A peer-reviewed version of this preprint was published in PeerJ on 30 April 2019.

<u>View the peer-reviewed version</u> (peerj.com/articles/6727), which is the preferred citable publication unless you specifically need to cite this preprint.

Matos-Maraví P, Duarte Ritter C, Barnes CJ, Nielsen M, Olsson U, Wahlberg N, Marquina D, Sääksjärvi I, Antonelli A. 2019. Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies. PeerJ 7:e6727 <u>https://doi.org/10.7717/peerj.6727</u>

1	Author Cover Page
2	Article submission to PeerJ
3	Manuscript category: Literature Review
4	Collection: "Endless forms: Advances in evolutionary analyses of biodiversity"
5	Article title: Biodiversity seen through the perspective of insects: 10 simple rules on
6	methodological choices and experimental design for genomic studies.
7	
8	Authors: Pável Matos-Maraví* ^(1,2) , Camila Duarte Ritter ⁽³⁾ , Christopher J. Barnes ⁽⁴⁾ , Martin
9	Nielsen ^(4,5) , Urban Olsson ^(1,2) , Niklas Wahlberg ⁽⁶⁾ , Daniel Marquina ^(7,8) , Ilari Sääksjärvi ⁽⁹⁾ ,
10	Alexandre Antonelli ^(1,2,10)
11	
12	Affiliations:
13	¹ Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
14	² Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg,
15	Sweden.
16	³ Department of Eukaryotic Microbiology, University of Duisburg-Essen, Essen, Germany.
17	⁴ Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
18	⁵ Section for Evolutionary Genomics, Department of Biology, University of Copenhagen,
19	Copenhagen, Denmark

20	⁶ Department of Biology, Lund University, Lund, Sweden
21	⁷ Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm,
22	Sweden
23	⁸ Department of Zoology, Stockholm University, Stockholm, Sweden
24	⁹ Biodiversity Unit, University of Turku, Turku, Finland
25	¹⁰ Royal Botanical Garden, Kew, Richmond, Surrey, UK
26	
27	
28	*Corresponding author: Pável Matos-Maraví, E-mail: pavelm14@gmail.com
29	

30 Abstract: Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover 31 millions of nucleotide polymorphisms. Here we identify the current status, discuss the main 32 33 challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. 34 We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to 35 anyone interested in biodiversity research through the study of insect genomics. To this end, we 36 review relevant literature on biodiversity and evolutionary research in the field of entomology. 37 Our compilation is targeted at researchers and students who may not yet be specialists in 38 entomology or molecular biology. We foresee that the genomic revolution and its application to 39 the study of non-model insect lineages will represent a major leap to our understanding of insect 40 diversity. 41

42

43

44 Introduction

45 The global decline in biodiversity is unquestionable (Barnosky et al., 2011). The rate of species diversity loss is comparable to those of ancient mass-extinction events (Ceballos et al., 2015). 46 However, our understanding of the mechanisms that form and maintain species diversity and the 47 impact of environmental disturbances on biodiversity remains limited. Not only do the current 48 49 methodologies to quantify biodiversity at different temporal and spatial scales need to be profoundly revised (Vellend, 2017), but also a multi-disciplinary effort is necessary to fully 50 understand species diversity and its evolution. In order to maximize efforts when analyzing 51 biodiversity, large datasets need to be generated for hundreds or thousands of specimens with as 52 53 few steps as possible, following easy-to-implement protocols. Massively parallel DNA 54 sequencing, also called high-throughput sequencing or next-generation sequencing, has been one of the leading technologies for the generation of molecular data since the mid 2000s (Metzker, 55 2010; Mardis, 2017; Shendure et al., 2017). By using a multiplexing approach, massively parallel 56 sequencing outperforms automated Sanger sequencing in efficiency to recover genomic 57 information, which can be used to understand species diversity variation in time and space. 58 In this article, we aim to review and to provide a practical guideline on the use of massively 59 parallel DNA sequencing technologies with a focus on one of the largest biotic radiations on 60 61 Earth: insects. These six-legged invertebrates represent more than half of all known eukaryotic species (Grimaldi & Engel, 2005; Mora et al., 2011; Stork et al., 2015; Stork, 2018) and they are 62 one of the most important components of eukaryotic biodiversity in terms of abundance and 63 ecology. However, as much as 80% of insect diversity, and therefore much of the Earth's 64 65 biodiversity, remains to be formally described (Hamilton et al., 2010; Scheffers et al., 2012; Stork, 2018). While there is so much undescribed insect diversity in the nature, a significant 66

number may already be deposited within museum collections in need of formal description
(Suarez & Tsutsui, 2004; Veijalainen et al., 2012). Therefore, the study of biodiversity through
massively parallel sequencing applied to insects, using both mass-sampling techniques in the
field and the archived material at public and private collections, is timely and represents a
significant opportunity to advance our understanding of life on Earth.
This article fills a gap in the literature in the form of a simple, concise and hopefully easy-tofollow guideline to study biodiversity using insects and massively parallel sequencing.

Accordingly, this review is primarily targeted at researchers and students who may not yet beexperts in entomology or molecular biology.

76

77 Survey Methodology

78 The authors of this paper are familiar with entomological mass-sampling techniques, specimen 79 preservation and storage for genomic work, massively parallel sequencing and post-sequencing 80 bioinformatic tools. We discussed the relevant literature on these topics during a two-day workshop titled "Insect diversity and evolution on the era of genomics", held on the 27th and 28th 81 82 February 2017 in Gothenburg, Sweden. During this meeting, we reviewed published literature related to biodiversity and evolutionary research using insects, including but not limited to 83 methods, reviews and original articles. In order to unveil the number of publications using 84 85 insects and high-throughput sequencing over years, the most popular sequencing platforms and library preparations, we ensured an unbiased procedure by searching the literature stored in the 86 Web of ScienceTM Core Collection on 22nd November, 2018. We used 12 combinations of the 87 keywords: "insect" + "biodiversity"/"museum"/"metabarcoding"/"phylogenom*" + "next 88

89 generation sequencing"/"high throughput sequencing"/"single molecule sequencing". We searched for publications from 2006, the year of release of the first truly high-throughput 90 sequencing platform (Goodwin, McPherson & McCombie, 2016), to November 2018. We 91 92 retrieved a total of 118 publications (File S1) and we filtered this list by type of article (original article, review, others). In addition, based on our expertise, we added to this list 18 relevant 93 original articles that were not retrieved in our search using Web of Science. In total, we selected 94 91 original articles that generated sequence data by massively parallel sequencing for discussion 95 below (File S2). We acknowledge that this is not a complete list of studies on this topic, but we 96 97 consider them to be representative for the work being conducted in the last years.

98

99

100 Ten Simple Steps to Study Biodiversity through Insect Genomics

101 We structure this article in 10 simple rules (Fig. 1), formulated in a way that we hope will be accessible for readers who may not yet be familiar with entomological or massively parallel 102 103 sequencing approaches. Based on these recommendations, we hope that readers will eventually 104 be capable of 1) better interpret the results and conclusions coming from published insect biodiversity research, and 2) start planning a multi-dimensional study of biodiversity using 105 insects as target group and high-throughput sequencing. Overall, we briefly review the current 106 107 state in biodiversity and evolutionary research through the study of insect diversity. We identify a series of limitations and challenges currently faced by these studies, but we also find hopeful 108 109 approaches to study biodiversity patterns through the perspective of insects.

110

111 Rule 1: Define the questions and scope of the study

112 Producing genomic data is no longer a major challenge for many research groups. Instead, many researchers seem to be producing large amounts of data, without always having a clear idea of 113 how to properly use them afterwards. Although it may seem obvious, we consider important to 114 stress that careful thinking and planning is required to define the research questions and 115 hypothesis of any study, and how to best address them. This is particularly important when 116 dealing with a data-rich, novel technology such as massively parallel DNA sequencing. A few 117 projects might be totally discovery-driven with no prior expectations, but in general it is 118 preferable to clearly define the hypotheses to be tested *a priori*, and how. This will then inform 119 on the whole chain of methods and analyses. There is no 'one size fits all' methodology when it 120 comes to biodiversity and evolutionary studies. 121

With massively parallel DNA sequencing, the study of evolutionary relations can be 122 complemented with fast quantification of diversity and abundances. It also facilitates research on 123 124 species interactions such as studies on ecological networks through metabarcoding (Toju, 2015), and in environmental samples (Shokralla et al., 2012) or even from the ethanol used for 125 preservation of historical specimens (Linard et al., 2016). However, economical limitations exist 126 regarding the number of specimens and the extent of their genomes that can be sequenced in a 127 typical project (Wachi, Matsubayashi & Maeto, 2018). Therefore, researchers should choose 128 from a series of available sequencing approaches that best suits their research questions (see Rule 129 7). For example, if the focus is on finding potential loci involved in adaptation and speciation, a 130 reduced representation of the genomes might be cost-efficient because several individuals from 131 132 different populations could be pooled in one sequencing experiment. If the aim is instead to

profile many organisms within insect communities, DNA metabarcoding may provide a fastquantification of diversity and relative abundances in relation to total biomass.

135

136 Rule 2: Set up your collaborations strategically

137 A major challenge in the study of evolution from populations to species is the lack of nongenomic data, including taxonomic, paleontological, and ecological information. Despite the 138 abundance of genomic information that can nowadays be generated, major challenges remain to 139 140 1) increase field expeditions in search of the unknown diversity, 2) incorporate fossil data in 141 phylogenies based on molecular data, and 3) study the phenotypes and life history data in specimen collections. Naturally, the most efficient direction to integrate such different 142 143 perspectives is to establish and strengthen a collaborative network. For example, working along 144 with paleontologists might bring a temporal perspective in the study of evolution and biodiversity dynamics (Marshall, 2017). Collaborating closely with ecologists would strengthen 145 146 the study of adaptation and the mechanisms of speciation. A comprehensive knowledge of life 147 history data, insect ecologies, or common garden experiments are ideal to tease apart adaptive from non-adaptive variation. Moreover, Natural History Museums (NHMs) are the repositories 148 of our natural world and include not only archived specimens but also valuable historical, 149 demographic, life-history, and genetic data that can add additional dimensions to evolutionary 150 research (Burrell, Disotell & Bergey, 2015; Buerki & Baker, 2016). For example, population 151 range expansion in historical times (Ryan et al., 2018), host-parasite interaction changes after 152 human disturbances (Gottdenker et al., 2016), or the effect of current climate change on the 153

154 structure of populations (Basset et al., 2015), are topics that could be directly benefited by incorporating the information from NHM collection records (Burrell, Disotell & Bergey, 2015). 155 Collaborative networks are also very important to be more efficient at planning budgets and to 156 set the standards for whole-genome sequencing. For example, the Vertebrate Genomes Project 157 (https://vertebrategenomesproject.org/) is a large collaborative network with the aim to sequence 158 159 and annotate high-quality genome sequences of all 66,000 extant vertebrate species. Although such large collaborative networks are yet missing for the insect research community, large 160 161 projects focusing on insect diversity and evolution have been successful at disentangling phylogenetic relationships (e.g., the 1KITE project; http://www.1kite.org/) and for the 162 163 coordination of efforts for whole genome sequencing among research groups (e.g., Sadd et al., 2015). 164

165

166 *Rule 3: Go to the field*

We are worried that the rapid increase of genetic data in public databases might discourage 167 168 students and researchers from generating novel data. Instead, we argue that field work is 169 absolutely essential to the advancement of our field, and should be part of every biologist's education as well as part of the routine of more senior researchers. Fieldwork will also benefit 170 171 museum collections, and vice-versa: museum collections -through genetic and morphological 172 studies based on specimens- will benefit fieldwork. Of course, there might be lines of research that do not demand fieldwork, but even taxonomists, method developers, and researchers in other 173 174 disciplines may profit from the experience of regularly studying and responsibly collecting specimens or samples in nature. Extensive field surveys are often required to obtain a 175

representative inventory of insect assemblages at both local and regional scales; but such surveys
represent only a minority of all entomological field studies. This is problematic given the high
species richness and varying abundance, habits and seasonality of insects, including parasitoids,
predators, scavengers, leaf-chewers, sap-suckers, among others (Stork, 2018). A careful selection
of field sampling methods, along with proper understanding of their function and targeted
groups, is thus critical (Noyes, 1989) (see Table 1 for an overview of main mass-sampling
methods and Fig. 2).

183 For some cases, such as in biodiversity assessments, it may be enough to conduct simple and rapid field surveys. However, in other cases, such as in exhaustive inventories or when studying 184 185 diversity dynamics through time and space, greater mass-sampling efforts may be needed. Such 186 campaigns require a combination of multiple methods, longer term inventories and wide expertise, together with effective ways to estimate true species richness based on collected 187 188 samples (Vogel, 2017). For example, in a recent tropical large-scale species inventory, Borkent & Brown (2015) investigated local species richness of cloud forest Diptera (true flies) for more 189 than one year by using two Malaise traps and a wide range of supplementary collecting methods. 190 In addition to these, a one-week intensive "Diptera-Blitz" was conducted by a large network of 191 experts, inspired on the BioBlitz concept (e.g., Lundmark, 2003) which aims at recording most 192 193 of biodiversity at one locality during a short time period. In another case study, Gómez et al. 194 (2018) sampled the Western Amazonian local parasitoid wasp diversity by using 41 Malaise traps in three separate field campaigns and seasons, with a total sampling effort of 230 Malaise-195 196 trap months scattered throughout 1998 to 2011 (one Malaise-trap month corresponds to one trap 197 collecting in the field for a period of one month). In this case, despite the massive sampling effort, cumulative species curves suggested that a significant portion of the local parasitoid 198

NOT PEER-REVIEWED

Peer Preprints

- diversity remained unobserved; a fact that can be generalized for many other tropical insect
- 200 groups. Reviews of entomological collection methods for both mass-sampling and group-specific
- 201 research are available in the literature and are essential reading before field collections (e.g.,
- 202 Agosti et al., 2000; Basset et al., 2003; Lamarre et al., 2012; Larsen, 2016).
- 203 Needless to say, be a sensible collector! Many insects are rare and threatened, so every collecting
- 204 effort should be associated with a risk assessment, even informally if not required by law. There
- are also many federal and international regulations to follow, such as those stipulated under the
- 206 Nagoya Protocol under the Convention on Biological Diversity (<u>https://www.cbd.int/abs/about/</u>)
- and the CITES legislation (<u>https://www.cites.org/</u>). In addition, researchers should follow all
- 208 good practices for Access and Benefit Sharing (e.g.,
- 209 <u>https://naturwissenschaften.ch/organisations/biodiversity/abs/goodpractice</u>), and deposit their
- 210 specimens in public NHMs.
- 211

212 Rule 4: Treat your specimens well to enhance their use

213 The amount and quality of isolated genomic DNA from insect collections depend on a myriad of 214 factors, including killing reagents, method of preservation of specimens in the field, and final voucher storage conditions (Kanda et al., 2015; Short, Dikow & Moreau, 2018). For example, 215 Dillon et al., (1996) (see also Reiss, Schwert & Ashworth, 1995; Gilbert et al., 2007b) found that 216 217 specimens killed with ethanol yielded significantly higher quantities of high quality DNA compared to other killing/preservation agents such as ethyl acetate vapor, formalin or ethylene 218 219 glycol. Moreover, rapid and effective drying of the specimens in the field, especially in the tropics, are important for voucher preservation and may be an alternative to freezing-based 220

221 preservation (Prendini, Hanner & DeSalle, 2002); cryopreservation is the formal name for the 222 technique that uses very low temperatures to preserve tissues and specimens. Initiatives to establish large cryobanks are important (Koebler, 2013), although these technologies are 223 224 currently limited to very few large and well-funded NHMs (Corthals & Desalle, 2005). 225 Preservation of specimens in ethanol and at low temperatures is ideal, but may cause logistic 226 problems during transportation and would make the collections highly flammable. Propylene glycol may be a safer alternative and logistically easier to transport than ethanol (Ferro & Park, 227 2013), and it might even be used to attract certain arthropod species (Höfer et al., 2015). The use 228 229 of ethylene glycol may provide reasonable amounts of DNA regardless of specimen age, and with lesser risks in the field (Dillon, Austin & Bartowsky, 1996). 230 The age of specimens seems not to be a critical factor for obtaining DNA for massively parallel 231 sequencing (e.g., as in snakes archived in museum collections, (Ruane & Austin, 2017); see also 232 233 Table 2 for an overview of published studies using archived insects). DNA fragmentation increases with time, while the median fragment sizes decrease, but these changes do not happen 234 linearly over time (Sawyer et al., 2012). Rather than age, preservation and storage methods are in 235 fact better predictors of DNA quality isolated from old specimens (Burrell, Disotell & Bergey, 236 237 2015). Evidently, due to the fragmented nature of ancient DNA, PCR-based techniques are overall not successful to recover genetic data. Fortunately, evidence suggests that fragmented 238 239 DNA due to age or preservation reagents does not dramatically affect the performance of PCRfree, massively parallel sequencing (e.g., Tin, Economo & Mikheyev, 2014; Timmermans et al., 240 241 2016; Carøe et al., 2018).

Despite the advantages of using massively parallel DNA sequencing over Sanger when dealing
with old specimens, the success of current sequencing approaches still depends in some cases on

244	the quality of isolated DNA, such as in RAD-seq and single-molecule sequencing. For these
245	reasons, minimal specimen damage in the field and during storage is always strongly advisable.
246	

247 Rule 5: Work closely with taxonomists

248 The tasks of taxonomists, including the identification, description, and classification of species in meaningful groupings, are unfortunately sometimes neglected. The high diversity and density of 249 insects, coupled with laborious taxonomic assessment and lack of resources for taxonomists, 250 251 makes the morphological identification of every specimen sampled by mass-collecting 252 techniques a difficult and high resource-consuming task. The so-called "taxonomic impediment" (di Castri, Vernhes & Younes, 1992) encompasses two general difficulties: 1) not enough 253 resources and training are allocated to taxonomic work and 2) few people are working in 254 255 taxonomy thus slowing down the rate of species discovery, identification, and classification 256 (Wheeler, Raven & Wilson, 2004; de Carvalho et al., 2007; Ebach, Valdecasas & Wheeler, 2011; 257 Audisio, 2017). 258 We may be in the midst of a revolution in taxonomy to cope with recent technological advances (Dubois, 2011; Ceríaco et al., 2016; Garnett & Christidis, 2017; Raposo et al., 2017; Thorpe, 259 2017). At the same time, it is also clear that in the meantime, entomological research must use 260 complementary approaches to reliably estimate diversity through time and among localities. 261 262 Therefore, taxonomists should be part of any biodiversity studies using insect genomics, and the

- 263 DNA sequences generated by such studies should be seen as a necessary supplement to the
- traditional work of taxonomists.
- 265

266 *Rule 6: Isolate DNA in the right way*

267 Most recent studies using massively parallel DNA sequencing, even those on ancient insects, have used commercial kits for DNA isolation, thus reducing time, complexity, and health risks in 268 269 laboratory procedures (Staats et al., 2013; Heintzman et al., 2014; Kanda et al., 2015; Blaimer et 270 al., 2016; Pitteloud et al., 2017). However, in-house methods might be more effective than 271 commercial kits when working with old samples having little and low-quality DNA (e.g., see laboratory protocols in (Gilbert et al., 2007c; Meyer et al., 2016). Whenever possible, non-272 destructive protocols for DNA isolation are preferable when working with valuable, archived 273 specimens or with bulk samples such as those coming from insect mass-collecting techniques 274 275 that later need to be taxonomically curated. However, there is surprisingly little data available 276 comparing the efficiency of destructive vs. non-destructive protocols applied to insects (but see Gilbert et al., 2007a; Nieman et al., 2015). A number of non-destructive DNA isolation protocols 277 278 have been proposed (e.g., Thomsen et al., 2009; Castalanelli et al., 2010; Tin, Economo & 279 Mikheyev, 2014), but in general they vary depending on the targeted insect group. For example, insects whose external structure are not delicate, including Diptera, Hymenoptera and 280 Coleoptera, tend to be more resistant to submergence of whole specimen in extraction buffers, 281 giving higher DNA yields (Heintzman et al., 2014; Tin, Economo & Mikheyev, 2014). In other 282 more delicate groups such as Lepidoptera, the use of abdomens is advisable, given that in many 283 cases the abdomens need to be removed from the individual for genitalia preparation (Knölke et 284 al., 2005). In other insect groups that hold sufficient starting material for DNA isolation in 285 286 particular tissues, such as muscles in the massive legs of Orthoptera (grasshoppers, locusts, crickets) and large beetles, grinding one leg might not be a significant loss to the collection 287 (Tagliavia et al., 2011). 288

289 Many curators at NHMs may be reluctant to provide specimens for molecular studies, with valid 290 reasons, since most species might consist of singletons or very rare collections (Lim, Balke & Meier, 2012). The design of selective sampling, minimizing the damage of collections, is 291 292 therefore crucial. As a side note, there has not been any discussion in the literature about the suitability for massively parallel sequencing using the hundreds of thousands, or perhaps 293 294 millions, DNA aliquots generated in the past three decades for Sanger-sequencing work. In principle, old DNA aliquots of low quantities and potentially fragmented may face the same 295 constraints of using archived specimens from NHMs or other collections, and might thus be 296 297 processed using laboratory protocols designed for old specimens (e.g., library preparation, sequencing approach) (Tin, Economo & Mikheyev, 2014; Kanda et al., 2015; Suchan et al., 298 2016; Timmermans et al., 2016). 299

Highly-degraded DNA material, such as those coming from museum specimens, might not be 300 301 suitable for single-molecule DNA sequencing or by certain short-read sequencing protocols such as RADseq. High molecular weight is only ensured from fresh specimens that have been stored 302 303 at low temperatures. Moreover, in single-molecule sequencing technologies such as PacBio® (see Rule 7), the required DNA quantity may demand the use of more than one individual when 304 305 insects are tiny (Pacific Biosciences, 2018). Additionally, dissections of insects prior to genomic 306 DNA isolation might be necessary in single-molecule DNA sequencing, in order to avoid 307 inadvertently sequencing the DNA of symbionts, or when the focus of the study is on a particular 308 insect microbiome (e.g., the gut microbiota).

309

310 *Rule 7: Revise your DNA sequencing approach*

311 At this point, you should already have decided which sequencing approach will be best suitable to address your research question(s), but now you should carefully evaluate the quality of DNA 312 that you *de facto* were able to obtain, and decide on which sequencing approach to really follow. 313 Reviews on massively parallel DNA sequencing approaches can be found in the literature 314 (Mamanova et al., 2010; Metzker, 2010; Mardis, 2017). Below, we categorize and briefly 315 316 describe available massively parallel DNA sequencing technologies of potential interest for entomological biodiversity research (see Table 3 for a summary of such methods and key 317 publications). The current leading short-read DNA sequencing technology is from Illumina, Inc.: 318 approximately 68% of the studies we were able to find that used high-throughput sequencing on 319 320 insects were conducted using this platform (Fig. 3A). We have grouped the main approaches 321 used in the study of entomological biodiversity into three categories (Table 3): 1) targeted-322 sequencing, 2) non-targeted, reduced-representation of whole genome, and 3) whole-genome 323 skimming. In addition, emerging single-molecule DNA sequencing technologies, such as those developed by Oxford Nanopore Technologies Ltd. and PacBio (Pacific Biosciences of 324 California, Inc.), can accelerate the amount of DNA data recovery in real time (Thompson & 325 Milos, 2011). We consider these technologies as promising, despite the fact that they have only 326 been recently implemented for the study of insect diversity (e.g., in the genome assembly of a 327 firefly, Coleoptera, (Fu et al., 2017)). Below we provide a summary of these techniques. 328 Targeted Sequencing: This is a highly-efficient approach when the aim is to recover DNA 329 markers with a particular rate of evolution (fast and slow) or under different selective pressures 330 (Lemmon & Lemmon, 2013). Moreover, because it targets only a tiny subset of the whole 331 332 genome, targeted sequencing is cost-effective as tens or hundreds of specimens can be pooled together in a single sequencing experiment (Mamanova et al., 2010). In fact, about 65% of 333

NOT PEER-REVIEWED

Peer Preprints

334	published studies focusing on insects or their symbionts have used some form of targeted
335	sequencing (Fig. 3B). Targeted sequencing is particularly useful when working with
336	environmental samples, such as those coming from mass-sampling techniques (Morinière et al.,
337	2016). For example, metabarcoding, an approach that targets a barcoding region such as the COI
338	mitochondrial gene, can be useful in the study of evolution among environments and in
339	biodiversity assessments. This is because metabarcoding might be more reliable, faster and
340	replicable than traditional biodiversity surveys (Ji et al., 2013; Zhou et al., 2013; Vesterinen et
341	al., 2016), although they should rather be seen as complimentary (Ritter et al., 2019).
342	There are two usual ways to target particular loci: 1) through PCR or 2) by using "baits"-based
343	in-vitro capture. PCR has the advantage of being cheap but the development of universal primers
344	is the main limitation because sequence specificity to desired loci decreases through mutation
345	and long divergence times among lineages. Nevertheless, PCR-based amplicon sequencing is so
346	far the main method used in published studies with a focus on insects or their symbionts (ca.
347	60% of reviewed studies; Fig. 3B). On the other hand, target capture using hybridizing baits
348	instead of PCR can be expensive (baits need to be specially synthesized) but has the advantages
349	of 1) simplify laboratory procedures (one can pool several specimens for the capture
350	experiment), 2) target a wider range of lineages despite evolutionary distance among them, 3)
351	reduce amplification biases due to PCR primer design and relative abundance of DNA molecules
352	in a pool of specimens, and 4) it might still work with highly fragmented DNA such as those
353	coming from archived specimens at NHMs.

Prior genomic information, either published annotated genomes or transcriptomes, is needed in order to design target-enrichment probes, which are the hybridizing baits that pull out the targeted loci for sequencing. Probe kits targeting conserved regions primarily for phylogenomic

purposes have been published for those insect orders having good genomic reference databases 357 (Faircloth et al., 2015; Faircloth, 2016a; Young et al., 2016; Breinholt et al., 2018). Recent 358 attempts to integrate baits-based capture into metabarcoding have had different degrees of 359 success, such as the sequencing of non-target organisms or pseudogenes on the negative side 360 (Shokralla et al., 2016), or the recovery of sequences of very rare species in a pool of samples 361 362 and the quantification of relative abundance and biomass on the positive side (Dowle et al., 2016). 363 Random reduced-representation of genome: Restriction-site-associated DNA (RAD) sequencing 364 has proven to be a cost-efficient approach to generate millions of single nucleotide 365 366 polymorphisms (SNPs), both neutral and under selection (Andrews et al., 2016). However, there are two possible caveats. 367 Firstly, restriction enzyme sites may not be evolutionarily conserved. Thus, RAD-seq seems to 368 369 be restricted to populations or closely-related species. However, a recent protocol targeting 370 RAD-seq markers (hyRAD) may ameliorate the lack of phylogenetic conservation of restriction enzyme sites across divergent lineages (Suchan et al., 2016). 371 Secondly, the amount and quality of DNA might impose a limitation to RAD-seq. For example, 372 Tin, Economo & Mikheyev (2014), using ant specimens as old as 100 years, were able to recover 373 SNPs, but were unsuccessful at genome mapping due to the extremely short DNA fragments and 374 imprecise DNA size selection. Long DNA fragments are needed for an efficient restriction 375

are enzyme activity. An alternative reduced-representation method called MIG-seq (Suyama &

377 Matsuki, 2015) might work with moderately fragmented DNA, because it is based on PCR

378 without restriction enzyme digestion steps.

NOT PEER-REVIEWED

Peer Preprints

379 Whole-genome skimming: This is the simplest approach in terms of sequence library preparation. It consists of randomly, shallowly sequencing the whole-genome of an individual, 380 including both mitochondrial and nuclear content. Furthermore, when working with historical 381 specimens with highly fragmented DNA, one can skip the step of fragmentation (usually through 382 383 sonication) during library preparation (Suchan et al., 2016; Timmermans et al., 2016). Whole-384 genome skimming has been applied in a number of insect studies, proving that the method is fast and can recover entire mitochondrial genomes from even old museum material (Staats et al., 385 2013), and low-copy nuclear protein-coding genes (Maddison & Cooper, 2014; Kanda et al., 386 387 2015).

388 With the expected decrease in sequencing prices, target sequencing approaches may no longer be 389 a cost-effective choice in the future. For instance, recent studies have identified the benefits of mitochondrial metagenomics (MMG). This technique produces longer barcodes with larger 390 391 numbers of SNPs, because it uses mitogenomes instead of only the COI fragment, and PCR-free library preparation (e.g., Crampton-Platt et al., 2015). This in turn allows the use of highly-392 fragmented DNA from old specimens, and permits a more reliable quantification of relative 393 abundance (biomass) in mass-sampling collections (Crampton-Platt et al., 2015, 2016; 394 Cicconardi et al., 2017; Gómez-Rodríguez et al., 2017). However, it has been noted that having a 395 reference genome is important to improve mapping and discovery of homologous SNPs in the 396 nuclear genome (Tin, Economo & Mikheyev, 2014), which may yet restrict the use of whole-397 genome skimming and the recovery of nuclear data in insect groups with poor genomic 398 399 information.

400 <u>Single-molecule sequencing approaches</u> such as those developed by PacBio[®] and Oxford
401 Nanopore Technologies, Ltd. The portability of some devices (e.g., Oxford Nanopore

MinIONTM) that can generate DNA sequences in real-time and in virtually any place in the world
is a main advantage of these technologies. Indeed, DNA sequencing has already been performed
in remote field locations, dealing with for example vertebrates (Menegon et al., 2017) and plants
(e.g., Parker et al., 2017). The use of MinIONTM in DNA barcoding in insects has proven to be
fast (ca. 2 hours), cheap (<USD 2 per sample) and reliable when correction pipelines are used to
overcome the yet high basecall error rates (> 10%) (Mardis, 2017; Shendure et al., 2017;
Srivathsan et al., 2018).

Taxonomic biases in bulk material coming from mass-sampling techniques have been reported 409 410 when working with rDNA amplicons, perhaps associated with the different fragment lengths across insect orders (Krehenwinkel et al., 2018). On the other hand, laboratory protocols are 411 simplified and DNA amplification is not necessary in single-molecule sequencing, which is 412 beneficial for a more accurate quantification of DNA molecules present in the sample pool 413 414 (Thompson & Milos, 2011). Single-molecule sequencing also promises to drastically reduce costs, meaning that the time when having complete genome sequences for any living insect 415 might be even closer than previously thought (Kelley et al., 2014). Finally, the long reads that 416 single-molecule sequencing approaches generate might help resolve long repeat elements in the 417 genome, thus providing invaluable scaffold for short reads to improve accuracy in assembly and 418 annotation of insect genomes (e.g., see Richards & Murali, 2015). 419

The quality of reference genomes and chromosome-scale scaffolds can be improved by
combining long-range and short-read sequencing technologies. For example, PacBio and
Nanopore sequencing can overcome repetitive elements by sequencing long DNA fragments,
while more accurate short-read sequencing technologies like Illumina can sort out the high error
rate of long-range sequencing platforms. For instance, this approach has led to 200-fold increases

425 in contig assembly length and the filling of many gaps in genomes left by short-read approaches426 only (for example, in avian genome assemblies, Korlach et al., 2017).

427

428 Rule 8: Choose the most suitable tools for data analyses

429 Although genomic sequencing is becoming easier and more affordable, processing the data generated remains a major bottleneck in many projects. Bioinformatic pipelines have been 430 implemented during the past two decades of massively parallel sequencing, thus researchers 431 432 nowadays count with standard procedures to analyze genomic DNA. For example, packages for 433 cleaning and assembling reads exist for bait-based targeted sequencing, such as PHYLUCE (Faircloth, 2016b) and SECAPR (Andermann et al., 2018), as well as for RADseq analysis, such 434 as Stacks (Rochette & Catchen, 2017). However, there remain limitations and challenges. For 435 436 example, missing data in supermatrices for phylogenomic studies might hinder statistical power in the inference of species relationships, but their effects in systematic biases are yet unclear 437 438 (Misof et al., 2014b,a). Moreover, taxonomic sampling in phylogenomics is usually lower than in 439 published Sanger-sequencing work, which may bias systematic inference in insect higher-level 440 phylogenies (Behura, 2015). In general, phylogenomic dataset sizes increase as sequencing costs per base pair decreases over time (Bravo et al., 2018). 441

A number of pipelines have been published for analyzing amplicon-based, target-sequencing
data from environmental samples (Schloss et al., 2009; Caporaso et al., 2010; Boyer et al., 2016).
Such programs provide a delimitation of Operational Taxonomic Units (OTUs), the analogs of
species, derived from sequence similarity of typically 97 %. However, assigning thresholds to
define analogs of species is problematic because 1) there is a risk to artificially increase or

decrease local diversity as compared to morphology-based taxonomic assessments, 2) inflated 447 OTU richness might be related to sequence chimeras and sequencing errors (but see recent 448 methods to alleviate this; e.g., Frøslev et al., 2017), and 3) there is a lack of standardization of 449 threshold values in the literature, reducing the comparability potential of results across studies 450 (Huse et al., 2010; Oliver et al., 2015; Alberdi et al., 2018). The shortcomings of using 451 thresholds to define OTUs might even escalate when studying the entomofauna of hyperdiverse 452 regions such as the tropics. In those cases, there are usually no good estimates of genetic 453 variability between species and a large portion of tropical insects are not represented in reference 454 455 databases. In any case, the preservation and morphological study of vouchers are critical to validate taxonomic assignments and thresholds. 456 Mitochondrial metagenomics could in principle improve OTU assignments and species 457 delimitation because contigs span different barcode regions (COI, ND2, 16S rDNA) (Tedersoo et 458 459 al., 2015; Liu et al., 2016; Srivathsan et al., 2016) and risks of primer-related biases are ameliorated (Taberlet et al., 2012; Tang et al., 2014). Whilst approaches such as log-binomial 460 normalizations (through DeSeq2 and CSS) have attempted to normalize metabarcoding data 461 (McMurdie & Holmes, 2014), results via PCR-based approaches remain semi-quantitative at best 462

463 (Pawluczyk et al., 2015). However, metagenomic studies of insects have generally been limited

only to their microbiomes (Cox-Foster et al., 2007; Suen et al., 2010; Shi et al., 2013). It is

difficult to assess the convenience of metagenomics in more complex environmental insect

samples because 1) *de novo* assembly of mixed mitogenomes remains challenging due to the

- scarcity of reference mitogenomes, and 2) as the number of individuals in a pool increases,
- sequencing depth needs to be significantly increased in order to get large enough k-mers/contigs

- to partition different mitogenomes. (but see some exceptions in Crampton-Platt et al., 2015,
- 470 2016; Cicconardi et al., 2017; Gómez-Rodríguez et al., 2017).
- 471
- 472 *Rule 9: Make your data and results publicly available*

473 From a practical viewpoint, what is not in a database does not exist (or nearly so). Databases are not only the repositories of genomic information, but also an indispensable tool in the study of 474 biodiversity and evolution. They also allow the reproduction of results and use for other purposes 475 476 such as in biodiversity assessments. Biodiversity and evolutionary studies might benefit from the 477 hundreds of insect genome projects already published and registered in GenBank (Yeates et al., 2016) and InsectBase (Yin et al., 2016). In the study of species interactions, such as in host-478 parasite and feeding habits, a reference database is important because in many cases the 479 480 identification of taxa through morphological comparison becomes impossible. Examples include the study of internal parasites (Schoonvaere et al., 2016), gut microbiota (Hammer et al., 2017), 481 482 and highly-degraded organic material as in dietary content (Pompanon et al., 2012). 483 Initiatives such as BOLD (Ratnasingham & Hebert, 2007) and the widespread usage of the COI 484 barcode will certainly contribute to the assignments of OTU thresholds when studying tropical communities (García-Robledo et al., 2013). However, building local databases that include 485 several markers would complement metabarcoding studies in the identification and delimitation 486 487 of species (Deagle et al., 2014). Several national reference databases have been implemented or are underway, such as the newly initiated DNAmark project in Denmark 488 489 (https://dnamark.ku.dk/). That initiative aims to provide a reference database for 1,000 species with full mitochondrial sequences, along with nuclear sequences derived from shotgun 490

NOT PEER-REVIEWED

Peer Preprints

491 sequencing. Other initiatives to catalogue national biodiversity have also been put forward in
492 Germany (Hendrich et al., 2015), Norway (NorBOL, http://www.norbol.org/) and Finland
493 (FinBOL; http://www.finbol.org/), which together are further expanding the BOLD project
494 worldwide.

495

496 Rule 10: Disseminate your findings

Research articles are the standard way to communicate results to the scientific community. 497 498 However, misinterpretations of scientific findings can be common in the literature aimed for the 499 general public and decision-makers. Thus, public outreach should be explicitly considered as part of project design. Moreover, because scientific research is a collaborative enterprise (see Rule 2), 500 it is important to discuss and reach a consensus with collaborators before spreading findings to 501 502 the general public. This is particularly important given the recent misunderstandings on biodiversity research that have been reported, and the urge to include both factual evidence and 503 504 ethical arguments in communications to the general public (Antonelli & Perrigo, 2018). 505 Given that diversity estimates can fluctuate significantly depending on the way data are produced 506 and analyzed (e.g., as in metabarcoding; Frøslev et al., 2017; Alberdi et al., 2018) special care should be taken when presenting these findings. In general, we advocate for approaches that do 507 not artificially inflate diversity estimates. Furthermore, the access of scientific knowledge and 508 509 data by governmental bodies is still restricted, especially in low and lower-middle income countries. Biodiversity is a cornerstone in Environmental Impact Assessments, but animal groups 510 511 such as insects remain underrepresented in biodiversity assessments in species-rich countries (Ritter et al., 2017). 512

513

514 **Perspectives and Conclusions**

515	In this article we have identified general challenges, including: 1) insufficient evaluation of non-
516	destructive methods applied to insects, in order to generate DNA of high quantity and quality
517	from fresh, mass-collections and archived specimens, 2) limitations to genomic data analyses,
518	including missing genomic information from datasets and methods for estimating diversity and
519	abundance in environmental samples, and 3) limited taxonomic, ecological, and life history
520	knowledge, which is not being produced at the same pace as genomic data.
521	Insects are ideal study organisms because they show remarkable diversity in species number and
522	ecology, being the dominant eukaryotic group in most terrestrial and freshwater environments.
523	The integration of ecology and evolution is achievable with the new massively parallel
524	sequencing approaches, which offer the possibility to generate datasets that can be used in the
525	study of biodiversity at different spatiotemporal scales. For example, the evolutionary framework
526	of local insect communities can now be inferred in a single sequencing effort (Crampton-Platt et
527	al., 2015), while the study of populations and speciation using massively parallel sequencing can
528	be better understood with a comprehensive knowledge of local variations (Jiggins, 2016).
529	Altogether, we expect that the increase of molecular data together with more taxonomic and
530	ecological studies will allow a better understanding of biodiversity and evolution.

531

532 Acknowledgements

NOT PEER-REVIEWED

533	We thank the Associate Editor and three anonymous reviewers for comments and suggestions
534	that contributed to improving this manuscript. This article is a product of the workshop
535	organized by the Gothenburg Global Biodiversity Centre (GGBC), in Gothenburg, Sweden, in
536	February 2017. We are grateful to Sven Toresson for his help in organizing the logistics of the
537	workshop and many colleagues for discussions and feedback.
538	
539	References
540	Agosti D., Majer JD., Alonso LE., Schultz TR. 2000. Ants. Standard methods for measuring and
541	monitoring biodiversity. Washington, DC.: Smithsonian Institution Press.
542	Alberdi A., Aizpurua O., Gilbert MTP., Bohmann K. 2018. Scrutinizing key steps for reliable
543	metabarcoding of environmental samples. Methods in Ecology and Evolution 9:134-147.
544	DOI: 10.1111/2041-210X.12849.
545	Andermann T., Cano Á., Zizka A., Bacon C., Antonelli A. 2018. SECAPR - A bioinformatics
546	pipeline for the rapid and user-friendly processing of Illumina sequences, from raw reads to
547	alignments. PeerJ 6:e5175. DOI: 10.7717/peerj.5175.
548	Andrews KR., Good JM., Miller MR., Luikart G., Hohenlohe PA. 2016. Harnessing the power of
549	RADseq for ecological and evolutionary genomics. Nature Reviews Genetics 17:81–92.
550	DOI: 10.1038/nrg.2015.28.
551	Antonelli A., Perrigo A. 2018. The science and ethics of extinction. Nature Ecology &
552	Evolution:In Press. DOI: 10.1038/s41559-018-0500-z.
553	Audisio P. 2017. Insect taxonomy, biodiversity research and the new taxonomic impediments.

554 *Fragmenta Entomologica* 49:121–124. DOI: 10.4081/fe.2017.252.

- 555 Barnosky AD., Matzke N., Tomiya S., Wogan GOU., Swartz B., Quental TB., Marshall C.,
- 556 McGuire JL., Lindsey EL., Maguire KC., Mersey B., Ferrer EA. 2011. Has the Earth's sixth
- 557 mass extinction already arrived? *Nature* 471:51–57. DOI: 10.1038/nature09678.
- Basset Y., Barrios H., Segar S., Srygley RB., Aiello A., Warren AD., Delgado F., Coronado J.,
- Lezcano J., ARizala S., Rivera M., Perez F., Bobadilla R., Lopez Y., Ramirez JA. 2015.
- 560 The butterflies of Barro Colorado Island, Panama: local extinction since the 1930s. *PLoS*
- 561 *ONE* 10:e0136623. DOI: 10.1371/journal.pone.0136623.
- 562 Basset Y., Novotny V., Miller SE., Kitching RL. 2003. Methodological advances and limitations
- in canopy entomology. In: Basset Y, Novotny V, Miller SE, Kitching RL eds. Arthropods of
- 564 *Tropical Forests: Spatio-temporal dynamics and resource use in the canopy.* Cambridge,
- 565 UK: Cambridge University Press, 7–16.
- 566 Behura SK. 2015. Insect phylogenomics. *Insect Molecular Biology* 24:403–411. DOI:
- 567 10.1111/imb.12174.
- 568 Blaimer BB., Lloyd MW., Guillory WX., Brady SG. 2016. Sequence capture and phylogenetic
- tility of genomic ultraconserved elements obtained from pinned insect specimens. *PLoS*

570 *ONE* 11:e0161531. DOI: 10.1371/journal.pone.0161531.

- 571 Borkent A., Brown B V. 2015. How to inventory tropical flies (Diptera) One of the
- 572 megadiverse orders of insects. *Zootaxa* 3949:301–322. DOI: 10.11646/zootaxa.3949.3.1.
- 573 Boyer F., Mercier C., Bonin A., Le Bras Y., Taberlet P., Coissac E. 2016. OBITOOLS: a UNIX-
- 574 inspired software package for DNA metabarcoding. *Molecular Ecology Resources* 16:176–

575	182. DOI: 10.1111/1755-0998.12428.
-----	------------------------------------

- 576 Bravo GA., Antonelli A., Bacon CD., Bartoszek K., Huynh S., Jones G., Knowles LL.,
- 577 Lamichhaney S., Marcussen T., Nakhleh LK., Oxelman B., Pfeil B., Schliep A., Werneck
- 578 FP., Wiedenhoeft J., Willows-Munro S., Edwards S V. 2018. Embracing heterogeneity:
- 579 building the Tree of Life and the future of phylogenomics. *PeerJ PrePrints* 6:e26449v3.
- 580 DOI: 10.7287/peerj.preprints.26449v3.
- 581 Breinholt JW., Earl C., Lemmon AR., Lemmon EM., Xiao L., Kawahara AY. 2018. Resolving
- relationships among the megadiverse butterflies and moths with a novel pipeline for
- anchored phylogenomics. *Systematic Biology* 67:78–93. DOI: 10.1093/sysbio/syx048.
- Buerki S., Baker WJ. 2016. Collections-based research in the genomic era. *Biological Journal of the Linnean Society* 117:5–10. DOI: 10.1111/bij.12721.
- 586 Burrell AS., Disotell TR., Bergey CM. 2015. The use of museum specimens with high-
- throughput DNA sequencers. *Journal of Human Evolution* 79:35–44. DOI:
- 588 10.1016/j.jhevol.2014.10.015.
- 589 Caporaso JG., Kuczynski J., Stombaugh J., Bittinger K., Bushman FD., Costello EK., Fierer N.,
- 590 Peña AG., Goodrich JK., Gordon JI., Huttley GA., Kelley ST., Knights D., Koenig JE., Ley
- 591 RE., Lozupone CA., Mcdonald D., Muegge BD., Pirrung M., Reeder J., Sevinsky JR.,
- 592 Turnbaugh PJ., Walters WA., Widmann J., Yatsunenko T., Zaneveld J., Knight R. 2010.
- 593 QIIME allows analysis of high- throughput community sequencing data. *Nature Methods*
- 594 7:335–336. DOI: 10.1038/nmeth0510-335.
- 595 Carøe C., Gopalakrishnan S., Vinner L., Mak SST., Sinding M-HS., Samaniego JA., Wales N.,

596	Sicheritz-Pontén T., Gilbert MTP. 2018. Single-tube library preparation for degraded DNA.
597	Methods in Ecology and Evolution 9:410–419. DOI: 10.1111/2041-210X.12871.
598	de Carvalho MR., Bockmann FA., Amorim DS., Brandao CRF., de Vivo M., de Figueiredo JL.,
599	Britski HA., de Pinna MCC., Menezes NA., Marques FPL., Papavero N., Cancello EM.,
600	Crisci J V., McEachran JD., Schelly RC., Lundberg JG., Gill AC., Britz R., Wheeler QD.,
601	Stiassny MLJ., Parenti LR., Page LM., Wheeler WC., Faivovich J., Vari RP., Grande L.,
602	Humphries CJ., DeSalle R., Ebach MC., Nelson GJ. 2007. Taxonomic impediment or
603	impediment to taxonomy? A commentary on systematics and the cybertaxonomic-
604	automation paradigm. Evolutionary Biology 34:140–143. DOI: 10.1007/s11692-007-9011-
605	6.
606	Castalanelli MA., Severtson DL., Brumley CJ., Szito A., Foottit RG., Grimm M., Munyard K.,
607	Groth DM. 2010. A rapid non-destructive DNA extraction method for insects and other
608	arthropods. Journal of Asia-Pacific Entomology 13:243–248. DOI:
609	10.1016/j.aspen.2010.04.003.
610	di Castri F., Vernhes JR., Younes T. 1992. The network approach for understanding global
611	biodiversity. Biology International. The News Magazine of the International Union of
612	Biological Sciences (IUBS) 25:3–9.
613	Ceballos G., Ehrlich PR., Barnosky AD., García A., Pringle RM., Palmer TM. 2015. Accelerated
614	modern human-induced species losses: entering the sixth mass extinction. Sciences
615	Advances 1:e1400253. DOI: 10.1126/sciadv.1400253.
616	Ceríaco LMP., Gutiérrez EE., Dubois A., Abdala CS., Alqarni AS., Adler K., Adriano EA.,
617	Aescht E., Agarwal I., Agatha S., Agosti D., Aguiar AJC., Aguiar JJM., Ahrens D., Aleixo

618	A., Alves MJ., Do Amaral FR., Ananjeva N., Andrade MC., De Andrade MB., Andreone F.,
619	Aquino PPU., Araujo PB., Arnaud H., Arroyave J., Arthofer W., Artois TJ., Astúa D.,
620	Azevedo C., Bagley JC., Baldo D., Barber-James HM., Bärmann E V., Bastos-Silveira C.,
621	Bates MF., Bauer AM., Bauer F., Benine RC., Bennett DJ., Bentlage B., Berning B., Bharti
622	D., Biondo C., Birindelli J., Blick T., Boano G., Bockmann FA., Bogdanowicz W., Böhme
623	W., Borgo E., Borkin L., Bornschein MR., Bour R., Branch WR., Brasileiro CA., Braun
624	JK., Bravo GA., Brendonck L., Brito GRR., Britto MR., Buckup PA., Burckhardt D.,
625	Burkhardt U., Busack SD., Campos LA., Canard A., Cancello EM., Caramaschi U.,
626	Carpenter JM., Carr M., Carrenho R., Cartaxana A., Carvajal MA., Carvalho GS., De
627	Carvalho MR., Chaabane A., Chagas C., Chakrabarty P., Chandra K., Chatzimanolis S.,
628	Chordas SW., Christoff AU., Cianferoni F., Claramunt S., Cogãlniceanu D., Collette BB.,
629	Colli GR., Colston TJ., Conradie W., Constant J., Constantino R., Cook JA., Cordeiro D.,
630	Correia AM., Cotterill FPD., Coyner B., Cozzuol MA., Cracraft J., Crottini A., Cuccodoro
631	G., Curcio FF., D'Udekem D'Acoz C., D'Elía G., D'Haese C., Das I., Datovo A., Datta-
632	Roy A., David P., Day JG., Daza JD., De Bisthoven LJ., De La Riva De La Viña IJ., De
633	Muizon C., De Pinna M., Piacentini VDQ., De Sá RO., De Vivo M., Decher J., Dekoninck
634	W., Delabie JHC., Delfino M., Delmastro GB., Delsinne T., Denys C., Denzer W.,
635	Desutter-Grandcolas L., Deuti K., De Resbecq TD., Di Dario F., Dinets V., DoNascimiento
636	C., Donoso DA., Doria G., Drewes RC., Drouet E., Duarte M., Durette-Desset MC.,
637	Dusoulier F., Dutta SK., Engel MS., Epstein M., Escalona M., Esselstyn JA., Eto K.,
638	Faivovich J., Falaschi RL., Falin ZH., Faundez EI., Feijó A., Feitosa RM., Fernandes DS.,
639	Fikáček M., Fisher BL., FitzPatrick MJ., Forero D., Franz I., Freitag H., Frétey T., Fritz U.,
640	Gallut C., Gao S., Garbino GST., Garcete-Barrett BR., García-Prieto L., García FJ., Garcia

641	PCA., Gardner AL., Gardner SL., Garrouste R., Geiger MF., Giarla TC., Giri V.,
642	Glaubrecht M., Glotzhober RC., Godoi FSP., Gofas S., Gonçalves PR., Gong J., Gonzalez
643	VH., González-Orej JA., González-Santillán E., González-Soriano E., Goodman SM.,
644	Grandcolas P., Grande L., Greenbaum E., Gregorin R., Grillitsch H., Grismer LL.,
645	Grootaert P., Grosjean S., Guarino FM., Guayasamin JM., Guénard B., Guevara L., Guidoti
646	M., Gupta D., Gvoždík V., Haddad CFB., Hallermann J., Hassanin A., Hausmann A.,
647	Heaney LR., Heinicke MP., Helgen KM., Henle K., Hirschmann A., Holmes MW.,
648	Hołyńska M., Hołyński R., Hormiga G., Huber BA., Hugot JP., Hutterer R., Iskandar D.,
649	Iverson JB., Jäger P., Janssen R., Jerep F., Jocqué R., Jungfer KH., Justine J Lou., Kamei
650	RG., Kamiński MJ., Karner M., Kearney T., Khot R., Kieckbusch M., Köhler J., Koepfli
651	KP., Kondorosy E., Krogmann L., Krolow TK., Krüger M., Kucharzewski C., Kullander
652	SO., Kumar S., Kupfer A., Kuramoto M., Kurina O., Kury A., Kvist S., La Marca E., La
653	Terza A., LaVal R., Lacher TE., Lamas CJE., Lambert MR., Landry B., Langeani F.,
654	Langone JA., Lattke JE., Lavilla EO., Leenders T., Lees DC., Leite YLR., Lehmann T.,
655	Lhano MG., Lim BK., Lin X., Löbl I., De Lucena CAS., De Lucena ZMS., Lucinda P.,
656	Lujan NK., Luporini P., Luz DR., Lynch JD., Machado LF., Mahony S., Malabarba LR.,
657	Manuel-Santos M., Marinho-Filho J., Marini M., Marques AC., Marques MP., Mateus O.,
658	Matsui M., Mazuch T., McCranie J., McKellar RC., McMahan CD., Mecke S., Meißner K.,
659	Mendoza-Becerril MA., Mendoza-Palmero CA., Merker S., Mezzasalma M., Midgley JM.,
660	Miller J., Miller MJ., Mincarone MM., Minet J., Miralles A., Miranda TP., Missoup AD.,
661	Modrý D., Molinari J., Monadjem A., Montreuil O., Moratelli R., Moreira CR., Moreira
662	FFF., Mourer-Chauviré C., Mulieri PR., Munroe TA., Naomi SI., Nascimento F., Nässig
663	WA., Neifar L., Netto-Ferreira AL., Niamir A., Nielsen S V., Nihei SS., Nistri A.,

664	Oceguera-Figueroa A., Odierna G., Ohler A., Ojanguren-Affilastro AA., De Oliveira FF.,
665	De Oliveira ML., De Oliveira OMP., Oliveira SS., Olson LE., Ong'ondo GO., Orlov N.,
666	Ornelas-García CP., Ortega H., Ortega-Andrade M., Ota H., Pariselle A., Passos P., Pastana
667	MNL., Patterson BD., Patitucci LD., Patton JL., Pavan AC., Pavan SE., Pavia M., Peloso
668	PLV., Pelzer A., Pereyra MO., Perez-Gonzalez A., Pérez-Luz B., Pérez CHF., Peterhans
669	JK., Peterson AT., Pétillon J., Philips TK., Picariello O., Pie MR., Pikart TG., Pine RH.,
670	Pinheiro U., Pinho LC., Pinto ÂP., Costa LP., Poggi R., Pombal JP., Prabhu M., Prendini
671	E., Prendini L., Purushothaman J., Pyron RA., Quintela-Alonso P., Quinteros AS., Quiroga-
672	Carmona M., Rabitsch W., Raffaëlli J., Rage JC., Rajaei H., Ramírez MJ., Raposo MA., Py-
673	Daniel LHR., Rasplus JY., Ratcliffe BC., Reddy S., Reis RE., Remsen J V., Richards LR.,
674	Richling I., Robillard T., Rocha MS., Rocha RM., Rödder D., Rödel MO., Rodrigues FP.,
675	Rodriguez E., Rogers DS., Rojas-Runjaic FJM., Röll B., Rosenberger AL., Rowley J., Roza
676	AS., Ruedi M., Salazar-Bravo J., Salcedo NJ., Samyn Y., Santana SE., Santoferrara L.,
677	Santos BF., Santos CMD., Santos JC., Santos MPD., Sargis EJ., Schargel WE., Schätti B.,
678	Scherz MD., Schlick-Steiner BC., Schmidt RC., Schmitt T., Schodde R., Schoeman CS.,
679	Schweiger S., Schwertner CF., Seamark ECJ., Semedo TBF., Shin MK., Siler CD., Silveira
680	LF., Simison WB., Simões M., Sites JW., Smith BT., Smith KT., Song W., Soulier-Perkins
681	A., Sousa LM., Sparks JS., Stampar SN., Steiner FM., Steyer JS., Stiassny MLJ., Stoeck T.,
682	Stopiglia R., Streicher JW., Sturaro MJ., Stys P., Swierk L., Taeger A., Takiya DM.,
683	Taphorn DC., Tavares M., Tavares VDC., Taylor PJ., Tello JG., Teta P., Tillack F., Timm
684	RM., Tokaryk T., Tominaga A., Tonini JFR., Tornabene L., Torres-Carvajal O., Townsend
685	J., Trape JF., Rodrigues MT., Trusch R., Tschopp E., Uhl D., Upham NS., Vacher JP.,
686	Valdesalici S., Van Bocxlaer B., Van Cakenberghe V., Van De Kamp T., Van De Velde I.,

687	Van Den Spiegel D., Vanhove MPM., Vasudevan K., Veerappan D., Velazco PM., Verdade
688	VK., Verheyen E., Vieira LM., Victoriano PF., Vitt LJ., Wagner P., Watkins-Colwell GJ.,
689	Weisse T., Werneck FP., Wheeler WC., Wilson DE., Valero KCW., Wood PL., Woodman
690	N., Quetzalli HDY., Yoshikawa N., Zaher H., Ziegler T., Zima J., Zink RM., Zug G. 2016.
691	Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for
692	biological sciences. Zootaxa 4196:435-445. DOI: 10.11646/zootaxa.4196.3.9.
693	Cicconardi F., Borges PAV., Strasberg D., Oromí P., López H., Pérez-Delgado AJ., Casquet J.,
694	Caujapé-Castells J., Fernández-Palacios JM., Thébaud C., Emerson BC. 2017. MtDNA
695	metagenomics reveals large-scale invasion of belowground arthropod communities by
696	introduced species. <i>Molecular Ecology</i> 26:3104–3115. DOI: 10.1111/mec.14037.
697	Corthals A., Desalle R. 2005. An application of tissue and DNA banking for genomics and
698	conservation: the Ambrose Monell Cryo-Collection (AMCC). Systematic Biology 54:819-
699	823. DOI: 10.1080/10635150590950353.
700	Cox-Foster DL., Conlan S., Holmes EC., Palacios G., Evans JD., Moran NA., Quan P-L., Briese
701	T., Hornig M., Geiser DM., Martinson V., Kalkstein AL., Drysdale A., Hui J., Zhai J., Cui
702	L., Hutchison SK., Simons JF., Egholm M., Pettis JS., Lipkin WI. 2007. A metagenomic
703	survey of microbes in honey bee Colony Collapse Disorder. Science 318:283–288.
704	Crampton-Platt A., Timmermans MJTN., Gimmel ML., Kutty SN., Cockerill TD., Khen CV.,
705	Vogler AP. 2015. Soup to tree: the phylogeny of beetles inferred by mitochondrial
706	metagenomics of a Bornean rainforest sample. Molecular Biology and Evolution 32:2302-
707	2316. DOI: 10.1093/molbev/msv111.
708	Crampton-Platt A., Yu DW., Zhou X., Vogler AP. 2016. Mitochondrial metagenomics: letting

709	the genes out of the bottle. <i>GigaScience</i> 5:15. DOI: 10.1186/s13742-016-0120-y.
710	Deagle BE., Jarman SN., Coissac E., Pompanon F., Taberlet P. 2014. DNA metabarcoding and
711	the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters
712	10:20140562. DOI: 10.1098/rsbl.2014.0562.
713	Dillon N., Austin AD., Bartowsky E. 1996. Comparison of preservation techniques for DNA
714	extraction from hymenopterous insects. Insect Molecular Biology 5:21-24. DOI:
715	10.1111/j.1365-2583.1996.tb00036.x.
716	Dowle EJ., Pochon X., C Banks J., Shearer K., Wood SA. 2016. Targeted gene enrichment and
717	high-throughput sequencing for environmental biomonitoring: a case study using freshwater
718	macroinvertebrates. Molecular Ecology Resources 16:1240–1254. DOI: 10.1111/1755-
719	0998.12488.
720	Dubois A. 2011. The International Code of Zoological Nomenclature must be drastically
721	improved before it is too late. <i>Bionomina</i> 2:1–104. DOI: 10.11646/bionomina.2.1.1.
722	Ebach MC., Valdecasas AG., Wheeler QD. 2011. Impediments to taxonomy and users of
723	taxonomy: accessibility and impact evaluation. Cladistics 27:550-557. DOI:
724	10.1111/j.1096-0031.2011.00348.x.
725	Faircloth BC. 2016a. Identifying conserved genomic elements and designing universal probe sets
726	to enrich them. <i>bioRxiv</i> :077172. DOI: 10.1101/077172.
727	Faircloth BC. 2016b. PHYLUCE is a software package for the analysis of conserved genomic
728	loci. Bioinformatics 32:786–788. DOI: 10.1093/bioinformatics/btv646.
729	Faircloth BC., Branstetter MG., White ND., Brady SG. 2015. Target enrichment of

NOT PEER-REVIEWED

730	ultraconserved elements from arthropods provides a genomic perspective on relationships
731	among Hymenoptera. Molecular Ecology Resources 15:489–501. DOI: 10.1111/1755-
732	0998.12328.
733	Ferro ML., Park J-S. 2013. Effect of propylene glycol concentration on mid-term DNA
734	preservation of Coleoptera. The Coleopterists Bulletin 67:581–586. DOI: 10.1649/0010-
735	065X-67.4.581.
736	Frøslev TG., Kjøller R., Bruun HH., Ejrnæs R., Brunbjerg AK., Pietroni C., Hansen AJ. 2017.
737	Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity
738	estimates. Nature Communications 8:1188. DOI: 10.1038/s41467-017-01312-x.
739	Fu X., Li J., Tian Y., Quan W., Zhang S., Liu Q., Liang F., Zhu X., Zhang L., Wag D., Hu J.
740	2017. Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome.
741	GigaScience 6:1–7. DOI: 10.1093/gigascience/gix112.
742	García-Robledo C., Erickson DL., Staines CL., Erwin TL., Kress WJ. 2013. Tropical plant-
743	herbivore networks: reconstructing species interactions using DNA barcodes. PLoS ONE
744	8:e52967. DOI: 10.1371/journal.pone.0052967.
745	Garnett ST., Christidis L. 2017. Taxonomy anarchy hampers conservation. <i>Nature</i> 546:25–27.
746	DOI: 10.1038/546025a.
747	Gilbert MTP., Moore W., Melchior L., Worebey M. 2007a. DNA extraction from dry museum
748	beetles without conferring external morphological damage. PLoS ONE 2:e272. DOI:
749	10.1371/journal.pone.0000272.
750	Gilbert MTP., Sanchez JJ., Haselkorn T., Jewell LD., Lucas SB., Van Marck E., Børsting C.,

751	Morling N., Worobey M. 2007b. Multiplex PCR with minisequencing as an effective high-
752	throughput SNP typing method for formalin-fixed tissue. <i>Electrophoresis</i> 28:2361–2367.
753	DOI: 10.1002/elps.200600589.
754	Gilbert MTP., Tomsho LP., Rendulic S., Packard M., Drautz DI., Sher A., Tikhonov A., Dalén
755	L., Kuznetsova T., Kosintsev P., Campos PF., Higham T., Collins MJ., Wilson AS.,
756	Shidlovskiy F., Buigues B., Ericson PGP., Germonpré M., Götherström A., Iacumin P.,
757	Nikolaev V., Nowak-Kemp M., Willerslev E., Knight JR., Irzyk GP., Perbost CS.,
758	Fredrikson KM., Harkins TT., Sheridan S., Miller W., Schuster SC. 2007c. Whole-genome
759	shotgun sequencing of mitochondria from ancient hair shafts. Science 317:1927–1930. DOI:
760	10.1126/science.1146971.
761	Gómez-Rodríguez C., Timmermans MJTN., Crampton-Platt A., Vogler AP. 2017. Intraspecific
762	genetic variation in complex assemblages from mitochondrial metagenomics: comparison
763	with DNA barcodes. Methods in Ecology and Evolution 8:248-256. DOI: 10.1111/2041-
764	210X.12667.
765	Gómez IC., Sääksjärvi IE., Mayhew PJ., Pollet M., Rey del Castillo C., Nieves-Aldrey JL.,
766	Broad GR., Roininen H., Tuomisto H. 2018. Variation in the species richness of parasitoid
767	wasps (Ichneumonidae: Pimplinae and Rhyssinae) across sites on different continents.
768	Insect Conservation and Diversity: In Press. DOI: 10.1111/icad.12281.
769	Goodwin S., McPherson JD., McCombie WR. 2016. Coming of age: ten years of next-generation
770	sequencing technologies. Nature Reviews Genetics 17:333-351. DOI: 10.1038/nrg.2016.49.
771	Gottdenker NL., Chaves LF., Calzada JE., Peterson JK., Santamaría A., Pineda V., Saldaña A.
772	2016. Trypanosoma cruzi and Trypanosoma rangeli co-infection patterns in insect vectors

773	vary across habitat types in a fragmented forest landscape. Parasitology Open 2:e10. DOI:
774	10.1017/pao.2016.9.
775	Grimaldi D., Engel MS. 2005. Evolution of the Insects. New York, USA: Cambridge University
776	Press.
777	Hamilton AJ., Basset Y., Benke KK., Grimbacher PS., Miller SE., Novotný V., Samuelson GA.,
778	Stork NE., Weiblen GD., Yen JDL. 2010. Quantifying uncertainty in estimation of tropical
779	arthropod species richness. The American Naturalist 176:90-95. DOI: 10.1086/652998.
780	Hammer TJ., Janzen DH., Hallwachs W., Jaffe SP., Fierer N. 2017. Caterpillars lack a resident
781	gut microbiome. Proceedings of the National Academy of Sciences 114:9641–9646. DOI:
782	10.1073/pnas.1707186114.
783	Heintzman PD., Elias SA., Moore K., Paszkiewicz K., Barnes I. 2014. Characterizing DNA
784	preservation in degraded specimens of Amara alpina (Carabidae: Coleoptera). Molecular
785	Ecology Resources 14:606–615. DOI: 10.1111/1755-0998.12205.
786	Hendrich L., Morinière J., Haszprunar G., Hebert PDN., Hausmann A., Köhler F., Balke M.
787	2015. A comprehensive DNA barcode database for Central European beetles with a focus
788	on Germany: adding more than 3500 identified species to BOLD. Molecular Ecology
789	Resources 15:795–818. DOI: 10.1111/1755-0998.12354.
790	Höfer H., Astrin J., Holstein J., Spelda J., Meyer F., Zarte N. 2015. Propylene glycol – a useful
791	capture preservative for spiders for DNA barcoding. Arachnologische Mitteilungen 50:30-
792	36. DOI: 10.5431/aramit5005.
793	Huse SM., Welch DM., Morrison HG., Sogin ML. 2010. Ironing out the wrinkles in the rare
	PeerJ Preprints https://doi.org/10.7287/peerj.preprints.26661v3 CC BY 4.0 Open Access rec: 1 Mar 2019, publ: 1 Mar 2019

794	biosphere through improved OTU clustering. Environmental Microbiology 12:1889–1898.
795	DOI: 10.1111/j.1462-2920.2010.02193.x.
796	Ji Y., Ashton L., Pedley SM., Edwards DP., Tang Y., Nakamura A., Kitching R., Dolman PM.,
797	Woodcock P., Edwards FA., Larsen TH., Hsu WW., Benedick S., Hamer KC., Wilcove
798	DS., Bruce C., Wang X., Levi T., Lott M., Emerson BC., Yu DW. 2013. Reliable, verifiable
799	and efficient monitoring of biodiversity via metabarcoding. <i>Ecology Letters</i> 16:1245–1257.
800	DOI: 10.1111/ele.12162.
801	Jiggins CD. 2016. The Ecology and Evolution of Heliconius Butterflies. Oxford, U.K.: Oxford
802	University Press. DOI: 10.1093/acprof:oso/9780199566570.001.0001.
803	Kanda K., Pflug JM., Sproul JS., Dasenko MA., Maddison DR. 2015. Successful recovery of
804	nuclear protein-coding genes from small insects in museums using Illumina sequencing.
805	PLoS ONE 10:e0143929. DOI: 10.1371/journal.pone.0143929.
806	Kelley JL., Peyton JT., Fiston-Lavier AS., Teets NM., Yee MC., Johnston JS., Bustamante CD.,
807	Lee RE., Denlinger DL. 2014. Compact genome of the Antarctic midge is likely an
808	adaptation to an extreme environment. Nature Communications 5:4611. DOI:
809	10.1038/ncomms5611.
810	Knölke S., Erlacher S., Hausmann A., Miller MA., Segerer AH. 2005. A procedure for combined
811	genitalia dissection and DNA extraction in Lepidoptera. Insect Systematics and Evolution
812	35:401–409. DOI: 10.1163/187631204788912463.
813	Koebler J. 2013. Earth's life-forms collected to aid in genetic research. National Geographic
814	News:USA.

NOT PEER-REVIEWED

815	Korlach J., Gedman G., Kingan SB., Chin C-S., Howard JT., Audet J-N., Cantin L., Jarvis ED.
816	2017. De novo PacBio long-read and phased avian genome assemblies correct and add to
817	reference genes generated with intermediate and short reads. <i>GigaScience</i> 6:1–16. DOI:
818	10.1093/gigascience/gix085.
819	Krehenwinkel H., Pomerantz A., Henderson JB., Kennedy SR., Lim JY., Swamy V., Shoobridge
820	JD., Patel NH., Gillespie RG., Prost S. 2018. Nanopore sequencing of long ribosomal DNA
821	amplicons enables portable and simple biodiversity assessments with high phylogenetic
822	resolution across broad taxonomic scale. <i>bioRxiv</i> 358572. DOI: 10.1101/358572.
823	Lamarre GPA., Molto Q., Fine PVA., Baraloto C. 2012. A comparison of two common flight
824	interception traps to survey tropical arthropods. ZooKeys 216:43-55. DOI:
825	10.3897/zookeys.216.3332.
826	Larsen TH. 2016. Core standardized methods for rapid biological field assessment. Arlington,
827	VA: Conservation International. DOI: 10.1017/CBO9780511525438.
828	Lemmon EM., Lemmon AR. 2013. High-throughput genomic data in systematics and
829	phylogenetics. Annual Review of Ecology, Evolution, and Systematics 44:99–121. DOI:
830	10.1146/annurev-ecolsys-110512-135822.
831	Lim GS., Balke M., Meier R. 2012. Determining species boundaries in a world full of rarity:
832	Singletons, species delimitation methods. Systematic Biology 61:165–169. DOI:
833	10.1093/sysbio/syr030.
834	Linard B., Arribas P., Andújar C., Crampton-Platt A., Vogler AP. 2016. Lessons from genome
835	skimming of arthropod-preserving ethanol. <i>Molecular Ecology Resources</i> 16:1365–1377.

836

DOI: 10.1111/1755-0998.12539.

837	Liu S., Wang X., Xie L., Tan M., Li Z., Su X., Zhang H., Misof B., Kjer KM., Tang M., Niehuis
838	O., Jiang H., Zhou X. 2016. Mitochondrial capture enriches mito-DNA 100 fold, enabling
839	PCR-free mitogenomics biodiversity analysis. Molecular Ecology Resources 16:470–479.
840	DOI: 10.1111/1755-0998.12472.
841	Lundmark C. 2003. BioBlitz: getting into backyard biodiversity. <i>BioScience</i> 53:329. DOI:
842	10.1641/0006-3568(2003)053[0329:bgibb]2.0.co;2.
843	Maddison DR., Cooper KW. 2014. Species delimitation in the ground beetle subgenus
844	Liocosmius (Coleoptera: Carabidae: Bembidion), including standard and next-generation
845	sequencing of museum specimens. Zoological Journal of the Linnean Society 172:741-770.
846	DOI: 10.1111/zoj.12188.
847	Mamanova L., Coffey AJ., Scott CE., Kozarewa I., Turner EH., Kumar A., Howard E., Shendure
848	J., Turner DJ. 2010. Target-enrichment strategies for next-generation sequencing. Nature
849	Methods 7:111–118. DOI: 10.1038/nmeth.1419.
850	Mardis ER. 2017. DNA sequencing technologies: 2006-2016. Nature Protocols 12:213-218.
851	DOI: 10.1038/nprot.2016.182.
852	Marshall CR. 2017. Five palaeobiological laws needed to understand the evolution of the living
853	biota. Nature Ecology and Evolution 1:0165. DOI: 10.1038/s41559-017-0165.
854	McMurdie PJ., Holmes S. 2014. Waste not, want not: why rarefying microbiome data is
855	inadmissible. PLoS Computational Biology 10:e1003531. DOI:
856	10.1371/journal.pcbi.1003531.

857	Menegon M., Cantaloni C., Rodriguez-Prieto A., Centomo C., Abdelfattah A., Rossato M.,
858	Bernardi M., Xumerle L., Loader S., Delledonne M. 2017. On site DNA barcoding by
859	nanopore sequencing. PLoS ONE 12:e0184741. DOI: 10.1371/journal.pone.0184741.
860	Metzker ML. 2010. Sequencing technologies - the next generation. Nature Reviews Genetics
861	11:31–46. DOI: 10.1038/nrg2626.
862	Meyer M., Arsuaga JL., De Filippo C., Nagel S., Aximu-Petri A., Nickel B., Martínez I., Gracia
863	A., De Castro JMB., Carbonell E., Viola B., Kelso J., Prüfer K., Pääbo S. 2016. Nuclear
864	DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature
865	531:504–507. DOI: 10.1038/nature17405.
866	Misof B., Liu S., Meusemann K., Peters RS., Donath A., Mayer C., Frandsen PB., Ware J.,
867	Flouri T., Beutel RG., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust J.,
868	Aberer AJ., Aspöck U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A., Buckley TR.,
869	Calcott B., Chen J., Friedrich F., Fukui M., Fujita M., Greve C., Grobe P., Gu S., Huang Y.,
870	Jermiin LS., Kawahara AY., Krogmann L., Kubiak M., Lanfear R., Letsch H., Li Y., Li Z.,
871	Li J., Lu H., Machida R., Mashimo Y., Kapli P., McKenna DD., Meng G., Nakagaki Y.,
872	Navarrete-Heredia JL., Ott M., Ou Y., Pass G., Podsiadlowski L., Pohl H., von Reumont
873	BM., Schütte K., Sekiya K., Shimizu S., Slipinski A., Stamatakis A., Song W., Su X.,
874	Szucsich NU., Tan M., Tan X., Tang M., Tang J., Timelthaler G., Tomizuka S., Trautwein
875	M., Tong X., Uchifume T., Walzl MG., Wiegmann BM., Wilbrandt J., Wipfler B., Wong
876	TKF., Wu Q., Wu G., Xie Y., Yang S., Yang Q., Yeates DK., Yoshizawa K., Zhang Q.,
877	Zhang R., Zhang W., Zhang Y., Zhao J., Zhou C., Zhou L., Ziesmann T., Zou S., Li Y., Xu
878	X., Zhang Y., Yang H., Wang J., Wang J., Kjer KM., Zhou X. 2014a. Phylogenomics

379	resolves the timing	and pattern of inse	ct evolution. Science	2 346:763–767. DOI:
-----	---------------------	---------------------	-----------------------	---------------------

- 880 10.1126/science.1257570.
- Misof B., Meusemann K., von Reumont BM., Kück P., Prohaska SJ., Stadler PF. 2014b. A priori
- assessment of data quality in molecular phylogenetics. *Algorithms for Molecular Biology*
- 883 9:22. DOI: 10.1186/s13015-014-0022-4.
- Mora C., Tittensor DP., Adl S., Simpson AGB., Worm B. 2011. How many species are there on
 earth and in the ocean? *PLoS Biology* 9:e1001127. DOI: 10.1371/journal.pbio.1001127.
- 886 Morinière J., Cancian de Araujo B., Lam AW., Hausmann A., Balke M., Schmidt S., Hendrich
- L., Doczkal D., Fartmann B., Arvidsson S., Haszprunar G. 2016. Species identification in
- 888 Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix.
- *Plos ONE* 11:e0155497. DOI: 10.1371/journal.pone.0155497.
- 890 Nieman CC., Yamasaki Y., Collier TC., Lee Y. 2015. A DNA extraction protocol for improved
- DNA yield from individual mosquitoes. *F1000Research* 4:1314. DOI:
- 892 10.12688/f1000research.7413.1.
- Noyes JS. 1989. A study of five methods of sampling Hymenoptera (Insecta) in a tropical
- rainforest, with special reference to the Parasitica. *Journal of Natural History* 23:285–298.
- B95 DOI: 10.1080/00222938900770181.
- 896 Oliver AK., Brown SP., Callaham MA., Jumpponen A. 2015. Polymerase matters: non-
- proofreading enzymes inflate fungal community richness estimates by up to 15 %. *Fungal*
- *Ecology* 15:86–89. DOI: 10.1016/j.funeco.2015.03.003.
- 899 Pacific Biosciences. 2018. Preparing Samples for PacBio® Whole Genome Sequencing for de

900	novo Assembly : collection and storage.
-----	---

901	Parker J.,	, Helmstetter AJ.	, Devey Di.,	Wilkinson	T., Papad	opulos AST	. 2017.	Field-based
-----	------------	-------------------	--------------	-----------	-----------	------------	---------	-------------

902 species identification of closely-related plants using real-time nanopore sequencing.

903 *Scientific Reports* 7:8345. DOI: 10.1038/s41598-017-08461-5.

- Pawluczyk M., Weiss J., Links MG., Egaña Aranguren M., Wilkinson MD., Egea-Cortines M.
- 2015. Quantitative evaluation of bias in PCR amplification and next-generation sequencing
- 906 derived from metabarcoding samples. *Analytical and Bioanalytical Chemistry* 407:1841–
- 907 1848. DOI: 10.1007/s00216-014-8435-y.
- 908 Pitteloud C., Arrigo N., Suchan T., Mastretta-Yanes A., Vila R., Dinca V., Hernandez-Roldan J.,
- 909 Brockmann E., Chittaro Y., Kleckova I., Fumagalli L., Buerki S., Alvarez N. 2017. Climatic
- niche evolution is faster in sympatric than allopatric lineages of the butterfly genus Pyrgus.
- 911 *Proceedings of the Royal Society B: Biological Sciences* 284:20170208. DOI:
- 912 10.1098/rspb.2017.0208.
- 913 Pompanon F., Deagle BE., Symondson WOC., Brown DS., Jarman SN., Taberlet P. 2012. Who
- 914 is eating what: diet assessment using next generation sequencing. *Molecular Ecology*
- 915 21:1931–1950. DOI: 10.1111/j.1365-294X.2011.05403.x.
- 916 Prendini L., Hanner R., DeSalle R. 2002. Obtaining, storing and archiving specimens and tissue
- samples for use in molecular studies. In: DeSalle R, Giribet G, Wheeler W eds. *Techniques*
- 918 *in Molecular Systematics and Evolution*. Basel, Switzerland: Birkhäuser Verlag, 176–248.
- 919 DOI: 10.1007/978-3-0348-8125-8_11.
- 920 Raposo MA., Stopiglia R., Brito GRR., Bockmann FA., Kirwan GM., Gayon J., Dubois A. 2017.

921	What really hampers taxonomy and conservation? A riposte to Garnett and Christidis
922	(2017). Zootaxa 4317:179–184. DOI: 10.11646/zootaxa.4317.1.10.
923	Ratnasingham S., Hebert PDN. 2007. BOLD: the Barcode of Life Data System
924	(www.barcodinglife.org). Molecular Ecology Notes 7:355-364. DOI: 10.1111/j.1471-
925	8286.2006.01678.x.
926	Reiss RA., Schwert DP., Ashworth AC. 1995. Field preservation of Coleoptera for molecular
927	genetic analyses. Environmental Entomology 24:716–719.
928	Richards S., Murali SC. 2015. Best practices in insect genome sequencing: what works and what
929	doesn't. Current Opinion in Insect Science 7:1-7. DOI: 10.1016/j.cois.2015.02.013.
930	Ritter CD., Häggqvist S., Karlsson D., Sääksjärvi I., Muasya AM., Nilsson RH., Antonelli A.
931	2019. Biodiversity assessments in the 21st century: the potential of insect traps to
932	complement environmental samples for estimating eukaryotic and prokaryotic diversity
933	using high-throughput DNA metabarcoding. Genome: In Press. DOI: 10.1139/gen-2018-
934	0096.
935	Ritter CD., McCrate G., Nilsson RH., Fearnside PM., Palme U., Antonelli A. 2017.
936	Environmental impact assessment in Brazilian Amazonia: challenges and prospects to
937	assess biodiversity. Biological Conservation 206:161–168. DOI:
938	10.1016/j.biocon.2016.12.031.
939	Rochette NC., Catchen JM. 2017. Deriving genotypes from RAD-seq short-read data using
940	Stacks. Nature Protocols 12:2640–2659. DOI: 10.1038/nprot.2017.123.
941	Ruane S., Austin CC. 2017. Phylogenomics using formalin-fixed and 100+ year old intractable

942	natural history specimens. Molecular Ecology Resources 17:1003–1008. DOI:
943	10.1111/ijlh.12426.
944	Ryan SF., Deines JM., Scriber JM., Pfrender ME., Jones SE., Emrich SJ., Hellmann JJ. 2018.
945	Climate-mediated hybrid zone movement revealed with genomics, museum collection, and
946	simulation modeling. Proceedings of the National Academy of Sciences of the United States
947	of America 115:E2284–E2291. DOI: 10.1073/pnas.1714950115.
948	Sadd BM., Barribeau SM., Bloch G., de Graaf DC., Dearden P., Elsik CG., Gadau J.,
949	Grimmelikhuijzen CJP., Hasselmann M., Lozier JD., Robertson HM., Smagghe G., Stolle
950	E., Van Vaerenbergh M., Waterhouse RM., Bornberg-Bauer E., Klasberg S., Bennett AK.,
951	Câmara F., Guigó R., Hoff K., Mariotti M., Munoz-Torres M., Murphy T., Santesmasses
952	D., Amdam G V., Beckers M., Beye M., Biewer M., Bitondi MMG., Blaxter ML., Bourke
953	AFG., Brown MJF., Buechel SD., Cameron R., Cappelle K., Carolan JC., Christiaens O.,
954	Ciborowski KL., Clarke DF., Colgan TJ., Collins DH., Cridge AG., Dalmay T., Dreier S.,
955	du Plessis L., Duncan E., Erler S., Evans J., Falcon T., Flores K., Freitas FCP., Fuchikawa
956	T., Gempe T., Hartfelder K., Hauser F., Helbing S., Humann FC., Irvine F., Jermiin LS.,
957	Johnson CE., Johnson RM., Jones AK., Kadowaki T., Kidner JH., Koch V., Köhler A.,
958	Kraus FB., Lattorff HMG., Leask M., Lockett GA., Mallon EB., Antonio DSM., Marxer
959	M., Meeus I., Moritz RFA., Nair A., Näpflin K., Nissen I., Niu J., Nunes FMF., Oakeshott
960	JG., Osborne A., Otte M., Pinheiro DG., Rossié N., Rueppell O., Santos CG., Schmid-
961	Hempel R., Schmitt BD., Schulte C., Simões ZLP., Soares MPM., Swevers L., Winnebeck
962	EC., Wolschin F., Yu N., Zdobnov EM., Aqrawi PK., Blankenburg KP., Coyle M.,
963	Francisco L., Hernandez AG., Holder M., Hudson ME., Jackson LR., Jayaseelan J., Joshi
964	V., Kovar C., Lee SL., Mata R., Mathew T., Newsham IF., Ngo R., Okwuonu G., Pham C.,

965	Pu LL., Saada N., Santibanez J., Simmons DN., Thornton R., Venkat A., Walden KKO.,
966	Wu YQ., Debyser G., Devreese B., Asher C., Blommaert J., Chipman AD., Chittka L.,
967	Fouks B., Liu J., O'Neill MP., Sumner S., Puiu D., Qu J., Salzberg SL., Scherer SE., Muzny
968	DM., Richards S., Robinson GE., Gibbs RA., Schmid-Hempel P., Worley KC. 2015. The
969	genomes of two key bumblebee species with primitive eusocial organization. Genome
970	Biology 16:76. DOI: 10.1186/s13059-015-0623-3.
971	Sawyer S., Krause J., Guschanski K., Savolainen V., Pääbo S. 2012. Temporal patterns of
972	nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE
973	7:e34131. DOI: 10.1371/journal.pone.0034131.
974	Scheffers BR., Joppa LN., Pimm SL., Laurance WF. 2012. What we know and don't know about
975	Earth's missing biodiversity. Trends in Ecology and Evolution 27:501–510. DOI:
976	10.1016/j.tree.2012.05.008.
977	Schloss PD., Westcott SL., Ryabin T., Hall JR., Hartmann M., Hollister EB., Lesniewski RA.,
978	Oakley BB., Parks DH., Robinson CJ., Sahl JW., Stres B., Thallinger GG., Van Horn DJ.,
979	Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-
980	supported software for describing and comparing microbial communities. Applied and
981	Environmental Microbiology 75:7537–7541. DOI: 10.1128/AEM.01541-09.
982	Schoonvaere K., De Smet L., Smagghe G., Vierstraete A., Braeckman BP., De Graaf DC. 2016.
983	Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations
984	with eukaryote parasites and new viruses. PLoS ONE 11:e0168456. DOI:
985	10.1371/journal.pone.0168456.

986 Shendure J., Balasubramanian S., Church GM., Gilbert W., Rogers J., Schloss JA., Waterston

987	RH. 2017. DNA sequencing at 40: past, present and future. <i>Nature</i> 550:345–353. DOI:
988	10.1038/nature24286.
989	Shi W., Xie S., Chen X., Sun S., Zhou X., Liu L., Gao P., Kyrpides NC., No EG., Yuan JS. 2013.
990	Comparative genomic analysis of the endosymbionts of herbivorous insects reveals eco-
991	environmental adaptations: biotechnology applications. PLoS Genetics 9:e1003131. DOI:
992	10.1371/journal.pgen.1003131.
993	Shokralla S., Gibson JF., King I., Baird DJ., Janzen DH., Hallwachs W., Hajibabaei M. 2016.
994	Environmental DNA barcode sequence capture: targeted, PCR-free sequence capture for
995	biodiversity analysis from bulk environmental samples. <i>bioRxiv</i> :087437. DOI:
996	10.1101/087437.
997	Shokralla S., Spall JL., Gibson JF., Hajibabaei M. 2012. Next-generation sequencing
998	technologies for environmental DNA research. Molecular Ecology 21:1794–1805. DOI:
999	10.1111/j.1365-294X.2012.05538.x.
1000	Short AEZ., Dikow T., Moreau CS. 2018. Entomological collections in the Age of Big Data.
1001	Annual Review of Entomology 63:513–530. DOI: 10.1146/annurev-ento-031616-035536.
1002	Srivathsan A., Ang A., Vogler AP., Meier R. 2016. Fecal metagenomics for the simultaneous
1003	assessment of diet, parasites, and population genetics of an understudied primate. Frontiers
1004	in Zoology 13:17. DOI: 10.1186/s12983-016-0150-4.
1005	Srivathsan A., Baloğlu B., Wang W., Tan WX., Bertrand D., Ng AHQ., Boey EJH., Koh JJY.,
1006	Nagarajan N., Meier R. 2018. A MinION TM -based pipeline for fast and cost-effective DNA
1007	barcoding. Molecular Ecology Resources 18:1035–1049. DOI: 10.1111/1755-0998.12890.

1008	Staats M., Erkens RHJ., van de Vossenberg B., Wieringa JJ., Kraaijeveld K., Stielow B., Geml
1009	J., Richardson JE., Bakker FT. 2013. Genomic treasure troves: complete genome
1010	sequencing of herbarium and insect museum specimens. PLoS ONE 8:e69189. DOI:
1011	10.1371/journal.pone.0069189.
1012	Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth?
1013	Annual Review of Entomology 63:31-45. DOI: 10.1146/annurev-ento-020117-043348.
1014	Stork NE., McBroom J., Gely C., Hamilton AJ. 2015. New approaches narrow global species
1015	estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National
1016	Academy of Sciences of the United States of America 112:7519–7523. DOI:
1017	10.1073/pnas.1502408112.
1018	Suarez A V., Tsutsui ND. 2004. The value of museum collections for research and society.
1019	BioScience 54:66–74. DOI: 10.1641/0006-3568(2004)054[0066:TVOMCF]2.0.CO;2.
1020	Suchan T., Pitteloud C., Gerasimova NS., Kostikova A., Schmid S., Arrigo N., Pajkovic M.,
1021	Ronikier M., Alvarez N. 2016. Hybridization capture using RAD probes (hyRAD), a new
1022	tool for performing genomic analyses on collection specimens. PLoS ONE 11:e0151651.
1023	DOI: 10.1371/journal.pone.0151651.
1024	Suen G., Scott JJ., Aylward FO., Adams SM., Tringe SG., Pinto-Tomás AA., Foster CE., Pauly
1025	M., Weimer PJ., Barry KW., Goodwin LA., Bouffard P., Li L., Osterberger J., Harkins TT.,
1026	Slater SC., Donohue TJ., Currie CR. 2010. An insect herbivore microbiome with high plant
1027	biomass-degrading capacity. PLoS Genetics 6:e1001129. DOI:
1028	10.1371/journal.pgen.1001129.

1029	Suyama Y., Matsuki Y. 2015. MIG-seq: an effective PCR-based method for genome-wide
1030	single-nucleotide polymorphism genotyping using the next-generation sequencing platform
1031	Scientific Reports 5:16963. DOI: 10.1038/srep16963.
1032	Taberlet P., Coissac E., Pompanon F., Brochmann C., Willerslev E. 2012. Towards next-
1033	generation biodiversity assessment using DNA metabarcoding. Molecular Ecology
1034	21:2045–2050. DOI: 10.1111/j.1365-294X.2012.05470.x.
1035	Tagliavia M., Massa B., Albanese I., La Farina M. 2011. DNA extraction from Orthoptera
1036	museum specimens. Analytical Letters 44:1058–1062. DOI:
1037	10.1080/00032719.2010.506939.
1038	Tang M., Tan M., Meng G., Yang S., Su X., Liu S., Song W., Li Y., Wu Q., Zhang A., Zhou X.
1039	2014. Multiplex sequencing of pooled mitochondrial genomes - a crucial step toward
1040	biodiversity analysis using mito-metagenomics. Nucleic Acids Research 42:e166. DOI:
1041	10.1093/nar/gku917.

- 1042 Tedersoo L., Anslan S., Bahram M., Põlme S., Riit T., Liiv I., Kõljalg U., Kisand V., Nilsson
- 1043 RH., Hildebrand F., Bork P., Abarenkov K. 2015. Shotgun metagenomes and multiple
- 1044 primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of

1045 fungi. *MycoKeys* 10:1–43. DOI: 10.3897/mycokeys.10.4852.

- 1046 Thompson JF., Milos PM. 2011. The properties and applications of single-molecule DNA
- 1047 sequencing. *Genome Biology* 12:217. DOI: 10.1186/GB-2011-12-2-217.
- 1048 Thomsen PF., Elias S., Gilbert MTP., Haile J., Munch K., Kuzmina S., Froese DG., Sher A.,
- 1049 Holdaway RN., Willerslev E. 2009. Non-destructive sampling of ancient insect DNA. *PloS*

1050 *one* 4:e5048. DOI: 10.1371/journal.pone.0005048.

- 1051 Thorpe SE. 2017. Is photography-based taxonomy really inadequate, unnecessary, and
- 1052 potentially harmful for biological sciences? A reply to Ceríaco *et al.* (2016). *Zootaxa*
- 1053 4226:449–450. DOI: 10.11646/zootaxa.4226.3.9.
- 1054 Timmermans MJTN., Viberg C., Martin G., Hopkins K., Vogler AP. 2016. Rapid assembly of
- 1055 taxonomically validated mitochondrial genomes from historical insect collections.

1056 *Biological Journal of the Linnean Society* 117:83–95. DOI: 10.1111/bij.12552.

- 1057 Tin MM-Y., Economo EP., Mikheyev AS. 2014. Sequencing degraded DNA from non-
- 1058destructively sampled museum specimens for RAD-tagging and low-coverage shotgun

1059 phylogenetics. *PLoS ONE* 9:e96793. DOI: 10.1371/journal.pone.0096793.

- Toju H. 2015. High-throughput DNA barcoding for ecological network studies. *Population Ecology* 57:37–51. DOI: 10.1007/s10144-014-0472-z.
- 1062 Veijalainen A., Wahlberg N., Broad GR., Erwin TL., Longino JT., Sääksjärvi IE. 2012.
- 1063 Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. *Proceedings of*
- 1064 *the Royal Society B: Biological Sciences* 279:4694–4698. DOI: 10.1098/rspb.2012.1664.
- 1065 Vellend M. 2017. The biodiversity conservation paradox. *American Scientist* 105:94–101. DOI:
 1066 10.1511/2011.89.106.
- 1067 Vesterinen EJ., Ruokolainen L., Wahlberg N., Peña C., Roslin T., Laine VN., Vasko V.,
- 1068 Sääksjärvi IE., Norrdahl K., Lilley TM. 2016. What you need is what you eat? Prey
- selection by the bat *Myotis daubentonii*. *Molecular Ecology* 25:1581–1594. DOI:
- 1070 10.1111/mec.13564.

- 1071 Vogel G. 2017. Where have all the insects gone? *Science* 356:576–579.
- 1072 Wachi N., Matsubayashi KW., Maeto K. 2018. Application of next-generation sequencing to the
- study of non-model insects. *Entomological Science* 21:3–11. DOI: 10.1111/ens.12281.
- 1074 Wheeler QD., Raven PH., Wilson EO. 2004. Taxonomy: impediment or expedient? Science
- 1075 303:285. DOI: 10.1126/science.303.5656.285.
- 1076 Yeates DK., Meusemann K., Trautwein M., Wiegmann B., Zwick A. 2016. Power, resolution
- 1077 and bias: recent advances in insect phylogeny driven by the genomic revolution. *Current*

1078 *Opinion in Insect Science* 13:16–23. DOI: 10.1016/j.cois.2015.10.007.

- 1079 Yin C., Shen G., Guo D., Wang S., Ma X., Xiao H., Liu J., Zhang Z., Liu Y., Zhang Y., Yu K.,
- 1080 Huang S., Li F. 2016. InsectBase: a resource for insect genomes and transcriptomes.

1081 *Nucleic Acids Research* 44:D801–D807. DOI: 10.1093/nar/gkv1204.

- 1082 Young AD., Lemmon AR., Skevington JH., Mengual X., Ståhls G., Reemer M., Jordaens K.,
- 1083 Kelso S., Lemmon EM., Hauser M., De Meyer M., Misof B., Wiegmann BM. 2016.
- 1084 Anchored enrichment dataset for true flies (order Diptera) reveals insights into the
- 1085 phylogeny of flower flies (family Syrphidae). *BMC Evolutionary Biology* 16:143. DOI:
- 1086 10.1186/s12862-016-0714-0.
- 1087 Zhou X., Li Y., Liu S., Yang Q., Su X., Zhou L., Tang M., Fu R., Li J., Huang Q. 2013. Ultra-
- 1088 deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples
- 1089 without PCR amplification. *GigaScience* 2:4. DOI: 10.1186/2047-217X-2-4.
- 1090

1091 Funding Statement

1092 Funding to Pável Matos-Maraví was provided by a Marie Skłodowska-Curie fellowship (project 1093 MARIPOSAS-704035). Camila Duarte Ritter received the support from CNPq (Conselho 1094 Nacional de Desenvolvimento Científico e Tecnológico - Brazil). Christopher Barnes was funded 1095 by the Aage V. Jensen Naturfond of Denmark (1121721001). Daniel Marquina and Niklas Wahlberg received funding from European Union's Horizon 2020 research and innovation 1096 programme under the Marie Skłodowska-Curie grant agreement No. 642241 (BIG4 project). 1097 Niklas Wahlberg received funding from the Swedish Research Council. Alexandre Antonelli is 1098 supported by grant from the Knut and Alice Wallenberg Foundation, the Swedish Research 1099 1100 Council (B0569601), the Swedish Foundation for Strategic Research, the Faculty of Sciences at the University of Gothenburg, and the David Rockefeller Center for Latin American Studies at 1101 1102 Harvard University.

1103

1104 Author Contributions

PMM, CDR and AA conceived and led the workshop; all authors participated in the workshop titled "Biodiversity research through the study of insect genomics" organized by the Gothenburg Global Biodiversity Centre in Gothenburg, Sweden; all authors contributed with discussion and ideas for the paper; PMM, CDR and AA organized the structure of the article, PMM wrote the first draft of the article, and all authors contributed to and approved the final version of the article.

1111

1112 Conflict of Interests

1113 The authors declare no conflict of interests.

1114

1115 Lables	1115	Tables
--------------------	------	--------

1116	Table 1. Representative description of methods for mass sampling of insects and their
1117	application for NGS. Note that this is not a comprehensive list and is only aimed at providing
1118	an overview of available possibilities of widespread use. In Costs (equipments and consumables
1119	per sampling effort), we roughly categorized them as Low (approx. \leq US \$50), Medium (approx.
1120	US \$50 – \$100), High (approx. > US \$100).
1121	Table 2: Overview of massively parallel DNA sequencing methods applied to insect
1122	museum specimens. This is a selection of studies covering a variety of taxonomic groups,
1123	sampling strategies and sequencing approaches.
1124	Table 3: Examples of massively parallel DNA sequencing methods applied to insects. These
1125	studies were among the first that used high-throughput methods to investigate insect diversity. A
1126	more comprehensive list of published studies is presented in File S2.
1127	
1128	Figures
1129	
1130	Figure 1: Flowchart illustrating the 10 rules proposed here to study biodiversity through
1131	insect genomics.
1132	
1133	Figure 2: Entomological mass-sampling techniques. The photos depict some of the most
1134	popular sampling methods outlined in Table 1. (A) Van Someren-Rydon trap, which

NOT PEER-REVIEWED

Peer Preprints

1135	targets fruit-feeding butterflies. (B) Pitfall trap, which is used to collect forest floor
1136	insects—Inset photograph within the red frame depicts the content of pitfall trap. (C)
1137	Winkler, an insect collecting device for species inhabiting the leaf litter and soil. (D)
1138	Malaise trap, which targets strong-flying insects. (E) The content deposited in the collecting
1139	vessel of a Malaise trap. (F) Flight interception, which collects insects flying into the
1140	barrier. Photo credits: A: Phil DeVries; B: Martin Nielsen; C: Matthias Seidel; D: Martin
1141	Nielsen; E: Daniel Marquina; and F: Emmanuel Arriaga-Varela.
1142	

Figure 3: Overview of published studies focusing on insect diversity and evolution using 1143 massively parallel sequencing. (A) The main sequencing platforms (SM stands for single-1144 molecule, including those from PacBio and Oxford Nanopore technologies). (B) The main 1145 library preparation methods used for high-throughput sequencing (WG stands for whole-1146 genome sequencing). (C) Number of publications by year (**our search was conducted on 1147 22nd November 2018). (D) Cumulative publications over time (number of publications in 1148 logarithmic scale). In general, about 68% of the studies we were able to find (Supplemental 1149 File S2) were conducted in Illumina platform, whereas about 65% of all studies have used 1150 some form of targeted sequencing. 1151

1152

		Peer Prep	rints		NOT PEER-REVIEWED	
Method	Example	Taxa targeted	Equipment costs	Suitability for genomic research	Sampling effort	Limitations
Trap-sampling	Van Someren- Rydon	Fruit-feeding butterflies, from forest floor to canopy	Low; negligible if self-built	Yes; no killing reagent; baits such as fermenting fruit, faeces, rotting meat	Minimum: 5 traps in forest, 10 traps in open areas; Collection: once or twice per day; Personnel: 2 people, collection and record; Complement: opportunistic hand collection	Need for long-term data due to different butterfly communities throughout the year; Other feeding guilts are missing, such as nectar-feeding
Trap-sampling	Pitfall	Forest floor insects such as dung beetles, flies, ants	Low; negligible if self-built	Depending on killing reagent ; best results if done with detergent and water, propylen glycol; baits such as human dung	Minimum: 20 traps per day; linear transect; Collection: at least once per day; Personnel: 1 person; Complement with flight intercept traps	Lot of ethanol must be replaced every week to prevent DNA decay
Leaf-litter collector	Mini-Winkler	Leaf-litter and soil insects, such as ants, beetles	Medium	Yes; 95% EtOH most commonly used as killing reagent	Minimum: 20 collectors, each with 1m ² leaf litter; Collection: once, if extraction is run in parallel; Personnel: 2 people recommended; Complement with bait-traps and hand collecting	Limited to forested areas, and not suitable during peak of dry or rain season; No sampling of vegetation-associated, canopy or subterranean insects
Flying-insect collector	Malaise	Strong-flying insects, such as Hymenoptera and Diptera	High	Yes; 95% EtOH most commonly used as killing reagent	Minimum: 2 traps for fast surveys; Collection: little care, leave in field for 2–4 weeks; Personnel: 1 person; Complement with flight interception traps	Placement of trap in "likely" flight paths, thus a component of subjectivity is introduced
Flying-insect collector	Flight interception	Flying insects, such as beetles, cockroaches, crickets	Low; negligible if self-built	Depending on killing reagent ; best results if done in salt-saturated water and detergent, propylen glycol; formaldehyde solutions but in detriment of DNA recovery	Minimum: 2 traps for fast surveys; Collection: once or twice per day; Personnel: 1 person; Complement with bait and light traps	Ideal for slow-flying insects, which hit the plastic sheet and fall in the container with killing reagent
Insecticidal knockdown	Canopy fogging	Arboreal insect community	High	Yes; insecticide as killing reagent	Collection : laborious and problems with pseudoreplication; Complement with canopy light trapping and flight interception traps	Canopy access still limited; High demand on logistics; Risk of local environmental damage (minimized through the use of rapidly decaying insecticides)

	Peer Preprints		NOT PEEI	R-REVIEWED
Publication	Taxon group	Samples analyzed	Sequencing approach and platform	Output
Staats et al. (2013)	Flies and beetles	Number: 3 specimens; Age: 1992–1995; Tissue: 1–3 legs, thorax, whole specimen (destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq™ 2000	 Read depth: 3.5x - 146.1x (mt genome); % Mapping: 0.002 - 0.82 (mt genome); Contamination: 1 specimen extensive bacteriophage & fungal DNA
Tin <i>et al.</i> (2014)	Flies and ants	Number: 11 specimens; Age: 1910–1976; Tissue: whole specimen (non-destructive protocol)	Shotgun whole genome skimming; RAD-tag; Illumina MiSeq [™] & HiSeq [™] 2500	Read depth : 0.08x – 1.0x (whole genome); % Mapping : 19 – 76 (whole genome); Contamination : not reported
Heintzman et al. (2014)	Beetles	Number: 4 specimens; Age: Late Pleistocene (C ¹⁴), 1875–1950 (museum); Tissue: 1 hind leg, pronotum, elytron (destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq [™] 2000	Reads aligned to reference: 0.009% – 0.225x (mt genome & 5 nuclear loci); % Insect contigs: 0.25 – 46.5; Contamination: up to ca. 20% mammalian sequences in contigs
Maddison & Cooper (2014)	Beetles	Number: 1 specimen; Age: 1968; Tissue: whole specimen (non-destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq [™] 2000	 Read depth: not reported (8 gene targets); % Gene length coverage: 95 – 100 (8 gene targets); Contamination: not reported
Kanda et al. (2015)	Beetles	Number: 13 specimens; Age: 1929–2010; Tissue: whole specimen (non-destructive protocol)	Shotgun whole genome skimming; Illumina HiSeq [™] 2000 (2 lanes)	Read depth : 0.44x – 4.64x (67 gene targets); N50 : 280 – 700 (67 gene targets); Contamination : possible in some specimens but not quantified
Timmermans et al. (2016)	Butterflies	Number: 35 specimens; Age: 1980–2005; Tissue: 1 leg (destructive protocol)	Shotgun whole genome skimming; Illumina MiSeq [™] (1/3 flow cell)	 % Coverage: 0 – 100 (mt coding loci); Contamination: not reported; Failure rate: 4 out of 35 specimens any reads matching mt genomes
Suchan <i>et al.</i> (2016)	Butterflies and grasshoppers	Number: 60 specimens; Age: 1908–1997; Tissue: legs (destructive protocol)	Target capture of RAD probes; Illumina MiSeq [™] & HiSeq [™] (one lane each)	 Median depth: 10x (for each SNP); % Matrix fullness: 52 – 72.5 (RAD loci); Contamination: ca. 9 % of contigs were of exogenous origin
Blaimer et al. (2016)	Carpenter bees	Number: 51 specimens; Age: 1894–2013; Tissue: 1 leg (destructive protocol)	Target capture of Hymenopteran UCEs; Illumina MiSeq [™]	Average coverage : 7.4x – 182.4x (UCE loci); Recovered loci : 6 – 972 (UCE per sample); Contamination : not reported
Pitteloud et al. (2017)	Butterflies	Number: 32 specimens; Age: 1929–2012; Tissue: legs (destructive protocol)	PCR Multiplex & Shotgun sequencing; Illumina MiSeq™	Length sequences (bp): 109 – 7297 (mt and rDNA loci); Contamination : not reported

Approach	Peer Preprints			NOT PEER-REVIEWED	
Арргоасн	Case reference			Impact	
Whole-transcriptome shotgun	Misof <i>et al.</i> (2014)	et al. (2014) <u>Phylogenomics</u>		First phylogenomic study to cover all hexapod orders	
		Mice al an Isial			
Whole-genome shotgun	Tang <i>et al.</i> (2014)	<u>metagenomics</u>	Several insect orders	mitogenome sequence in bulk samples	
				One of the first insect museomic studies using massive parallel	
RAD-seq	Tin <i>et al.</i> (2014)	<u>Phylogenetics; Museomics</u>	Flies and ants	sequencing, and a guideline for non-destructive DNA isolation and library preparation	
m			Butterflies and	New method to target RAD probes (hvR.	AD). Proof-of-concept using
Target capture	Suchan <i>et al</i> . (2016)	<u>Phylogeography</u>	grasshoppers	divergent taxa and archived specimens	
Towast continue	Equation $at al (2015)$	Dhuloganomiag	Enrichment of Ultraconserved Elements (UCE) of the Hyme		(UCE) of the Hymenoptera
r ar get capture	1 ⁻ ancioui <i>ei ui</i> . (2013)	<u>i nyiogenomics</u>	путепориета	order	
Single-molecule	Kellev et al. (2014)	Comparative Genomics	Antarctic midee	Single-molecule real time whole-genome	e sequencing using PacBio®
Single-molecule	Koncy et ul. (2014) <u>Comparative Genom</u>		inarcae muge	RS II System	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26661v3 | CC BY 4.0 Open Access | rec: 1 Mar 2019, publ: 1 Mar 2019

NOT PEER-REVIEWED

55