A peer-reviewed version of this preprint was published in Peer]
on 30 April 2019.

View the peer-reviewed version (peerj.com/articles/6727), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Matos-Maravi P, Duarte Ritter C, Barnes CJ, Nielsen M, Olsson U,
Wahlberg N, Marquina D, Saaksjarvi I, Antonelli A. 2019. Biodiversity
seen through the perspective of insects: 10 simple rules on
methodological choices and experimental design for genomic studies.

Peer) 7:€6727 https://doi.org/10.7717/peer|.6727


https://doi.org/10.7717/peerj.6727
https://doi.org/10.7717/peerj.6727

Biodiversity seen through the perspective of insects: 10
simple rules on methodological choices, common challenges,
and experimental design for genomic studies

Pavel Matos-Maravi ™ 2 = Camila Duarte Ritter 2 , Christopher J Barnes > , Martin Nielsen >* , Urban Olsson
L2, Niklas Wahlberg ° , Daniel Marquina ®’ , Ilari Saaksjarvi ® , Alexandre Antonelli »*°°

Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

Gothenburg Global Biodiversity Centre, Gothenburg, Sweden

Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
Department of Biology, Lund University, Lund, Sweden

Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden

Department of Zoology, Stockholm University, Stockholm, Sweden

Biodiversity Unit, University of Turku, Turku, Finland

1
2
3
4
5
6
7
8
i Gothenburg Botanical Garden, Gothenburg, Sweden

0 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States

Corresponding Author: Pavel Matos-Maravi
Email address: pavelml4@gmail.com

The study of biodiversity within the spatiotemporal continuum of evolution, e.qg., studying
local communities, population dynamics, or phylogenetic diversity, has been important to
properly identify and describe the current biodiversity crisis. However, it has become clear
that a multi-scale approach - from the leaves of phylogenetic trees to its deepest branches
- is necessary to fully comprehend, and predict, biodiversity dynamics. Massive parallel
DNA sequencing opens up opportunities for bridging multiple dimensions in biodiversity
research, thanks to its efficiency to recover millions of nucleotide polymorphisms, both
under neutral or selective pressure. Here we aim to identify the current status, discuss the
main challenges, and look into future perspectives on biodiversity genomics research
focusing on insects, which arguably constitute the most diverse and ecologically important
group of metazoans. We suggest 10 simple rules that every biologist could follow to 1)
provide a succinct step-by-step guide and best-practices to anyone interested in
biodiversity research through insect genomics, 2) review and show relevant literature to
biodiversity and evolutionary research in the field of entomology, and 3) make available a
perspective on biodiversity studies using insect genomics. Our compilation is targeted at
researchers and students who may not yet be specialists in entomology or genomics, but
plan to carry out own research in insect genomics. We foresee that the genomic revolution
and its application to the study of non-model insect lineages will represent a major leap to

our understanding of insect diversity, and by consequence the largest portion of Earth’s
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biodiversity, and its evolution in time and space.
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Abstract: The study of biodiversity within the spatiotemporal continuum of evolution, e.g.,
studying local communities, population dynamics, or phylogenetic diversity, has been important
to properly identify and describe the current biodiversity crisis. However, it has become clear
that a multi-scale approach — from the leaves of phylogenetic trees to its deepest branches — is
necessary to fully comprehend, and predict, biodiversity dynamics. Massive parallel DNA
sequencing opens up opportunities for bridging multiple dimensions in biodiversity research,
thanks to its efficiency to recover millions of nucleotide polymorphisms, both under neutral or
selective pressure. Here we aim to identify the current status, discuss the main challenges, and
look into future perspectives on biodiversity genomics research focusing on insects, which
arguably constitute the most diverse and ecologically important group of metazoans. We suggest
10 simple rules that every biologist could follow to 1) provide a succinct step-by-step guide and
best-practices to anyone interested in biodiversity research through insect genomics, 2) review
and show relevant literature on biodiversity and evolutionary research in the field of entomology,
and 3) make available a perspective on biodiversity studies using insect genomics. Our
compilation is targeted at researchers and students who may not yet be specialists in entomology
or genomics, but plan to carry out own research in insect genomics. We foresee that the genomic
revolution and its application to the study of non-model insect lineages will represent a major
leap to our understanding of insect diversity, and by consequence the largest portion of Earth’s

biodiversity, and its evolution in time and space.

Keywords: Biodiversity, evolution, NGS, museomics, taxonomic impediment

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26661v1 | CC BY 4.0 Open Access | rec: 11 Mar 2018, publ: 11 Mar 2018




51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Introduction

The global decline in biodiversity is unquestionable (Barnosky et al., 2011). The rate of species
diversity loss is comparable to those of ancient mass-extinction events (Ceballos et al., 2015),
but our understanding on the spatiotemporal continuum of biodiversity is still limited (Fig. 1).
Not only the current methodologies to quantify biodiversity at different temporal and spatial
scales need to be profoundly revised (Vellend, 2017), but also a multi-disciplinary effort is
necessary to comprehend species diversity and its evolution. High-throughput DNA
technologies, including massive parallel DNA sequencing, have been used during the past two
decades to study biodiversity. Thus, researchers nowadays have access to standard tools which
can generate unprecedented amounts of genomic information, being cost- and time-efficient

(Lugg et al., 2018), and with the potential to integrate their results with previous efforts.

