-824 825 8286.2006.01678.x. 826 Reiss RA., Schwert DP., Ashworth AC. 1995. Field preservation of Coleoptera for molecular genetic analyses. Environmental Entomology 24:716–719. 827 Richards S., Murali SC. 2015. Best practices in insect genome sequencing: what works and what 828 doesn't. Current Opinion in Insect Science 7:1-7. DOI: 10.1016/j.cois.2015.02.013. 829 Ritter CD., McCrate G., Nilsson RH., Fearnside PM., Palme U., Antonelli A. 2017. 830 831 Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. *Biological Conservation* 206:161–168. DOI: 832 833 10.1016/j.biocon.2016.12.031. Ruane S., Austin CC. 2017. Phylogenomics using formalin-fixed and 100+ year old intractable 834 natural history specimens. *Molecular Ecology Resources* 17:1003–1008. DOI: 835 10.1111/ijlh.12426. 836 Scheffers BR., Joppa LN., Pimm SL., Laurance WF. 2012. What we know and don't know about 837 838 Earth's missing biodiversity. Trends in Ecology and Evolution 27:501–510. DOI:

10.1016/j.tree.2012.05.008. 839 Schloss PD., Westcott SL., Ryabin T., Hall JR., Hartmann M., Hollister EB., Lesniewski RA., 840 Oakley BB., Parks DH., Robinson CJ., Sahl JW., Stres B., Thallinger GG., Van Horn DJ., 841 Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-842 supported software for describing and comparing microbial communities. Applied and 843 Environmental Microbiology 75:7537–7541. DOI: 10.1128/AEM.01541-09. 844 Schoonvaere K., De Smet L., Smagghe G., Vierstraete A., Braeckman BP., De Graaf DC. 2016. 845 846 Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. *PLoS ONE* 11:e0168456. DOI: 847 10.1371/journal.pone.0168456. 848 Shendure J., Balasubramanian S., Church GM., Gilbert W., Rogers J., Schloss JA., Waterston 849 850 RH. 2017. DNA sequencing at 40: past, present and future. *Nature* 550:345–353. DOI: 10.1038/nature24286. 851 Shi W., Xie S., Chen X., Sun S., Zhou X., Liu L., Gao P., Kyrpides NC., No EG., Yuan JS. 2013. 852 Comparative genomic analysis of the endosymbionts of herbivorous insects reveals eco-853 environmental adaptations: biotechnology applications. *PLoS Genetics* 9:e1003131. DOI: 854 10.1371/journal.pgen.1003131. 855 Shokralla S., Gibson JF., King I., Baird DJ., Janzen DH., Hallwachs W., Hajibabaei M. 2016. 856 857 Environmental DNA barcode sequence capture: targeted, PCR-free sequence capture for biodiversity analysis from bulk environmental samples. bioRxiv:87437. DOI: 858 859 10.1101/087437.

Shokralla S., Spall JL., Gibson JF., Hajibabaei M. 2012. Next-generation sequencing 860 technologies for environmental DNA research. *Molecular Ecology* 21:1794–1805. DOI: 861 10.1111/j.1365-294X.2012.05538.x. 862 Short AEZ., Dikow T., Moreau CS. 2018. Entomological collections in the Age of Big Data. 863 Annual Review of Entomology 63:513–530. DOI: 10.1146/annurev-ento-031616-035536. 864 Srivathsan A., Ang A., Vogler AP., Meier R. 2016. Fecal metagenomics for the simultaneous 865 assessment of diet, parasites, and population genetics of an understudied primate. Frontiers 866 in Zoology 13:17. DOI: 10.1186/s12983-016-0150-4. 867 868 Staats M., Erkens RHJ., van de Vossenberg B., Wieringa JJ., Kraaijeveld K., Stielow B., Geml J., Richardson JE., Bakker FT. 2013. Genomic treasure troves: complete genome 869 sequencing of herbarium and insect museum specimens. *PLoS ONE* 8:e69189. DOI: 870 871 10.1371/journal.pone.0069189. 872 Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth? Annual Review of Entomology 63:31–45. DOI: 10.1146/annurev-ento-020117-043348. 873 Stork NE., McBroom J., Gely C., Hamilton AJ. 2015. New approaches narrow global species 874 875 estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National 876 *Academy of Sciences of the United States of America* 112:7519–7523. DOI: 10.1073/pnas.1502408112. 877 Suarez A V., Tsutsui ND. 2004. The value of museum collections for research and society. 878 879 BioScience 54:66–74. DOI: 10.1641/0006-3568(2004)054[0066:TVOMCF]2.0.CO;2. 880 Suchan T., Pitteloud C., Gerasimova NS., Kostikova A., Schmid S., Arrigo N., Pajkovic M.,