In this article, we aim to briefly review and provide a guideline on the usage of massive parallel
DNA sequencing technologies to bridge the study of biodiversity at different scales, with a focus
on the largest biotic radiation on Earth: insects. These six-legged invertebrates represent more
than half of all known eukaryotic species (Grimaldi & Engel, 2005; Mora et al., 2011; Stork et
al., 2015; Stork, 2018) and they are one of the most important components of eukaryotic
biodiversity in terms of abundance and ecology. However, as much as 80% of insect diversity,
and therefore much of the Earth’s biodiversity, remains to be formally described (Hamilton et al.,
2010; Scheffers et al., 2012; Stork, 2018). While there is so much undescribed insect diversity in
the nature, a significant number may already be deposited within museum collections in need of
formal description (Suarez & Tsutsui, 2004; Veijalainen et al., 2012). Therefore, the study of
biodiversity through insect genomics, using entomological mass-sampling techniques in the field

and the archived material, is timely and represents a significant opportunity to advance our
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understanding of life on Earth. This article aims to fill a gap in the literature on a simple
guideline to study biodiversity through insect genomics, thus this review is primarily targeted at

researchers and students who may not yet be experts in entomology or genomics.

Survey Methodology

We reviewed published literature related to biodiversity and evolutionary research using insect
genomics, including but not limited to methods for review and original articles on collecting
insects, specimen preservation and storage, genomic DNA isolation from archived material, and
post-sequencing approaches. We ensure a comprehensive and unbiased procedure by using
primarily PubMed and Google Scholar to search for articles, complemented with searches in
Scopus and Web of Science. We also used a combination of keywords, such as “insect

29 <¢

genomics”, “museum DNA”, “high-throughput sequencing”, and “biodiversity assessment”.

Ten Simple Steps to Study Biodiversity through Insect Genomics

We structure this article in 10 simple rules (Fig. 2) that every biologist should understand to 1)
better interpret the results and conclusions coming from insect biodiversity research, and 2) start
planning a multi-dimensional study of biodiversity using insects as target group and high-
throughput genomic tools. Overall, we briefly review the current state in biodiversity and
evolution research through the study of insect genomics, by revisiting pioneering studies that aim

to bridge different spatial and temporal scales. We identify a series of limitations and challenges
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currently faced by insect genomics, but we also find hopeful approaches to comprehend the

origin and dynamics of extant biodiversity.

Rule 1: Define the questions and scope of the study

Producing genomic data is no longer a major challenge for many labs. Instead, many researchers
seem to be producing large amounts of data, without having a clear idea of how to use it
afterwards. Although it may seem obvious, we consider important to stress that careful thinking
is required to define the research questions and hypothesis of any study, and how to best address
them. A few projects might be totally discovery-driven with no prior expectations, but in general
it can be very useful to clearly define the hypotheses to be tested, and how. This will then inform
on the whole chain of methods and analyses, since there is no ‘one size fits all” when it comes to

biodiversity and evolutionary studies.

With massive-parallel DNA sequencing technologies, the study of evolutionary relations can be
complemented with fast quantification of diversity, abundances, and species interactions such as
studies on host-parasite interactions (Toju, 2015), in environmental samples (Shokralla et al.,
2012) or even from the ethanol used for preservation of historical specimens (Linard et al.,
2016). However, economical limitations exist regarding the number of specimens and the extent
of their genomes that could be sequenced (Wachi, Matsubayashi & Maeto, 2018). Therefore,
researchers should choose from a series of available sequencing approaches that better suits their
research questions. For example, if the focus is on finding potential loci involved in adaptation
and speciation, a reduced representation of the genomes might be cost-efficient because several

individuals from different populations could be pooled in one sequencing experiment, or if the
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116 aim is to profile many organisms within insect communities, DNA metabarcoding could provide

117  afast quantification of diversity and relative abundances.

118

119  Rule 2: Set up your collaborations strategically

120 A major challenge in the study of evolution from populations to species is the lack of non-

121 genomic data, including taxonomic, paleontological, and ecological information. Despite the
122  abundance of genomic information that can nowadays be generated, evolutionary biologists are
123  facing the necessity to 1) increase field expeditions in search of the unknown diversity, 2)

124 incorporate fossil data in the Tree of Life, and 3) study the phenotypes and life history data in
125 specimen collections. Naturally, the most efficient direction to integrate such different

126  perspectives is to establish and strengthen a collaborative network. For example, working along
127  with paleontologists might bring a temporal perspective in the study of evolution and

128 biodiversity dynamics (Marshall, 2017). In some insect groups, such as Hymenopterans

129 (sawflies, wasps, bees, ants) and Coleopterans (beetles), the morphologies of ancient, extinct
130 lineages might be better preserved as inclusions in amber, and even ancient ecologies could be
131 preserved (Johnson et al., 2001). Other groups such as Lepidoptera (butterflies and moths) are on
132 the contrary hardly fossilized (Labandeira & Sepkoski, 1993), thus representing a challenge, for
133  instance, in divergence time analyses when working with phylogenomic data (Wheat &

134  Wahlberg, 2013). However, other sources of information, such as larval host-plant ages, may

135 improve divergence time analyses when fossil record is scarce (Chazot et al., 2018).

136  Collaborating closely with ecologists would strengthen the study of adaptation, differentiation,

137 and the mechanisms of speciation, and a comprehensive knowledge of life history data, insect
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138 ecologies, or common garden experiments are ideal to tease apart adaptive from non-adaptive
139 variation. Moreover, Natural History Museums (NHMs) are the repositories of our natural world
140 and include not only archived specimens but also valuable historical, demographic, life-history,
141 and genetic data that can add another dimension to evolutionary research (Burrell, Disotell &
142  Bergey, 2015; Buerki & Baker, 2016). Research on biodiversity will benefit by working closely
143  along with curators and research assistants at NHMs. For example, population range expansion
144  in historical times, host-parasite interaction changes after human disturbances, or the effect of
145  current climate change on the structure of populations, are topics that could be directly benefited
146 by incorporating the information from NHM collection records (Burrell, Disotell & Bergey,

147  2015). Moreover, the information that curators might hold on the collection and preservation
148 methods of specimens is valuable when selecting which specimens should undergo high-

149 throughput sequencing (Kanda et al., 2015; Short, Dikow & Moreau, 2018).

150

151  Rule 3: Go to the field

152  We are worried that the rapid increase of genetic data in public databases might discourage
153 students and researchers from generating novel data. Instead, we argue that field work is

154  absolutely essential to the advancement of our field, and should be part of every biologist’s
155 education as well as routine in advanced careers. Fieldwork will also benefit museum

156 collections, and vice-versa, museum collections —through genetic and morphological studies
157 based on specimens— will benefit fieldwork. Of course, there might be lines of research that do
158 not demand fieldwork, but even taxonomists, method developers, and researchers in other

159 disciplines may profit from the experience of studying and responsibly collecting specimens in
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160 nature. Extensive field surveys are often required to obtain a representative inventory of insect
161 assemblages at both local and regional scales; but such surveys represent only a minority within
162 entomological field studies. Most studies aiming to understand insect diversity patterns only

163 target a small portion of the species present in a single study location. This is true given the high
164  species richness and varying abundance, habits and seasonality of insects, including parasitoids,
165 predators, scavengers, leaf-chewers, sap-suckers, among others. A careful selection of field

166 sampling methods, along with proper understanding of their function and targeted groups, is thus
167 critical (Noyes, 1989) (see Table 1 for a non-comprehensive overview of mass-sampling

168 methods).

169 For some cases, such as in biodiversity assessment, it may be enough to conduct simple and
170 rapid field surveys. For example, in a recent tropical large-scale species inventory, Borkent &
171 Brown (2015) investigated local species richness of cloud forest Diptera (true flies) by using
172 only two Malaise traps and a one-week intensive “Diptera-Blitz” conducted by several experts.
173 In other cases, such as when studying diversity dynamics through time and space, greater mass-
174  sampling efforts may be needed, requiring a combination of multiple methods, longer term

175 inventories and wide expertise, together with effective ways to estimate true species richness
176  based on collected samples (Vogel, 2017). For example, Gémez et al. (2018) sampled the

177 Western Amazonian local parasitoid wasp diversity by using 41 Malaise traps, with a total

178 sampling effort of 230 Malaise-trap months (one Malaise-trap month corresponds to one trap
179  collecting in the field for a period of one month). In this case, despite the tremendous sampling
180 effort, cumulative species curves suggested that a significant portion of the local parasitoid

181 diversity remained unobserved; a fact that may be generalized for many other tropical insect

182  groups as well. Reviews of entomological collection methods for both mass-sampling and group-
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specific research are available in the literature and are essential reading before field collections

(Agosti et al., 2000; Basset et al., 2003; Lamarre et al., 2012; Larsen, 2016).

Needless to say, be a sensible collector; many insects are rare and threatened, so every collecting
effort should be associated with a risk assessment, even informally if not required. There are also
many federal and international regulations to follow, such as those stipulated under the Nagoya

Protocol under the Convention on Biological Diversity (https://www.cbd.int/abs/about/) and the

CITES legislation (https://www.cites.org/). Researchers should all follow all good practices for

Access and Benefit Sharing (e.g.,

https://naturwissenschaften.ch/organisations/biodiversity/abs/goodpractice).

Rule 4: Treat your specimens well to enhance its use

The amount and quality of isolated genomic DNA from insect collections depend on a myriad of
factors, including killing reagents, preservation of specimens in the field, and final voucher
storage conditions (Kanda et al., 2015; Short, Dikow & Moreau, 2018). For example, Dillon et
al., (1996) (see also Reiss, Schwert & Ashworth, 1995; Gilbert et al., 2007b) found that
specimens killed with ethanol yielded significantly higher quantities of higher quality DNA
compared to other killing/preservation agents such as ethyl acetate vapor, formalin or ethylene
glycol. Moreover, rapid and effective drying of the specimens in the field, especially in the
tropics, is a very important step for voucher preservation and may be an alternative to
cryopreservation (Prendini, Hanner & DeSalle, 2002). Preservation of specimens in ethanol and
at low temperatures would be ideal, but may cause logistic problems during transportation and

make the collections highly flammable. Propylene glycol may be a safer alternative and
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205 logistically easier to transport than ethanol (Ferro & Park, 2013), and it might even be used to
206 attract certain arthropod species (Hofer et al., 2015). Moreover, initiatives to implement large
207 cryobanks are important (Koebler, 2013), though these technologies are yet restricted to very few

208 and large NHMs (Corthals & Desalle, 2005).

209 The use of ethylene glycol may provide reasonable amounts of DNA regardless of specimen age,
210 and with lesser risks in the field (Dillon, Austin & Bartowsky, 1996), though the age of specimen
211 seems not to be a critical factor for obtaining minimal amount of DNA for massive-parallel

212 sequencing (Ruane & Austin, 2017) (see Table 2 for an overview of published studies using

213  archived insects). In fact, ancient beetle genomic DNA (ca. 560,000 to 5,960 years old) has been

214  successfully isolated (Heintzman et al., 2014). However, due to the fragmented nature of ancient

215 DNA, PCR-based techniques are overall not successful to recover genetic data. Fortunately,

216 evidence suggests that fragmented DNA due to age or preservation reagents does not

217  dramatically affect the performance of PCR-free, massive-parallel sequencing (Tin, Economo &

218 Mikheyev, 2014; Timmermans et al., 2016). However, the success of current sequencing

219 approaches still depends in some cases on the quality of isolated DNA, such as in RAD-seq, thus

220 minimal damage in the field and during storage is advisable.

221

222 Rule 5: Work closely with taxonomists

223 Genomic data is only one component of biodiversity, but in order to reach the general public
224  biodiversity needs as well to be tangible. The tasks of taxonomists, including the identification,
225  description, and classification of species in meaningful groupings, are unfortunately sometimes

226 neglected. The high diversity and density of insects, coupled with laborious taxonomic
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227 assessment and lack of resources for taxonomists, makes the morphological identification of

228 every specimen sampled by mass-collecting techniques a difficult and high resource-consuming
229 task. The so-called “taxonomic impediment” (di Castri, Vernhes & Younes, 1992) encompasses
230 two general difficulties: 1) not enough resources and training are allocated to taxonomic work
231 and 2) few people are working in taxonomy (thus slowing down the rate of species discovery,
232 identification, and classification), which may be a consequence of the former difficulty

233 (Wheeler, Raven & Wilson, 2004; de Carvalho et al., 2007; Ebach, Valdecasas & Wheeler, 2011;
234 Audisio, 2017). Indeed, we may be in the midst of a revolution in taxonomy, as evidenced by the
235 intense debate on its epistemological and methodological grounds (Dubois, 2011; Ceriaco et al.,
236 2016; Garnett & Christidis, 2017; Raposo et al., 2017; Thorpe, 2017), but it is also clear that in
237 the meantime entomological research must use complementary approaches to reliably estimate
238 diversity through time and among places and environments. Therefore, taxonomists should be
239 part of biodiversity studies using insect genomics, and the DNA sequences generated by such

240 studies should be seen as a necessary supplement to the work of taxonomists.

241

242 Rule 6: Isolate DNA in the right way

243  Most recent studies using massive-parallel DNA sequencing, even those on ancient insects, have
244  used commercial kits for DNA isolation, thus reducing time, complexity, and health risks in

245 laboratory procedures (Staats et al., 2013; Heintzman et al., 2014; Kanda et al., 2015; Blaimer et
246 al., 2016; Pitteloud et al., 2017). However, in-house methods might be more effective than

247 commercial kits when working with ancient samples having little and highly-degraded DNA

248  (Gilbert et al., 2007c; Meyer et al., 2016). On the other hand, non-destructive protocols for DNA
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isolation are preferable when working with valuable, archived specimens or with bulk samples
such as those coming from insect mass-collecting techniques that later need to be taxonomically
curated. However, there is surprisingly little data available comparing the efficiency of
destructive vs. non-destructive protocols applied to insects (Gilbert et al., 2007a; Nieman et al.,
2015). A number of non-destructive DNA isolation protocols have been published (e.g.,
(Thomsen et al., 2009; Castalanelli et al., 2010; Tin, Economo & Mikheyev, 2014), but in
general they vary depending on the targeted insect group. For example, insects whose external
structure are not delicate, including Diptera, Hymenoptera and Coleoptera, tend to be more
resistant to submergence of whole specimen in extraction buffers, giving better results
(Heintzman et al., 2014; Tin, Economo & Mikheyev, 2014). In other more delicate groups such
as Lepidoptera, the use of abdomens is advisable, given that in many cases the abdomens need to
be removed from the individual for genitalia preparation (Knolke et al., 2005). In other insect
groups that hold sufficient starting material for DNA isolation in particular tissues, such as
muscles in the massive legs of Orthoptera (grasshoppers, locusts, crickets), grinding one leg

might not be a significant loss to the collection (Tagliavia et al., 2011).

Although curators at NHMs may be reluctant to provide specimens for molecular studies, with
valid reasons considering that most species might consist of singletons or very rare collections
(Lim, Balke & Meier, 2012), the design of selective sampling, minimizing the damage of
collections especially of those very rare specimens, is therefore crucial. As a side note, there has
not been any discussion in the literature about the suitability for massive-parallel sequencing
using the hundreds of thousands, or perhaps millions, DNA aliquots generated in the past three
decades for Sanger-sequencing work. In principle, old DNA aliquots of low quantities and

potentially fragmented DNA may face the same constraints of using archived specimens from
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NHMs, and might thus be processed with protocols designed for archived samples (e.g., library
preparation, sequencing approach) (Tin, Economo & Mikheyev, 2014; Kanda et al., 2015;

Suchan et al., 2016; Timmermans et al., 2016).

Rule 7: Revise your DNA sequencing approach

At this point, you should already have decided which sequencing approach will be best suitable
to address your research question(s), but now you should carefully evaluate the quality of DNA

that you de facto were able to obtain, and decide on which sequencing approach to really follow.

Reviews on massive-parallel DNA sequencing approaches can be found in the literature
(Mamanova et al., 2010; Metzker, 2010; Mardis, 2017). Below, we categorize and briefly
describe available massive-parallel DNA sequencing technologies of potential interest for
entomological biodiversity research (see Table 3 for a summary of such methods and key
publications). The current leading short-read DNA sequencing technology is [llumina. We have
grouped the main approaches used in the study of entomological biodiversity into three
categories: 1) targeted-sequencing, 2) non-targeted, reduced-representation of whole genome,
and 3) whole-genome skimming. In addition, single-molecule DNA sequencing technologies
such as Oxford Nanopore and PacBio can accelerate the amount of DNA data recovery in real
time and from highly-degraded starting DNA material (Thompson & Milos, 2011). We thus

consider these technologies as promising, and we briefly introduce them here.

Target Sequencing: It is highly-efficient when the aim is to recover only DNA markers with a

particular rate of evolution (fast and slow) or under different selective pressures (Lemmon &

Lemmon, 2013). Moreover, because it targets only a tiny subset of the whole genome, targeted
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294 sequencing is cost-effective as tens or hundreds of specimens can be pooled together in a single
295 sequencing experiment (Mamanova et al., 2010). This is particularly useful when working with
296 environmental samples, such as those coming from mass-sampling techniques (Moriniére et al.,
297 2016). For example, metabarcoding, an approach that targets a barcoding region such as the COI
298 mitochondrial gene, can be useful in the study of evolution among local environments and in
299 Dbiodiversity assessment because it might be more reliable, fast and replicable than traditional

300 Dbiodiversity surveys (Ji et al., 2013; Zhou et al., 2013; Vesterinen et al., 2016).

301 There are two usual ways to target particular loci, 1) through PCR or 2) by using “baits”-based
302 in-vitro capture. PCR has the advantage of being cheap but the development of universal primers
303 is the main limitation because sequence specificity to desired loci decreases through mutation
304 and long divergence times among lineages. Target capture using “baits” can be expensive

305 (“baits” need to be specially synthesized) but has the advantages of 1) simplify laboratory

306 procedures (one can pool several specimens for the capture experiment), 2) target a wider range
307 of lineages despite evolutionary distance among them, and 3) reduce amplification biases due to
308 PCR primer design and relative abundance of DNA molecules in a pool of specimens. However,
309 prior genomic information either published annotated genomes or transcriptomes are needed to
310 design target-enrichment probes. Therefore, probe kits targeting conserved regions primarily for
311 phylogenomic purposes have been published for those insect orders having good reference

312 databases (Faircloth et al., 2015; Faircloth, 2016; Young et al., 2016; Breinholt et al., 2018).

313 Furthermore, recent attempts to integrate “baits”-based capture into metabarcoding have had
314 disparate degree of success; such as the sequencing of non-target organisms or pseudogenes on

315 the negative side (Shokralla et al., 2016), or the recovery of sequences of very rare species in a
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pool of samples and the quantification of relative abundance and biomass on the positive side

(Dowle et al., 2016).

Random reduced-representation of genome: Restriction-site-associated DNA (RAD) sequencing

has proven to be an efficient and cheap approach to obtain millions of single nucleotide
polymorphisms (SNPs), both neutral and under selection (Andrews et al., 2016). However,
restriction enzyme sites may not be conserved for a long evolutionary time, thus this approach
seems to be restricted to population or species complexes. However, a recent protocol targeting
RAD-seq markers (hyRAD) may ameliorate the lack of phylogenetic conservation of restriction
enzyme sites across divergent lineages (Suchan et al., 2016). The amount and quality of DNA
might impose a second limitation to RAD-seq. For example, Tin, Economo & Mikheyev (2014)
using ant specimens as old as 100 years were able to recover SNPs but were unsuccessful at
genome mapping due to the extremely short DNA fragments and imprecise DNA size selection.
Overall, RAD-seq is promising in the study of insect diversity and evolution because it generates
a large amount of SNPs, is cheap and can be run on pools of specimens, as long as genomic
DNA is of good quality (long DNA fragments are needed for an efficient restriction enzyme

activity) and taxa of interest are not evolutionarily distant.

Whole-genome skimming: It is the simplest approach in terms of sequence library preparation. It

consists of randomly, shallow sequencing the whole-genome of an individual, including both
mitochondria and nuclear content. Furthermore, when working with historical specimens with
highly-fragmented DNA, one can skip the step of fragmentation in library preparation (Suchan et
al., 2016; Timmermans et al., 2016). Whole-genome skimming has been applied in a number of
insect studies, proving that the method is fast and can recover entire mitochondrial genomes

from even old museum material (Staats et al., 2013), and low-copy nuclear protein-coding genes
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(Maddison & Cooper, 2014; Kanda et al., 2015). With the expected decrease in sequencing
prices, target sequencing approaches may no longer be a cost-effective choice in the future. For
instance, recent studies have identified the benefits of mitochondrial metagenomics (MMG),
including longer barcodes with larger amount of SNPs (use of mitogenomes instead of the COI
fragment), and PCR-free library preparation (no amplicons would be needed) with the
advantages of using highly-fragmented DNA from old specimens and a more reliable
quantification of relative abundance (biomass) in mass-sampling collections (Crampton-Platt et
al., 2015, 2016; Cicconardi et al., 2017; Gomez-Rodriguez et al., 2017). However, it was noted
that having a reference genome is important to improve mapping and discovery of homologous
SNPs in the nuclear genome (Tin, Economo & Mikheyev, 2014), which may yet restrict the use
of whole-genome skimming and the recovery of nuclear data in insect groups with poor genomic

knowledge.

Single-molecule sequencing approaches such as PacBio and Oxford Nanopore. The two main

advantages are related to a better assembly of genomes with low quantities of poor quality DNA
and the portability of some devices (e.g., MinlON), which can generate DNA sequences in real-
time and in any place in the world, including remote field locations. Moreover, laboratory
protocols are simplified and DNA amplification is not at all necessary, which is beneficial for a
more accurate quantification of DNA molecules present in the sample pool (Thompson & Milos,
2011). However, technological improvement is needed to reduce the high sequencing error rates
(>10 %) (Mardis, 2017; Shendure et al., 2017). Nonetheless, single-molecule sequencing
promises to drastically reduce sequencing costs, thus the age where having complete genome
sequences for any living insect may be even closer (Kelley et al., 2014). Moreover, the long

reads that single-molecule sequencing approaches generate might help resolve long repeat

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26661v1 | CC BY 4.0 Open Access | rec: 11 Mar 2018, publ: 11 Mar 2018




362 elements in the genome, thus providing invaluable scaffold for short reads to improve accuracy

363 in assembly and annotation of insect genomes (Richards & Murali, 2015).

364

365 Rule 8: Choose the most suitable tools for data analyses

366  Although genomic sequencing is becoming easier and more affordable, processing the data

367 generated remains a major bottleneck in many projects. Bioinformatic pipelines have been

368 implemented during the past two decades of massive parallel sequencing, thus researchers

369 nowadays count with standard procedures to analyze genomic DNA. However, there exist a

370 number of limitations and challenges that remain to be explored. For example, genomic missing
371 data, as in supermatrices for phylogenomic studies, might hinder statistical power in the

372 inference of species relations, but its effects in systematic bias is yet unclear (Misof et al.,

373 2014a,b). Moreover, taxonomic sampling in phylogenomics is usually lower than in the

374 published Sanger-sequencing work, a fact that might bias systematic inference in insect higher-
375 level phylogenies (Behura, 2015). On the other hand, a number of pipelines have been published
376 for analyzing target-sequencing data from environmental samples (Schloss et al., 2009; Caporaso
377 etal., 2010; Boyer et al., 2016). Such programs provide a delimitation of Operational Taxonomic
378 Units (OTUs), the analogs of species, derived from sequence similarity of typically 97 %.

379 However, assigning thresholds to define analogs of species is problematic because 1) there is a
380 risk to artificially increase or decrease local diversity, 2) inflated OTU richness might be related
381 to sequence chimeras and sequencing errors, and 3) there exist a lack of standardization of

382 threshold values (Huse et al., 2010; Oliver et al., 2015; Alberdi et al., 2018). The shortcomings

383 of using thresholds to define OTUs might even escalate when studying the entomofauna of
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384 hyperdiverse regions such as the tropics. In those cases, there are usually no good estimates of
385 genetic variability between species and a large portion of tropical insects are not represented in
386 reference databases. However, recent advances might alleviate in part the variability caused by
387 sequencing errors by incorporating other observed patterns such as OTUs co-occurrence (Froslev
388 etal., 2017). In any case, the preservation and morphological study of vouchers are critical to

389 validate taxonomic assignments and thresholds.

390 Mitochondrial metagenomics (MMG) could in principle improve OTU assignment and species
391 delimitation because contigs would span different barcode regions (COI, ND2, 16S rDNA) (Liu
392 etal., 2016) and risks of primer-related biases are ameliorated (Taberlet et al., 2012; Tang et al.,
393 2014). Moreover, whilst approaches such as log-binomial normalizations (through DeSeq2 and
394 CSS) have attempted to normalize metabarcoding data (McMurdie & Holmes, 2014), results via
395 PCR-based approaches remain semi-quantitative at best (Pawluczyk et al., 2015). However,

396 metagenomic studies of insects have generally been limited only to their microbiomes (Cox-

397 Foster et al., 2007; Suen et al., 2010; Shi et al., 2013), but it is difficult to assess the convenience
398 of metagenomics in more complex environmental insect samples (but see (Crampton-Platt et al.,
399 2015, 2016; Cicconardi et al., 2017; Gémez-Rodriguez et al., 2017). Nonetheless, studies on soil
400 and fecal MMG have shown that the assembly of mitogenomes from environmental DNA

401 (eDNA) remains challenging and is not yet as cost-effective as compared to target sequencing

402 (Tedersoo et al., 2015; Srivathsan et al., 2016).

403

404  Rule 9: Make your data and results publicly available
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405 From a practical viewpoint, what is not in a database does not exist (or nearly so). Databases are
406 not only the repositories of genomic information, but also an indispensable tool in the study of
407 biodiversity and evolution. They also allow the reproduction of results and use for other purposes
408 such as in biodiversity assessment. Furthermore, the study of populations, their mechanisms of
409 adaptation and speciation, is an active field given the opportunities that represent the hundreds of
410 insect genome projects published and registered in GenBank (Yeates et al., 2016). Moreover, in
411 the study of species interactions, such as host-parasite and feeding habits, the recovery of cryptic
412  diversity necessitates a reference database because in many cases the identification of taxa

413  through morphological comparison becomes impossible; for example, internal parasites

414  (Schoonvaere et al., 2016), gut microbiota (Hammer et al., 2017), and highly-degraded organic

415 material such as dietary content in gut (Pompanon et al., 2012).

416 Furthermore, initiatives such as BOLD (Ratnasingham & Hebert, 2007) and the usage of the COI
417 barcode can shed more lights in the assignments of OTU thresholds when studying tropical

418 communities (Garcia-Robledo et al., 2013). However, building local databases including several
419 markers might complement metabarcoding studies in the identification and delimitation of

420 species (Deagle et al., 2014). National reference databases have also been implemented, such as
421  the newly initiated DNAmark project in Denmark. This project aims to provide a reference

422  database for 1,000 species with full mitochondrial sequences, along with nuclear sequences

423  derived from shotgun sequencing (http://dnamark.ku.dk/). Other initiatives to catalogue national

424 Dbiodiversity have also been put forward in Germany (Hendrich et al., 2015), Norway (NorBOL,
425  http://www.norbol.org/) and Finland (FinBOL; http://www.finbol.org/), to further expand the

426  BOLD project.

427
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Rule 10: Disseminate your findings

Research articles are the standard way to communicate results to the scientific community.
However, misinterpretations of scientific findings can be commonly found in the literature aimed
for the general public and decision-makers. Thus, public outreach of our findings needs to be
explicitly considered as part of our project design. Moreover, because scientific research is a
collaborative enterprise (see Rule 2), it is important to discuss and reach a consensus with
collaborators before spreading findings to the general public. This is particularly important given
the recent misunderstandings on biodiversity research that have been reported, and the urge to
include both factual evidence and ethical arguments in communications to the general public

(Antonelli & Perrigo, 2018).

Given that diversity estimates can fluctuate significantly depending on the way results are treated
(e.g., as in metabarcoding (Freslev et al., 2017; Alberdi et al., 2018)) special care should be
taken when presenting these findings, and in general we advocate for a conservative approach
which does not artificially inflate diversity estimates. Furthermore, the access of scientific
knowledge and data by governmental bodies is still restricted, especially in low and lower-
middle income countries. Biodiversity research is a cornerstone for Environmental Impact
Assessments, but hyperdiverse animal groups such as insects remain underrepresented in

biodiversity assessments in species-rich countries (Ritter et al., 2017).

Perspectives and Conclusions

In this article we have identified general challenges, including: 1) insufficient evaluation of non-

destructive methods applied to insects to get good quantity and quality DNA from fresh, mass-
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450 collections and archived specimens, 2) limitations to genomic data analysis, including assembly
451 of reads, missing genomic information from datasets, methods for estimating diversity and
452 abundance in environmental samples, and inference of population and species evolution, 3)
453  taxonomic, ecological, and life history knowledge generation is not at the same pace as the

454  genomic revolution.

455 Insects are ideal study organisms because they show remarkable diversity in species numbers
456 and ecologies, being the dominant eukaryotic group in terrestrial and freshwater environments.
457  The integration of ecology and evolution is achievable with the new genomic techniques, which
458  offer the possibility to generate datasets that can be used in the study of biodiversity at different
459  spatiotemporal scales. For example, the evolutionary framework of local insect communities can
460 now be inferred in a single sequencing effort (Crampton-Platt et al., 2015), while the study of
461 populations and speciation using massive-parallel sequencing can be better understood with a
462 comprehensive knowledge of local variations (Jiggins, 2016). Altogether, we expect that the

463 increase of molecular data together with taxonomic and ecological studies will allow a better
464  Dbiodiversity and evolutionary comprehension which is essential for conservation and to

465 understand biological dynamics.

466
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Table 1(on next page)

Representative description of methods for mass sampling of insects and their
application for NGS

Note that this is not a comprehensive list and is only aimed at providing an overview of
available possibilities of widespread use. In the Costs of equipments, we roughly categorized
them as Low (approx. < US $50), Medium (approx. US $50 - $100), High (approx. > US
$100).
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Method

Example

Taxa targeted

Trap-sampling

Van Someren-Rydon

Costs

Suitabilitv for genomic research

Fruit-feeding butterflies, from
forest floor to canopy

Low; negligible if
self-built

Yes; no killing reagent;
baits such as fermented fruit

Sampling effort

Limitations

Minimum: 5 traps in forest, 10 traps in open areas;
Collection: once or twice per day;

Personnel: 2 people, collection and record;
Complement with opportunistic hand collection

Need for long-term data because different
butterfly communities throughout the year;
Other feeding guilts are missing, such as
nectar-feeding

Trap-sampling

Pitfall

Forest floor insects such as
dung beetles, flies, ants

Low; negligible if
self-built

Depending on killing reagent; could be done
with detergent and water, propylen glycol;
baits such as human dung

Minimum: 20 traps per day; linear transect;
Collection: at least once per day;
Personnel: 1 person;

Complement with flight intercept traps

Specimens with a lot of water from pitfall
trap, thus a lot of ethanol replaced every week
is needed to prevent DNA decay

Leaf-litter and soil insects,

Minimum: 20 collectors, each with 1m? leaf litter;

Yes; 95% EtOH most commonly used as killing Collection: once, if extraction run in parallel;

Limited to forested areas, and not suitable
during height of dry or rain season;

Leaf-litter collector Mini-Winkler Medium - . .
such as ants, beetles reagent Personnel: 2 people recommended; Not sampling of vegetation-associated, canopy
Complement with bait-traps and hand collecting or subterranean insects
Minimum: 2 traps for fast surveys;
Flying-insect collector Malaise Strong-flying insects, such as High Yes; 95% EtOH most commonly used as killing Collection: little care, leave in field for 2—4 weeks; Placement of trap in "likely" flight paths, thus

Hymenoptera and Diptera

reagent

Personnel: 1 person;
Complement with flight interception traps

a component of subjectivity is introduced

Flying-insect collector

Flight interception

Flying insects, such as beetles,
cockroaches, crickets

Low; negligible if
self-built

Depending on Killing reagent; could be done
in salt-saturated water and detergent, propylen
glycol; formaldehyde solutions but in detriment
of DNA recovery

Minimum: 2 traps for fast surveys;
Collection: once or twice per day;
Personnel: 1 person;

Complement with bait and light traps

Ideal for slow-flying insects, which hit the
plastic sheet and fall in the container with
killing reagent

Insecticidal knockdown

Canopy fogging

Arboreal insect community

High

Yes; insecticide as killing reagent

Collection: laborious and problems with
pseudoreplication;

Complement with canopy light trapping and flight
interception traps

Canopy access still limited;
High demand on logistics;
Environmentally dependent
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Table 2(on next page)

Overview of massively parallel DNA sequencing methods applied to insect museum
specimens
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Authors

Taxon group

Specimens

Sequencing approach

Output

Staats et al . (2013)

Tin et al . (2014)

Heintzman et al . (2014)

Maddison & Cooper (2014)

Kanda et al . (2015)

Timmermans et al . (2016)

Suchan et al . (2016)

Blaimer et al . (2016)