Ronikier M., Alvarez N. 2016. Hybridization capture using RAD probes (hyRAD), a new 881 tool for performing genomic analyses on collection specimens. *PLoS ONE* 11:e0151651. 882 DOI: 10.1371/journal.pone.0151651. 883 Suen G., Scott JJ., Aylward FO., Adams SM., Tringe SG., Pinto-Tomás AA., Foster CE., Pauly 884 M., Weimer PJ., Barry KW., Goodwin LA., Bouffard P., Li L., Osterberger J., Harkins TT., 885 Slater SC., Donohue TJ., Currie CR. 2010. An insect herbivore microbiome with high plant 886 887 biomass-degrading capacity. *PLoS Genetics* 6:e1001129. DOI: 10.1371/journal.pgen.1001129. 888 Taberlet P., Coissac E., Pompanon F., Brochmann C., Willerslev E. 2012. Towards next-889 generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 890 891 21:2045–2050. DOI: 10.1111/j.1365-294X.2012.05470.x. 892 Tagliavia M., Massa B., Albanese I., La Farina M. 2011. DNA extraction from Orthoptera museum specimens. Analytical Letters 44:1058–1062. DOI: 893 10.1080/00032719.2010.506939. 894 Tang M., Tan M., Meng G., Yang S., Su X., Liu S., Song W., Li Y., Wu Q., Zhang A., Zhou X. 895 2014. Multiplex sequencing of pooled mitochondrial genomes - a crucial step toward 896 biodiversity analysis using mito-metagenomics. Nucleic Acids Research 42:e166. DOI: 897 10.1093/nar/gku917. 898 899 Tedersoo L., Anslan S., Bahram M., Põlme S., Riit T., Liiv I., Kõljalg U., Kisand V., Nilsson RH., Hildebrand F., Bork P., Abarenkov K. 2015. Shotgun metagenomes and multiple 900 901 primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of 902 fungi. MycoKeys 10:1–43. DOI: 10.3897/mycokeys.10.4852.

Thompson JF., Milos PM. 2011. The properties and applications of single-molecule DNA 903 sequencing. Genome Biology 12:217. DOI: 10.1186/GB-2011-12-2-217. 904 Thomsen PF., Elias S., Gilbert MTP., Haile J., Munch K., Kuzmina S., Froese DG., Sher A., 905 Holdaway RN., Willerslev E. 2009. Non-destructive sampling of ancient insect DNA. *PloS* 906 one 4:e5048. DOI: 10.1371/journal.pone.0005048. 907 Thorpe SE. 2017. Is photography-based taxonomy really inadequate, unnecessary, and 908 potentially harmful for biological sciences? A reply to Ceríaco et al. (2016). Zootaxa 909 4226:449–450. DOI: 10.11646/zootaxa.4226.3.9. 910 911 Timmermans MJTN., Viberg C., Martin G., Hopkins K., Vogler AP. 2016. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections. 912 Biological Journal of the Linnean Society 117:83–95. 913 914 Tin MM-Y., Economo EP., Mikheyev AS. 2014. Sequencing degraded DNA from nondestructively sampled museum specimens for RAD-tagging and low-coverage shotgun 915 phylogenetics. PLoS ONE 9:e96793. DOI: 10.1371/journal.pone.0096793. 916 Toju H. 2015. High-throughput DNA barcoding for ecological network studies. *Population* 917 Ecology 57:37-51. DOI: 10.1007/s10144-014-0472-z. 918 Veijalainen A., Wahlberg N., Broad GR., Erwin TL., Longino JT., Sääksjärvi IE. 2012. 919 Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. *Proceedings of* 920 the Royal Society B: Biological Sciences 279:4694–4698. DOI: 10.1098/rspb.2012.1664. 921 Vellend M. 2017. The biodiversity conservation paradox. *American Scientist* 105:94–101. DOI: 922 923 10.1511/2011.89.106.

924

Sääksjärvi IE., Norrdahl K., Lilley TM. 2016. What you need is what you eat? Prey 925 selection by the bat *Myotis daubentonii*. *Molecular Ecology* 25:1581–1594. DOI: 926 10.1111/mec.13564. 927 Vogel G. 2017. Where have all the insects gone? *Science* 356:576–579. 928 Wachi N., Matsubayashi KW., Maeto K. 2018. Application of next-generation sequencing to the 929 study of non-model insects. *Entomological Science* 21:3–11. DOI: 10.1111/ens.12281. 930 Wheat CW., Wahlberg N. 2013. Critiquing blind dating: the dangers of over-confident date 931 932 estimates in comparative genomics. Trends in Ecology & Evolution 28:636–642. DOI: 10.1016/j.tree.2013.07.007. 933 934 Wheeler QD., Raven PH., Wilson EO. 2004. Taxonomy: impediment or expedient? Science

Vesterinen EJ., Ruokolainen L., Wahlberg N., Peña C., Roslin T., Laine VN., Vasko V.,

- 935 303:285. DOI: 10.1126/science.303.5656.285.
- Yeates DK., Meusemann K., Trautwein M., Wiegmann B., Zwick A. 2016. Power, resolution
 and bias: recent advances in insect phylogeny driven by the genomic revolution. *Current Opinion in Insect Science* 13:16–23. DOI: 10.1016/j.cois.2015.10.007.
- 939 Young AD., Lemmon AR., Skevington JH., Mengual X., Ståhls G., Reemer M., Jordaens K.,
- Kelso S., Lemmon EM., Hauser M., De Meyer M., Misof B., Wiegmann BM. 2016.
- Anchored enrichment dataset for true flies (order Diptera) reveals insights into the
- phylogeny of flower flies (family Syrphidae). *BMC Evolutionary Biology* 16:143. DOI:
- 943 10.1186/s12862-016-0714-0.
- 244 Zhou X., Li Y., Liu S., Yang Q., Su X., Zhou L., Tang M., Fu R., Li J., Huang Q. 2013. Ultra-

deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples 945 without PCR amplification. GigaScience 2:4. DOI: 10.1186/2047-217X-2-4. 946 947 **Funding Statement** 948 949 Funding to PMM was provided by a Marie Skłodowska-Curie fellowship (project MARIPOSAS-704035). CDR received the support from CNPq (Conselho Nacional de Desenvolvimento 950 Científico e Tecnológico - Brazil). CJB was funded by the Aage V. Jensen Naturfond of 951 Denmark (1121721001). DM and NW received funding from European Union's Horizon 2020 952 953 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642241 (BIG4 project). NW received funding from the Swedish Research Council. AA is 954 supported by grant from the Knut and Alice Wallenberg Foundation, the Swedish Research 955 956 Council (B0569601), the Swedish Foundation for Strategic Research, the Faculty of Sciences at the University of Gothenburg, and the David Rockefeller Center for Latin American Studies at 957 Harvard University. 958 959 **Author Contributions** 960 961 PMM, CDR and AA conceived and led the workshop; all authors participated in the workshop titled "Biodiversity research through the study of insect genomics" organized by the Gothenburg 962 Global Biodiversity Centre in Gothenburg, Sweden; all authors contributed with discussion and 963 964 ideas for the paper; PMM, CDR and AA organized the structure of the article, PMM wrote the

965 first draft of the article, and all authors contributed to and approved the final version of the 966 article.

967

968

Conflict of Interests

The authors declare no conflict of interests.

Tables 971 Table 1. Representative description of methods for mass sampling of insects and their 972 application for NGS. Note that this is not a comprehensive list and is only aimed at providing 973 an overview of available possibilities of widespread use. In the Costs of equipments, we roughly 974 categorized them as Low (approx. < US \$50), Medium (approx. US \$50 – \$100), High (approx. 975 > US \$100). 976 Table 2: Overview of massively parallel DNA sequencing methods applied to insect 977 978 museum specimens. 979 Table 3: Non-comprehensive overview of massively parallel DNA sequencing methods applied to insects. 980 981 **Figures** 982 Figure 1: Schematic of the spatiotemporal continuum of biodiversity and evolution. 983 Community ecology research usually focus at local scale (Lx), but may be mislead if not taking 984 into account higher-level patterns such as fluctuation of population/species ranges over time 985 (e.g., distributional change due to environmental shift or biotic interaction) and space (e.g., local 986 pool of species depends on the regional diversity and its evolution). At a higher scale (Vx), 987 inferences on population/species evolutionary dynamics may be mislead if not taking into 988 account reduced-scale patterns such as local extinction (e.g., its rate and magnitude, whether 989 990 local, regional or global) and biotic interaction (e.g., as in diversity-dependent diversification, or continuous replacement of species with similar ecologies over time). Vx is any area of interest 991

992	(local, regional, or global) that changes over time (V1, V2 Vn). A, R, and N are distributional
993	ranges of three different populations/species of interest. Hypothetical sampling sites remain
994	geographically constant over time, whether at geological or ecological scales (L1, L2, and L3).
995	
996	Figure 2: Flowchart summarizing the 10 rules to study biodiversity through insect
997	genomics and discussed in the paper.
998	

Table 1(on next page)

Representative description of methods for mass sampling of insects and their application for NGS

Note that this is not a comprehensive list and is only aimed at providing an overview of available possibilities of widespread use. In the Costs of equipments, we roughly categorized them as Low (approx. < US \$50), Medium (approx. US \$50 - \$100), High (approx. > US \$100).