Pitteloud et al . (2017)

Flies and beetles

Flies and ants

Beetles

Beetles

Beetles

Butterflies

Butterflies and
grasshoppers

Carpenter bees

Butterflies

Number: 3 specimens;

Age: 1992-1995;

Tissue: 1-3 legs, thorax, whole specimen (destructive
protocol)

Number: 11 specimens;
Age: 1910-1976;
Tissue: whole specimen (non-destructive protocol)

Number: 4 specimens;

Age: Late Pleistocene (C'), 1875-1950 (museum);
Tissue: 1 hind leg, pronotum, elytron (destructive
protocol)

Number: 1 specimen;
Age: 1968;
Tissue: whole specimen (non-destructive protocol)

Number: 13 specimens;
Age: 1929-2010;
Tissue: whole specimen (non-destructive protocol)

Number: 35 specimens;
Age: 1980-2005;
Tissue: 1 leg (destructive protocol)

Number: 60 specimens;
Age: 1908-1997;
Tissue: legs (destructive protocol)

Number: 51 specimens;
Age: 1894-2013;
Tissue: 1 leg (destructive protocol)

Number: 32 specimens;
Age: 1929-2012;
Tissue: legs (destructive protocol)

Shotgun whole genome skimming;
Illumina HiSeq 2000

Shotgun whole genome skimming;
RAD-tag;
Tlumina MySeq & HiSeq 2500

Shotgun whole genome skimming;
Tllumina HiSeq 2000

Shotgun whole genome skimming;
Tllumina HiSeq 2000

Shotgun whole genome skimming;
Tllumina HiSeq 2000 (2 lanes)

Shotgun whole genome skimming;
Tllumina MySeq (1/3 flow cell)

Target capture of RAD probes;
Tllumina MySeq & HiSeq (one lane each)

Target capture of Hymenopteran UCE:s;
Tllumina MySeq

PCR Multiplex & Shotgun sequencing;
Tllumina MySeq

Read depth: 3.5x — 146.1x (mt genome);

% Mapping: 0.002 — 0.82 (mt genome);

Contamination: 1 specimen extensive bacteriophage & fungal
DNA

Read depth: 0.08x — 1.0x (whole genome);
% Mapping: 19 — 76 (whole genome);
Contamination: not reported

Reads aligned to reference: 0.009% — 0.225x (mt genome & 5
nuclear loci);

% Insect contigs: 0.25 — 46.5;

Contamination: Up to ca. 20% mammalian sequence in contigs

Read depth: not reported (8 gene targets);
% Gene length coverage: 95 — 100 (8 gene targets);
Contamination: not reported

Read depth: 0.44x — 4.64x (67 gene targets);
N50: 280 — 700 (67 gene targets);
Contamination: Possible in some specimens but not quantified

% Coverage: 0 — 100 (mt coding loci);

Contamination: not reported;

Failure rate: 4 out of 35 specimens any reads matching mt
genomes

Median depth: 10x (for each SNP);
% Matrix fullness: 52 — 72.5 (RAD loci);
Contamination: ca. 9 % of contigs were of exogenous origin

Average coverage: 7.4x — 182.4x (UCE loci);
Recovered loci: 6 — 972 (UCE per sample);
Contamination: not reported

Length sequences (bp): 109 — 7297 (mt and rDNA loci);
Contamination: not reported
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Table 3(on next page)

Non-comprehensive overview of massively parallel DNA sequencing methods applied to
insects
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Approach

Case reference

Topic

Taxon group

Impact

Whole-transcriptome shotgun

Whole-genome shotgun

RAD-seq

Target capture

Target capture

Single-molecule

Misof et al . (2014)

Tang et al . (2014)

Tin et al . (2014)

Suchan et al . (2016)

Faircloth et al . (2015)

Kelley et al . (2014)

Phylogenomics

Mito-metagenomics

Phylogenetics; Museomics

Phylogeography

Phylogenomics

Comparative Genomics

Class Insecta

Several insect orders

Flies and ants

Butterflies and
grasshoppers

Hymenoptera

Antarctic midge

First phylogenomic study to cover all hexapod orders

Pioneering proof-of-concept study to show feasibility of PCR-free
mitogenome sequence in bulk samples

One of the first insect museomic studies using massive parallel sequencing,
and a guideline for non-destructive DNA isolation and library preparation

New method to target RAD probes (hyRAD). Proof-of-concept using
divergent taxa and archived specimens

Enrichment of Ultraconserved Elements (UCE) of the Hymenoptera order

Single-molecule real time whole-genome sequencing using PacBio
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Figure 1(on next page)
Schematic of the spatiotemporal continuum of biodiversity and evolution

Community ecology research usually focus at local scale (Lx), but may be mislead if not
taking into account higher-level patterns such as fluctuation of population/species ranges
over time (e.qg., distributional change due to environmental shift or biotic interaction) and
space (e.qg., local pool of species depends on the regional diversity and its evolution). At a
higher scale (Vx), inferences on population/species evolutionary dynamics may be mislead if
not taking into account reduced-scale patterns such as local extinction (e.qg., its rate and
magnitude, whether local, regional or global) and biotic interaction (e.qg., as in diversity-
dependent diversification, or continuous replacement of species with similar ecologies over
time). Vx is any area of interest (local, regional, or global) that changes over time (V1, V2 ...
Vn). A, R, and N are distributional ranges of three different populations/species of interest.
Hypothetical sampling sites remain geographically constant over time, whether at geological

or ecological scales (L1, L2, and L3).
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Figure 2(on next page)

Flowchart summarizing the 10 rules to study biodiversity through insect genomics and
discussed in the paper
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