Peer Preprints

Method	Example	Taxa targeted	Costs	Suitability for genomic research	Sampling effort	Limitations
Trap-sampling	Van Someren-Rydon	Fruit-feeding butterflies, from forest floor to canopy	Low ; negligible if self-built	Yes; no killing reagent; baits such as fermented fruit	Minimum: 5 traps in forest, 10 traps in open areas; Collection: once or twice per day; Personnel: 2 people, collection and record; Complement with opportunistic hand collection	Need for long-term data because different butterfly communities throughout the year; Other feeding guilts are missing, such as nectar-feeding
Trap-sampling	Pitfall	Forest floor insects such as dung beetles, flies, ants	Low; negligible if self-built	Depending on killing reagent ; could be done with detergent and water, propylen glycol; baits such as human dung	Minimum: 20 traps per day; linear transect; Collection: at least once per day; Personnel: 1 person; Complement with flight intercept traps	Specimens with a lot of water from pitfall trap, thus a lot of ethanol replaced every week is needed to prevent DNA decay
Leaf-litter collector	Mini-Winkler	Leaf-litter and soil insects, such as ants, beetles	Medium	Yes; 95% EtOH most commonly used as killing reagent	Minimum: 20 collectors, each with 1m² leaf litter; Collection: once, if extraction run in parallel; Personnel: 2 people recommended; Complement with bait-traps and hand collecting	Limited to forested areas, and not suitable during height of dry or rain season; Not sampling of vegetation-associated, canopy or subterranean insects
Flying-insect collector	Malaise	Strong-flying insects, such as Hymenoptera and Diptera	High	Yes; 95% EtOH most commonly used as killing reagent	Minimum: 2 traps for fast surveys; Collection: little care, leave in field for 2–4 weeks; Personnel: 1 person; Complement with flight interception traps	Placement of trap in "likely" flight paths, thus a component of subjectivity is introduced
Flying-insect collector	Flight interception	Flying insects, such as beetles, cockroaches, crickets	Low; negligible if self-built	Depending on killing reagent ; could be done in salt-saturated water and detergent, propylen glycol; formaldehyde solutions but in detriment of DNA recovery	Minimum: 2 traps for fast surveys; Collection: once or twice per day; Personnel: 1 person; Complement with bait and light traps	Ideal for slow-flying insects, which hit the plastic sheet and fall in the container with killing reagent
Insecticidal knockdown	Canopy fogging	Arboreal insect community	High	Yes; insecticide as killing reagent	Collection: laborious and problems with pseudoreplication; Complement with canopy light trapping and flight interception traps	Canopy access still limited; High demand on logistics; Environmentally dependent

Table 2(on next page)

Overview of massively parallel DNA sequencing methods applied to insect museum specimens

Peer Preprints

Authors	Taxon group	Specimens	Sequencing approach	Output
Staats et al . (2013)	Flies and beetles	Number: 3 specimens; Age: 1992–1995; Tissue: 1–3 legs, thorax, whole specimen (destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq 2000	Read depth: $3.5x - 146.1x$ (mt genome); % Mapping: $0.002 - 0.82$ (mt genome); Contamination: 1 specimen extensive bacteriophage & fungal DNA
Tin et al. (2014)	Flies and ants	Number: 11 specimens; Age: 1910–1976; Tissue: whole specimen (non-destructive protocol)	Shotgun whole genome skimming; RAD-tag; Illumina MySeq & HiSeq 2500	Read depth: 0.08x – 1.0x (whole genome); % Mapping: 19 – 76 (whole genome); Contamination: not reported
Heintzman et al. (2014)	Beetles	Number : 4 specimens; Age : Late Pleistocene (C ¹⁴), 1875–1950 (museum); Tissue : 1 hind leg, pronotum, elytron (destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq 2000	Reads aligned to reference: 0.009% – 0.225x (mt genome & 5 nuclear loci); % Insect contigs: 0.25 – 46.5; Contamination: Up to ca. 20% mammalian sequence in contigs
Maddison & Cooper (2014)	Beetles	Number: 1 specimen; Age: 1968; Tissue: whole specimen (non-destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq 2000	Read depth: not reported (8 gene targets); % Gene length coverage: 95 – 100 (8 gene targets); Contamination: not reported
Kanda <i>et al</i> . (2015)	Beetles	Number: 13 specimens; Age: 1929–2010; Tissue: whole specimen (non-destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq 2000 (2 lanes)	Read depth: 0.44x – 4.64x (67 gene targets); N50: 280 – 700 (67 gene targets); Contamination: Possible in some specimens but not quantified
Timmermans et al. (2016)	Butterflies	Number: 35 specimens; Age: 1980–2005; Tissue: 1 leg (destructive protocol)	Shotgun whole genome skimming; Illumina MySeq (1/3 flow cell)	% Coverage: 0 – 100 (mt coding loci); Contamination: not reported; Failure rate: 4 out of 35 specimens any reads matching mt genomes
Suchan et al. (2016)	Butterflies and grasshoppers	Number: 60 specimens; Age: 1908–1997; Tissue: legs (destructive protocol)	Target capture of RAD probes; Illumina MySeq & HiSeq (one lane each)	Median depth: 10x (for each SNP); % Matrix fullness: 52 – 72.5 (RAD loci); Contamination: ca. 9 % of contigs were of exogenous origin
Blaimer <i>et al</i> . (2016)	Carpenter bees	Number: 51 specimens; Age: 1894–2013; Tissue: 1 leg (destructive protocol)	Target capture of Hymenopteran UCEs; Illumina MySeq	Average coverage: 7.4x – 182.4x (UCE loci); Recovered loci: 6 – 972 (UCE per sample); Contamination: not reported
Pitteloud et al. (2017)	Butterflies	Number: 32 specimens; Age: 1929–2012; Tissue: legs (destructive protocol)	PCR Multiplex & Shotgun sequencing; Illumina MySeq	Length sequences (bp): 109 – 7297 (mt and rDNA loci); Contamination : not reported

Table 3(on next page)

Non-comprehensive overview of massively parallel DNA sequencing methods applied to insects

Approach	Case reference	Topic	Taxon group	Impact
Whole-transcriptome shotgun	Misof et al. (2014)	<u>Phylogenomics</u>	Class Insecta	First phylogenomic study to cover all hexapod orders
Whole-genome shotgun	Tang et al. (2014)	Mito-metagenomics	Several insect orders	Pioneering proof-of-concept study to show feasibility of PCR-free mitogenome sequence in bulk samples
RAD-seq	Tin et al . (2014)	Phylogenetics; Museomics	Flies and ants	One of the first insect museomic studies using massive parallel sequencing, and a guideline for non-destructive DNA isolation and library preparation
Target capture	Suchan <i>et al</i> . (2016)	<u>Phylogeography</u>	Butterflies and grasshoppers	New method to target RAD probes (hyRAD). Proof-of-concept using divergent taxa and archived specimens
Target capture	Faircloth et al. (2015)	<u>Phylogenomics</u>	Hymenoptera	Enrichment of Ultraconserved Elements (UCE) of the Hymenoptera order
Single-molecule	Kelley et al . (2014)	Comparative Genomics	Antarctic midge	Single-molecule real time whole-genome sequencing using PacBio

Figure 1(on next page)

Schematic of the spatiotemporal continuum of biodiversity and evolution

Community ecology research usually focus at local scale (Lx), but may be mislead if not taking into account higher-level patterns such as fluctuation of population/species ranges over time (e.g., distributional change due to environmental shift or biotic interaction) and space (e.g., local pool of species depends on the regional diversity and its evolution). At a higher scale (Vx), inferences on population/species evolutionary dynamics may be mislead if not taking into account reduced-scale patterns such as local extinction (e.g., its rate and magnitude, whether local, regional or global) and biotic interaction (e.g., as in diversity-dependent diversification, or continuous replacement of species with similar ecologies over time). Vx is any area of interest (local, regional, or global) that changes over time (V1, V2 ... Vn). A, R, and N are distributional ranges of three different populations/species of interest. Hypothetical sampling sites remain geographically constant over time, whether at geological or ecological scales (L1, L2, and L3).

Figure 2(on next page)

Flowchart summarizing the 10 rules to study biodiversity through insect genomics and discussed in the paper

2. Collaborate

3. Go to field

4. Minimize DNA damage

5. Work with taxonomists

7. Revise sequencing approach

8. Grasp bioinformatics

9. Results:

10. Results: