## Peer Preprints NOTPE 1 Zinc Oxide: Development of novel products for weaned piglets

| 2  |                                                                                                       |
|----|-------------------------------------------------------------------------------------------------------|
| 3  | Marina Sígolo Rodrigues Barreto <sup>a,b</sup> , Carlos Adam Conte-Junior <sup>a,b,c</sup> *          |
| 4  |                                                                                                       |
| 5  | <sup>a</sup> Department of Food Technology, Faculty of Veterinary Medicine, University Federal        |
| 6  | Fluminense. CEP: 24230-340, Niterói, Brazil.                                                          |
| 7  | <sup>b</sup> Food Science Program, Instituto de Química, Universidade Federal do Rio de Janeiro. CEP: |
| 8  | 21941-909, Rio de Janeiro, Brazil.                                                                    |
| 9  | <sup>c</sup> National Institute of Health Quality Control, Fundação Oswaldo Cruz. CEP: 21040-900, Rio |
| 10 | de Janeiro, Brazil.                                                                                   |
| 11 |                                                                                                       |
| 12 |                                                                                                       |
| 13 | *Corresponding author:                                                                                |
| 14 | Professor Carlos Adam Conte Junior, D.V.M., M.Sc., Ph.D.                                              |
| 15 | Rua Vital Brazil Filho, n. 64. Santa Rosa                                                             |
| 16 | Niterói – Rio de Janeiro, Brazil                                                                      |
| 17 | CEP: 24.230-340                                                                                       |
| 18 | Phone: +55 21 – 2629-9545                                                                             |
| 19 | E-mail address: carlosconte@id.uff.br (C.A. Conte Junior).                                            |
| 20 |                                                                                                       |
| 21 |                                                                                                       |
| 22 |                                                                                                       |
| 23 |                                                                                                       |
| 24 |                                                                                                       |

Abstract

Diarrhea in piglets is one of the main causes of animal death before and after weaning; In recent decades, zinc oxide has been used in high doses to control this disease. These doses are considered to be of concern for the pollutant potential of animal waste through soil and groundwater pollution. New technologies such as nanotechnology, new matrices such as biopolymers and encapsulation are suggestions that appear as possible innovations that can minimize the challenges imposed by piglet weaning. This review aims to collect and analyze information on novel zinc oxide products developed with innovative technologies. 

46 Introduction

#### 47 The challenges of weaning piglets

48 Modern pig industry is one of the most developed and technological sectors of agribusiness, however the mortality of live-born piglets is still a major challenge, with no 49 50 significant advances in recent decades. Early weaning of piglets is the most critical stage of 51 production, the first weeks are particularly stressful and immunosuppressive for animals and 52 usually accompanied by delayed growth, weight loss, diarrhea and mortality (Lallès, 2007; 53 Lima, 2009; Campbell et al., 2013; Sutherland et al., 2014). The physical separation from the 54 sows and transition to a solid and complex diet, associated to an immature digestive tract, 55 resulting in intestinal structural damage characterized by lower intestinal villi height, greater 56 crypt depth and decreased intestinal enzymatic activity. Further the action of some pathogens, 57 such as Escherichia coli and rotavirus (Pluske et al., 1997, Boudry et al., 2004, Esquerra et 58 al., 2011). E. coli is the most important factor for post-weaning diarrhea, also known as 59 colibacillosis (Fairbrother et al., 2005, Heo, et al., 2013).

The gastrointestinal disturbances cause large economic losses in the pig industry, the mortality among piglets in the EU is approximately 17% and a significant part of these losses may be associated with infections through mucosal surfaces (Lallès, 2007). In this context, many studies have been developed in search of products that contribute to minimize the challenges imposed by piglet weaning. This review aims to collect and analyze information on novel zinc oxide (ZnO) products developed with innovative technologies such as nanoparticles, encapsulation and use of biopolymers.

67

68 Methodology

Peer Preprints

- 69 This is a literature review of a systematic study of ZnO products for weaned piglets in70 worldwide.
- 71

#### 72 **Research Strategies**

Online scientific articles available at the Pubmed, Scielo, Science Direct, Google scholar and Periodicals/CAPES databases, between 2015 and 2018, were selected. The evaluation of the selected articles was divided into three stages. As an initial screening, in addition to the term Zinc Oxide or ZnO, studies regarding nanotechnology and biopolymers, conducted in animal nutrition. After this initial screening, a second stage was performed based on the selected articles

describing the experiments performed with ZnO on weaned piglets. Finally, a third step comprised the separation of results from *in vitro* and *in vivo* studies.

81 Check the stages of bibliographic research (identification, selection, eligibility and 82 inclusion of data) for literature review in Fig.1.



Figure 1: Stages of bibliographic research (identification, selection, eligibility and inclusion of data) for literature review.

86

#### 87 ZnO as an additive to improve animal performance

For decades, pharmacological doses of ZnO, up to 2,000 mg ZnO/kg, have been applied to combat post-weaning diarrhea and to improve animal performance (Poulsen, 1995; Hollis *et al.*, 2005; Pettigrew, 2006). Li *et al.* (2006) have observed that *in vitro* intestinal epithelial regeneration capacity increases in the presence of exogenous ZnO and that there is an increase in the level of intestinal insulin-like growth factor 1 (IGF-1 gene ) in piglets fed with high concentrations of ZnO (Li *et al.*, 2006). The IGF-1 gene is a hormone that regulates cell

#### NOT PEER-REVIEWED

growth and may contribute to intestinal tissue repair. Studies indicate that the ZnO promoter 94 95 effect occurs mainly in the first two weeks after weaning (Shelton et al., 2009), in the same period in which piglet intestinal adaptation is practically complete. Different studies have 96 97 shown that the inclusion of ZnO has effects on the increase of the gene expression of 98 antimicrobial peptides in the small intestine, with a positive action on the stability and 99 diversity of the microbiota, besides the reduction of the electrolyte secretion from enterocytes. 100 This association of events results in a bactericidal action (Pluske et al., 2007; Zhang & Guo, 101 2009).

102

#### 103 Antibacterial activity of ZnO

104 The antibacterial activity of ZnO is scientifically grounded; however, the mechanisms by 105 which it modifies the gastrointestinal microbiota are not well elucidated. Roselli et al. (2003) 106 suggested that ZnO does not inhibit directly enteropathogenic E. coli growth, but rather the 107 ability of the microorganism to bind to intestinal cells. Concerning the efficacy of ZnO in 108 gram-positive and gram-negative bacteria, there are controversy results in the literature. 109 Vahjen et al. (2011) verified a greater susceptibility of gram-positive bacteria to ZnO, an 110 increase in the diversity of the species present in the intestine, besides the increase of 111 Enterobacteriaceae that would compete with enteropathogenic E. coli controlling its growth 112 indirectly. While Applerot (2009), Trandafilovi'c et al. (2012) and Barreto et al. (2017) found 113 that gram-positive bacteria, such as *Staphylococcus aureus*, are more resistant to the action of 114 ZnO when compared to gram-negative, E. coli. The difference in antibacterial activity against 115 both microorganisms may be related to the different chemical and structural compositions of 116 cell membranes, particularly in the cell wall, in addition to the material used (Jones et al., 117 2008; Shantikumar et al., 2008; Xie et al., 2011). According to Ann and Mahmoud (2014), S. 118 aureus tends to develop defenses against oxidative stress producing enzymes, such as

#### NOT PEER-REVIEWED

superoxide dismutase, catalase and thioredoxin reductase. Superoxide dismutase can convert O<sub>2</sub> of H<sub>2</sub>O<sub>2</sub>, catalase can convert H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O and O<sub>2</sub>, and thioredoxin reductase can protect the cell against toxic oxygen species (Ann and Mahmoud, 2014; Raghupathi *et al*, 2011;

Ballal and Manna, 2010). In this way, *S. aureus* can construct an effective "shield" to reduce the toxicity of ZnO samples. On the other hand, some ZnO particles may attach to the surface of the bacterial membrane, and this mechanical damage could also be considered another method of antimicrobial inhibition (Ann and Mahmoud, 2014).

High doses of ZnO altered intestinal microbial diversity in the ileum and colon of weaned piglets and had comparable effects to antibiotics, especially affecting the non-predominant microbiota population in ileum. Understanding the effects of high ZnO on intestinal bacterial communities may provide information on the future application of the alternative strategy for the treatment of diarrhea in piglets (Yu *et al.*, 2017).

131

#### Limitation associated with using ZnO as a performance enhancer

132 ZnO is currently effective in improving performance and intestinal health in weaned piglets at doses ranging from 2,000 to 4,000 mg Zn/kg of feed, which are considered to be of 133 134 concern for the pollutant potential of animal waste. These values are much higher than those 135 found in the *in vitro* tests, where minimum inhibitory concentrations (MIC) and bactericidal 136 (MBC) concentrations are often lower for different bacteria. In the literature there are MIC 137 and MBC results between 260 and 500 ppm for different strains of E. coli (Liedtke and Vahjen, 2012; Barreto et al., 2017). Studies indicate that the efficacy of ZnO for piglets is not 138 139 related to their absorption but to their action on the intestinal lumen, which consequently 140 causes a large part of the ingested Zn to be excreted via feces (Poulsen, 1995; Rincker et al., 141 2005). Piglets supplemented with high levels of ZnO excrete between 60% and 80% of the 142 amount ingested, the higher the excretion being the higher the levels of Zn in the diet (Carlson 143 et al., 2004).

The high level of  $Zn^{2+}$  excreted in feces is an environmental concern. Although Zn is 144 145 present in a relatively small amount, there is interest about the possible accumulation of this 146 metal in the environment (Gräber et al., 2005). Zn is a necessary nutrient for the maintenance 147 and growth of plant tissues, but high concentrations in the soil can cause phytotoxicity (Zhang 148 et al., 2012). Concern over the contamination of water by metals is even greater in artesian 149 well production systems or in farms close to rivers and lakes due to the low tolerance of 150 various species of fish to Zn toxicity (Gräber et al., 2005; Zhang et al., 2012). In addition, 151 fecal Zn is also a potential environmental inducer of bacterial resistance (Hölzel et al., 2012; 152 Bednorz et al., 2013; Yazdankhah et al., 2014). In view of this, European legislation limits a 153 maximum of 150 mg Zn kg in pig diets (European Communities, 2003), dose well below the

154 pharmacological levels of ZnO reported as growth promoters for these animals.

155

Peer Preprints

156

#### ZnO Nanoparticles (ZnO Nano)

157 Nanoparticulate ZnO is one of the most researched oxides due to its differentiated 158 physical, chemical and biological properties. Its low cost, versatility and availability make it 159 highly suitable for numerous industrial applications (Giraldi, et al., 2012). According to the 160 literature, ZnO nanoparticles can be synthesized by different techniques, such as hydrothermal 161 (Suwanboon et al., 2013), sol-gel (Muneer et al., 2013), ultrasound (Khorsand et al., 2013) of 162 precipitation (Chang et al., 2008), among others. Nanoparticles are particles smaller than 100 163 nanometers (nm), in this way, ZnO nano has smaller particle size, larger number of particles 164 per unit mass and greater specific surface area compared to conventional ZnO microparticles 165 (Raghupathi et al., 2011, Xie et al., 2011), characteristics that make them more reactive in 166 chemical and biological systems. In addition, nanoparticles more easily cross biological 167 barriers such as the intestine (Buzea et al., 2007).

168

Research on ZnO nanoparticles (Jones et al., 2008, Xie et al., 2011) indicates that the

## Peer Preprints

surface effects of the molecule may also be responsible for its antibacterial action. The interaction of the nanoparticles with the microorganisms, damaging the integrity of bacterial cells (Zhang *et al.*, 2008) and the formation of reactive oxygen species (ROS) (Jalal *et al.*, 2010) are considered the main mechanisms. Jones *et al.* (2008) and Barreto *et al.* (2017) suggest that ZnO nanoparticles have significant antibacterial effects on *S. aureus*.

174 The antibacterial effect of ZnO nanoparticles was investigated in *Campylobacter* 175 *jejuni* for inhibition and inactivation of cell growth. The results demonstrated that C. *jejuni* 176 was extremely sensitive to the treatment with ZnO nanoparticles and that the action of the nanoparticles was bactericidal rather than bacteriostatic. According to the authors, the data 177 178 indicate that the antibacterial mechanism of the ZnO nanoparticles occurs due to the rupture of 179 the cell membrane and the cellular oxidative stress (Xie et al., 2011). Nanoparticles of ZnO in 180 vitro exhibited strong antibacterial activity against E. coli in studies by Wang et al. (2012) and 181 Barreto et al. (2017), who believe that nanoparticles can damage the membrane and cause 182 lysis of bacterial cells. Studies have shown that ZnO nanoparticles may be potentially 183 antibacterial for the treatment of diseases caused by E. coli.

184 Minor particles of ZnO with larger contact surface with the gastrointestinal medium seem to favor the effectiveness of ZnO as a growth promoter. In the literature, there are few 185 studies investigating the effects of ZnO nanoparticles on the zootechnical indexes of animals, 186 187 especially on swine. Nanoparticles of ZnO have been reported to increase growth 188 performance, improve power utility and provide benefits in weaned piglets (Yang and Sun, 189 2006), a study with piglets fed basal diets supplemented with 200, 400, 600 mg/kg of ZnO 190 nano or 3,000 mg/kg Zn showed encouraging average daily gain (Hongfu, 2008). On the other 191 hand, Li et al. (2016) and Milani et al. (2017) did not find concrete results of the effectiveness 192 of ZnO nanoparticles in piglets, but Milani et al. (2017) verified that ZnO nanoparticles 193 promoted a reduction in Zn excretion in feces of animals and, consequently, the environment.

195 and production of broiler chickens at 42 days of feeding at the 40 mg/kg in the diet. The 196 supplementation of 20 to 60 mg of Zn/kg in the diet in the form of nanoparticulate ZnO 197 improved performance in broilers without presenting toxic or harmful effects when compared 198 to conventional ZnO (Ahmadi et al., 2014; Zhao et al., 2014). These authors observed higher 199 weight gain and better feed conversion in animals supplemented with ZnO nano compared to 200 conventional ZnO (Ahmadi et al., 2013; Zhao et al., 2014). According to Tsai et al. (2016), 201 ZnO nanoparticles for dietary supplementation of laying hens can increase Zn retention, 202 carbonic anhydrase enzyme activity, growth hormone and serum Zn level, and egg shell 203 thickness, proving that this nanometric oxide may increase Zn uptake in the intestine and have 204 positive effects when compared to ZnO conventionally used in laying diets.

Lina et al. (2009) in their study indicated that ZnO nano improved the performance

Peer Preprints

194

Buentello *et al.* (2009) in their study reported that there are differences in the growth rate in response to different dietary sources of Zn and different chemical substances Zn forms showed differential bioavailability in fish. According to Tawfik *et al.* (2017) supplementation of ZnO nanoparticles with fish feed may possibly improve the growth rates of these animals, such as weight gain, specific growth rates and growth hormone in blood. This could be better than conventional ZnO, so that it could be used in fish farms and aquaculture with their low concentrations and this could improve the economy of aquiculture.

There are several researches focuses on investigating the toxicity of ZnO nanoparticles in mices. It is known that doses above 500 and 1000 mg Zn/kg body weight cause small toxic effects with elevated plasma Zn concentration, accumulation in kidneys, liver and lungs, nephrotoxicity, respiratory tract inflammation and oxidative stress in cell membranes (Wang *et al.*, 2008; Yan *et al.*, 2012; Chung *et al.*, 2013; Hong *et al.*, 2014; Roy, *et al.*, 2015).

217 In recent years, the contribution of several researchers has increased in the 218 investigation of the antibacterial effect of ZnO nano, of the involved mechanisms, of safety,

#### NOT PEER-REVIEWED

and how its use can enable the reduction of the total amount of Zn needed to optimize the
results and, consequently, the polluting effect of the waste generated. Free ZnO nanoparticles,
structured or encapsulated in different matrices, appear as possible technological alternatives
in the use of ZnO as an additive for swine farming.

223

224 **Biopolymers** 

#### 225 Polyelectrolytes and Complexes Polyelectrolytes (PEC)

According to Canevarolo (2006), polymer is a word of greek origin composed of the radical poly (many) and mere (unit of repetition). Polymers are macromolecules composed of tens of thousands of repeating units and joined by covalent bonds. The monomers can be of different types and present themselves in several combinations, they are the ones that determine the length of the molecule and its molar mass (Canevarolo, 2006).

A polyelectrolyte is a polymer in which some groups of monomers along the chain have ionic and/or ionizable groups (Hess *et al.*, 2006). In polar solution, the groups generally ionize and acquire positive charge (polyactions), negative (polyanions) or both (polyphoton). This feature gives polyelectrolytes the ability to interact strongly with macromolecules and charged surfaces with opposing charges. Generally, they are quite hydrophilic, sensitive to pH variation and the amount and types of electrolytes present in the solution (Lyklema, 2005).

The polyelectrolytes stand out for the ability to form interpolymer complexes, called Polyelectrolyte Complexes (PECs) (Schatz *et al.*, 2004). The formation of PECs occurs spontaneously by the simple mixing of oppositely charged polyelectrolytes with release of counterions (Fig. 2).

The main force that leads to the formation of the PECs is the entropy gain caused by the release of the low molar mass counterions. However, hydrogen bonds, hydrophobic interactions and van der Waals forces, or the combination of these interactions, are important

in the formation of complexes (Dautzenberg, 2001). 244



Figure 2: Schematic representation of the formation of the PECs.

251

252 Because of their properties, the PECs have attracted interest for biotechnological, food 253 and pharmaceutical applications such as protein immobilizers and drug carriers (Dautzenberg, 254 2001). The use of polymers in the synthesis of ZnO has been proposed by some authors as an 255 interesting strategy to control the growth and agglomeration of nanoparticles. The chitosan 256 (Murugadoss, Chattopadhyay, 2008, Shih, et al, 2009), the starch (Bozani'c et al, 2011; 257 Raveendran et al 2003) and alginate (Gutowska et al., 2001; Chang et al., 2011) are 258 particularly interesting as matrix polymers because their chains have a large number of 259 hydroxyl groups that form complexes with the metal ions, for example Zn.

260 In addition to nanoparticle growth controllers, natural biopolymers are examples of 261 materials that allow the development of capsules resistant to the upper gastrointestinal tract 262 and release the encapsulated material into the intestinal environment, as verified by different authors (Braccini & Pérez, 2001; Chen & Subirade, 2005; Liu et al., 2007; Jones & 263 McClements, 2010; Patel et al., 2011; Barreto et al., 2017). In this sense, biopolymers are 264 265 interesting as coatings or complexing materials with ZnO.

266

267

Peer Preprints

Alginate

268 Sodium alginate is a sodium salt of alginic acid, a water-soluble anionic polymer. Alginic acid is a natural polysaccharide, extracted from brown seaweed, formed by  $\beta$ -D-269 mannuronic acid (M) and  $\alpha$  -L-guluronic acid (G) residues bound by binding  $(1 \rightarrow 4)$ , 270 271 composition and sequence varied (Fig. 3). The ratio between these two units influences the 272 physical properties of this biopolymer (Lawrie et al., 2007). The carboxylic acid groups on 273 these units assign negative charges to the alginate, making it capable of interacting 274 electrostatically with the positively charged molecules to form gels. The gels formed due to 275 the dimeric association of the G-G blocks in egg-box are induced by multivalent cation.

The alginate can be easily cross-linked with bivalent cations such as  $Ca^{2+}$ ,  $Sr^{2+}$ ,  $Zn^{2+}$  or Ba<sup>2+</sup>, among which  $Ca^{2+}$  is the most investigated (Luo & Wang, 2014). Alginate is characterized by being biocompatible, hydrophilic, biodegradable under normal physiological conditions and chemically stable at pH values between 5.0 and 10.0 (Sankalia *et al.*, 2007; Saether *et al.*, 2008; Aelenei *et al.*, 2009). Alginate is one of the most widely used biopolymers as a matrix for drug release, being abundant, easily manipulable, low cost and interesting physicochemical properties (Liew, 2006).

283 Several authors have demonstrated the antimicrobial activity of different alginate 284 compositions and ZnO nanoparticles (Trandafilovi´c *et al.*, 2012; Trandafilovi´c *et al.*, 2014; 285 Chopra *et al.*, 2015; Cordero-Arias *et al.*, 2015; Karbowniczek *et al.*, 2017).

286



294 units of  $\beta$ -(1,4)-2-deoxy-2-acetylamino-D-glucose (N-acetylglucosamine), abundantly found 295 in nature.

296



297

298

Figure 4: Chemical structure chitosan molecule.

299

300 The degree of deacetylation of chitosan ranges from 70 to 95% and the molar mass 301 between 10-1000 kDa (Hamman, 2010). Chitosan is a weak base with pKa values between 302 5.9-6.6 (Kumar et al., 2004; Park et al., 2010), and above this value its solubility is limited. 303 The amino groups present along the polymer chain act as cationic polyelectrolytes at pH <6.5 304 (George & Abraham, 2006). Therefore, chitosan is soluble in dilute weak acid solutions, such 305 as acetic acid (Laranjeira & Fávere, 2009). Thus, the cationic character of chitosan, acquired 306 in acid solution, by protonation of the amino groups, allows the electrostatic interaction with 307 specific polyanions and, consequently, the formation of intra- and intermolecular crosslinks. 308 However, as the pH is adjusted above 6.5, the amino groups become deprotonated and the 309 chitosan loses its charges, becoming insoluble (Dash et al., 2011).

Peer Preprints

310 Chitosan presents, among other properties, biocompatibility, biodegradability, 311 antimicrobial activity and bioadhesiveness due to its polycationic nature. The number of 312 studies investigating chitosan as carrier and nanocarrier has increased significantly in the last 313 decades (Gan et al., 2005; Boddohi et al., 2009; Hamman, 2010; Dash et al., 2011; Luo & 314 Wang, 2014). According to Laranjeira and Fávere (2009), the rate of drug release from 315 chitosan matrices is affected by the pH change. In vitro studies, simulating the gastrointestinal 316 tract, revealed that the dissolution profiles of these systems depend on the type of polymer 317 matrix and the pH of the simulated fluid (Laranjeira & Fávere, 2009).

318 Different methodologies can be used for the preparation of nano and microparticles 319 containing chitosan, which involve one or two types of association between macromolecules 320 (Tavares et al., 2012). The formation of covalent crosslinking that requires a crosslinking 321 agent, such as glutaraldehyde, genipine and sodium tripolyphosphate (TPP) (Banerjee, et al., 322 2002; Liu & Huang, 2008; Ocak, 2012) and the physical interaction, which involves methods 323 such as spray-drying, ionic gelling, reverse microemulsion, solvent evaporation/diffusion, 324 polyelectrolyte complexation and coacervation/precipitation (Harris et al., 2011; Lee et al., 325 2010; Mukhopadhyay et al. 2012).

326 In the literature, it is possible to verify that the complexation of chitosan with 327 polyanions such as pectin, collagen, xanthan gum, cellulose and sodium alginate has been 328 shown to be efficient in the development of formulations for drug delivery (Davidenko et al., 329 2009; Plapied et al., 2011). Alginate is often used in the formation of complexes with 330 chitosan, in addition to the complex formed remain biodegradable and biocompatible, it 331 becomes mechanically strong at low pH values where chitosan is soluble. While chitosan is 332 easily degraded by lysozymes, the chitosan-alginate complex has shown greater strength due 333 to the strong interaction between the polymer chains (Hamman, 2010). Several results have 334 been found on the use of chitosan and sodium alginate in the formation of micro and

nanoparticles by means of ionic interaction (Sarmento *et al.*, 2006; Cafaggi *et al.*, 2007;
Sankalia *et al.*, 2007; Li *et al.*, 2008; Aelenei *et al.*, 2009; Lertsutthiwong *et al.*, 2009; Barreto *et al.*, 2017).

338 Studies of the antibacterial activity of the nano complexed or chitosan coated ZnO 339 presented positive results regarding the control of gram positive and gram negative bacteria 340 (Bhadra et al., 2011; Malini et al., 2015; Vaseeharan et al., 2015). Investigating Zn 341 nanoparticles encapsulated in biocompatible chitosan polymer, Bhadra et al. (2011) found that 342 the chitosan encapsulation helped to restrict the growth of the ZnO nanomaterial and that the 343 chitosan coated ZnO compound was bound to the external cell membrane of the bacteria 344 through the chitosan-NH<sub>2</sub>. This increased the permeability of the cell membrane and resulted 345 in cell cytoplasm to leak the entire cell leading to destruction. The inhibition zone study 346 confirmed the highest antibacterial effect of chitosan-capped ZnO nanoparticles compared to 347 unencapsulated ZnO nanomaterial as well as chitosan against E. coli (Bhadra et al., 2011). In 348 another study, the antibacterial activity of membranes synthesized with chitosan/ZnO 349 nanoparticles was investigated in Klebsiella planticola and Bacillus substilis. In all cases, the 350 gram negative K. planticola was inhibited in a greater proportion compared to gram positive 351 Bacillus substilis and according to the authors, the chitosan/ZnO nanocomposites appeared to 352 be very promising in relation to their antibacterial property (Malini *et al.*, 2015). Similarly, 353 antibacterial activity of chitosan-ZnO composite demonstrated the effective growth control as 354 gram negative Vibrio parahaemolyticus as gram positive Bacillus lechiniformis bacteria 355 isolated from aquatic environments (Vaseeharan et al., 2015).

In the literature, the application of complexes of ZnO and biopolymers in the animal nutrition is not observed. In an *in vitro* study, Barreto *et al.* (2017) synthesized ZnO nanoparticles complexed with chitosan and alginate polyelectrolytes with and without TPP. The authors obtained compounds that showed a pronounced antibacterial effect against *E. coli* 

## Peer Preprints

and *S. aureus*, in addition to a release profile of the  $Zn^{2+}$  ions suitable for delivery to the simulated enteric piglet environment, indicating that the polyelectrolyte complexes can efficiently protect ZnO in the piglets' gastric environment (Barreto *et al*, 2017).

363

364 Encapsulated ZnO

The encapsulation of ZnO in different matrices has emerged as one of the alternatives to protect the ZnO in the stomach and to allow the maximization of its release in the small intestine.

In piglets, the addition of coated and microencapsulated zinc containing 100 g of 368 369 ZnO/kg of finished product, showed results equal to or greater than those of conventional ZnO. Microencapsulated Zn is designed to provide ions  $(Zn^{2+})$  in the ideal fraction of the 370 gastrointestinal tract resulting in maximum efficiency of control and treatment of post-371 372 weaning diarrhea (Moran, 2007). Shen et al. (2014) found that a low concentration of coated 373 ZnO alleviated diarrhea in piglets and promoted intestinal development by protecting the 374 intestinal mucosa barrier from damage, stimulating the mucosal immune system and 375 regulating the intestinal microbiota, as well as high concentration of ZnO. In addition, 376 compared to a high concentration of ZnO, a low concentration of coated ZnO prevented 377 excessive accumulation of Zn in animals and reduced the Zn concentration of excreted feces 378 in order to achieve the goal of saving the Zn source and reducing the environmental pollution 379 of Zn (Shen et al., 2014). However, Park et al. (2014) investigated the effects of lipid 380 encapsulated ZnO supplementation at a physiological level and the result was superior to that 381 of conventional ZnO at the same level in the weight gain of weaned piglets, but their effects 382 on suppression of diarrhea were lower than that of conventional ZnO. The results found by 383 Kim et al. (2015) indicated that dietary supplementation of 72 ppm of Zn as ZnO encapsulated in lipids was as effective as that of 2,000 to 2,500 ppm Zn supplied as 384

### NOT PEER-REVIEWED

conventional ZnO or antibiotics to improve growth performance, goblet cell density in the
intestine, as well as reduction of diarrhea in challenged piglets with a low dose of *E. coli*(K88). The authors suggest that studies be performed under production conditions to
determine the effects of lipid-coated ZnO over conventional ZnO in weaned piglets.

- 389
- 390 Table 1: A brief overview of ZnO products and data found in vivo and in vitro assays.

| References                   | Products              | Results                                                                                                     |
|------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|
| Jones <i>et al.</i> (2008)   | ZnO nano (50 - 70 nm) | Antibacterial activity: <i>Staphylococcus aureus</i>                                                        |
| Xie et al. (2011)            | ZnO nano (50 nm)      | Antibacterial activity: <i>Campylobacter jejuni</i>                                                         |
| Zhang <i>et al.</i> (2008)   | ZnO nano (90-100 nm)  | Antibacterial activity: Escherichia coli                                                                    |
| Jalal <i>et al.</i> (2010)   | ZnO nano (37-41 nm)   | Antibacterial activity: Escherichia coli                                                                    |
| Barreto <i>et al.</i> (2017) | ZnO nano (17 nm)      | Antibacterial activity: Escherichia coli<br>and Staphylococcus aureus                                       |
| Wang <i>et al.</i> (2012)    | ZnO nano (55-95 nm)   | Antibacterial activity: Escherichia coli                                                                    |
| Yang and Sun (2006)          | ZnO nano (ND)         | <i>In vivo</i> : Increase growth performance, improve power utility and provide benefits in weaned piglets. |

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26658v1 | CC BY 4.0 Open Access | rec: 10 Mar 2018, publ: 10 Mat 2018

| Preprints                             |                                             | NOT PEER-REVI                                                                    |
|---------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------|
| Hongfu (2008)                         | ZnO nano (ND)                               | <i>In vivo</i> : Diarrhoea incidence reduced in piglets                          |
| Milani <i>et al.</i> (2017)           | ZnO nano (31-108 nm)                        | <i>In vivo</i> : Weaning diarrhea control                                        |
| Trandafilovi´c <i>et al.</i> (2012)   | ZnO nano + Alginate (3.9<br>- 6.8 nm)       | Antibacterial activity: <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> |
| Trandafilovi´c <i>et al.</i> (2014)   | ZnO nano + Alginate<br>(100 nm)             | Antibacterial activity: <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> |
| Chopra <i>et al.</i> (2015)           | ZnO nano + Alginate<br>(75-80 nm)           | Antibacterial activity: Pseudomonas aeruginosa                                   |
|                                       |                                             | High encapsulation efficiency                                                    |
| Cordero-Arias <i>et al.</i><br>(2015) | ZnO nano + Alginate<br>(20-60 nm)           | Antibacterial activity: Escherichia coli                                         |
| Karbowniczek <i>et al.</i> (2017)     | ZnO nano (40,8 nm) +<br>Alginate + Chitosan | Antibacterial activity: Salmonella<br>enteric and Staphylococcus aureus          |
| Bhadra <i>et al.</i> (2011)           | ZnO nano (80 nm) +<br>Chitosan              | Antibacterial activity: Escherichia coli                                         |

| er U Preprints 🛛                   |                                           | NOT PEER-REVIEW                                                                                    |
|------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|
| Malini et al. (2015)               | ZnO nano + Chitosan                       | Antibacterial activity: <i>Klebsiella</i><br><i>planticola</i> and <i>Bacillus substilis</i>       |
| Vaseeharan <i>et al.</i><br>(2015) | ZnO nano (30 - 60 nm) +<br>Chitosan       | Antibacterial activity: Vibrio<br>parahaemolyticus and Bacillus<br>lechiniformis                   |
| Barreto <i>et al.</i> (2017)       | ZnO nano (17 nm) +<br>Chitosan + Alginate | Antibacterial activity: Escherichia coli<br>and Staphylococcus aureus                              |
|                                    |                                           | In vitro: Optimum <i>in vitro</i> release profile of $Zn^{2+}$ in simulated enteric fluids assays. |
| Moran (2007)                       | Microencapsulated ZnO:<br>Lipid matrix    | In vivo: Maximum efficiency of control<br>and treatment of post-weaning diarrhea                   |
| Shen <i>et al.</i> (2014)          | Microencapsulated ZnO:<br>Lipid matrix    | <i>In vivo</i> : Reduced diarrhoea and reduced the Zn concentration of excreted faeces             |
| Park et al. (2014                  | Microencapsulated ZnO:<br>Lipid matrix    | In vivo: Weight gain of weaned piglets                                                             |
| Kim et al. (2015)                  | Microencapsulated ZnO:<br>Lipid matrix    | <i>In vivo</i> : Reduced plasma Zn<br>concentration<br>and faecal Zn excretion levels              |

391

392 **Considerations**ZnO is an important antimicrobial used to combat diarrhea common to 393 weaned piglets, its antimicrobial activity has been extensively researched and confirmed for 394 gram negative and gram positive bacteria. Elevated doses of ZnO have been shown to be 395 effective in the field; however, much is lost with animal waste, contaminating soils and

### NOT PEER-REVIEWED

396 groundwater. In the last two decades, the interest has been increased by alternatives that 397 protect ZnO in the gastric environment and allow the maximization of its release in the enteric 398 environment. Novel knowledge such as nanotechnology and biopolymers as release matrices 399 arise bringing new perspectives to animal nutrition and to the challenges inherent in weaning 400 piglets.

However, scientific research on novel ZnO products, such as ZnO nanoparticles, complexes ZnO/biopolymers, or ZnO encapsulated in animal nutrition, especially in pigs, is still scarce. Further *in vitro* and *in vivo* studies are recommended for a better understanding of the effect of ZnO nanoparticles, their location and mechanism of absorption, and the risk of intoxication in animals. Adequate levels of ZnO in the diet should be focused in order to minimize piglet mortality, confer better animal performance and economic benefits in a safe way.

408

#### 409References

# Aelenei, N.; Popa, M. I.; Novac, O.; Lisa, G; Balaita, L. 2009. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. Journal of Material Science: Materia Medica, 20:1095–1102.

- Ahmadi, F., Ebrahimmezhad, Y., Sis, N.M., Ghalehkandi, J.G., 2013. The effects of
  zinc oxide nanoparticles on performance, digestive organs and serum lipid
  concentrations in broiler chickens during starter period. Int. J. Biosci. 3: 23-29.
- Ahmadi, F., Ebrahimnezjad, Y., Ghalehkandi, J.G., Sis, N.M., 2014. The Effect of
  Dietary Zinc Oxide Nanoparticles on the Antioxidant State and Serum Enzymes
  Activity in Broiler Chickens During Starter. In: International Conference on
  Biological, Civil and Environmental Engineering, 2014, Dubai, pp. 26-28.
- 420 4. Ann, L.C., Mahmud, S., Bakhori, S.K.M., Sirelkhatim, A., Mohamad, D., Hasan, H.,

| -eer | JI | Preprints NOT PEER-REVI                                                                 |
|------|----|-----------------------------------------------------------------------------------------|
| 421  |    | et al. 2014. Antibacterial responses of zinc oxide structures against Staphylococcus    |
| 422  |    | aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int., 40: 2993-       |
| 423  |    | 3001.                                                                                   |
| 424  | 5. | Applerot, G. A., Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken,       |
| 425  |    | 2009. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-      |
| 426  |    | mediated cell injury, Advanced Functional Materials, 19:842-852.                        |
| 427  | 6. | Ballal, A., A.C. Manna. 2010. Control of thioredoxinreductase gene (trxB)               |
| 428  |    | transcription by SarA in Staphylococcus aureus. Journal of Bacteriology. 192:336-       |
| 429  |    | 345.                                                                                    |
| 430  | 7. | Banerjee, T.; Mitra, S.; Singh, A. K.; Sharma, R. K.; Maitra, A. 2002. Preparation,     |
| 431  |    | characterization and biodistribution of ultrafine chitosan nanoparticles. International |
| 432  |    | Journal of Pharmaceutics, 243:93-105.                                                   |
| 433  | 8. | Barreto, M.S.R., Andrade, C.T., da Silva, L.C.R.P., Cabral, L.M., Paschoalin, V.M.F.,   |
| 434  |    | Del Aguila, E.M. 2017. In vitro physiological and antibacterial characterization of     |
| 435  |    | ZnO nanoparticle composites in simulated porcine gastric and enteric fluids. BMC        |
| 436  |    | Veterinary Research, 13:181-191.                                                        |
| 437  | 9. | Bednorz, C.; Oelgeschläger, K.; Kinnemann, B.; Hartmann, S.; Neumann, K.; Pieper,       |
| 438  |    | R.; Bethe, A.; Semmler, T.; Tedin, K.; Schierack, P.; Wieler, L.H.; Guenther, S. 2013.  |
| 439  |    | The broader context of antibiotic resistance: Zinc feed supplementation of piglets      |
| 440  |    | increases the proportion of multi-resistant Escherichia coli in vivo. International     |
| 441  |    | Journal of Medical Microbiology, Jena, 303(6/7): 396-403.                               |
| 442  | 10 | Bhadra, P., Mitra, M.K., Das, G.C., Dey, R., Mukherjee, S. 2011. Interaction of         |
| 443  |    | chitosan capped ZnO nanorods with Escherichia coli. Materials Science and               |

- Engineering C, 31: 929–937. 444
- 11. Braccini, I; Pérez, S. 2001. Molecular basis of Ca2+-induced gelation in alginates and 445

| Peer | Preprints NOT PEER-REVIEWE                                                                     |
|------|------------------------------------------------------------------------------------------------|
| 446  | pectins: the egg-box model revisited. Biomacromolecules, 2:1089-1096.                          |
| 447  | 12. Boddohi, S., Moore, N., Patrick A. 2009. Johnson and Matt J. Kipper. Polysaccharide-       |
| 448  | based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan.            |
| 449  | Biomacromolecules. 10:1402–1409.                                                               |
| 450  | 13. Boudry, G., Péron V., Le Huërou-Luron I, Lallès, J.P., Sève, B. 2004. Weaning induces      |
| 451  | both transient and long-lasting modifications of absorptive, secretory, and barrier            |
| 452  | properties of piglet intestine. J. Nutr. 134(9):2256-62.                                       |
| 453  | 14. Bozani'c, D. K. B. 2011. Silver nanoparticles encapsulated in glycogen biopolymer:         |
| 454  | Morphology, optical and antimicrobial properties. Carbohydrate Polymers, 83: 883-              |
| 455  | 890.                                                                                           |
| 456  | 15. Buentello, J.A., Goff, J.B., Gatlin, D.M. 2009. Dietary Zinc Requirement of Hybrid         |
| 457  | Striped Bass, Morone chrysops×Morone saxatilis, and Bioavailability of Two                     |
| 458  | Chemically Different Zinc Compounds, Journal of the World Aquaculture Society,                 |
| 459  | 40(5): 687–694.                                                                                |
| 460  | 16. Buzea, C.; Blandino, I.I.P.; Robbie, K. 2007. Nanomaterials and nanoparticles:             |
| 461  | Sources and toxicity. Biointerphases, New York, 2(4): MR17-MR172.                              |
| 462  | 17. Cafaggi, S.; Russo, E.; Stefani, R.; Leardi, R.; Caviglioli, G.; Parodi, B.; Bignardi, A.; |
| 463  | De Totero, B.; Aiello, C.; Viale, M. 2007. Preparation and evaluation of nanoparticles         |
| 464  | made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. Journal of          |
| 465  | Controlled Release, 121:110–123.                                                               |
| 466  | 18. Campbell, J.M, Crenshaw, J.D., Polo, J., 2013. The biological stress of early weaned       |
| 467  | piglets. J. Anim. Sci. Biotechnol. 4: 1-4.                                                     |
| 468  | 19. Canevarolo, V. S. 2006. Ciência dos Polímeros, 2. ed. São Paulo, SP: Artliber Editora.     |
| 469  | 280p.                                                                                          |
| 470  | 20. Carlson, M. S., C. A. Boren, C. Wu, C. E. Huntington, D. W. Bollinger, and T. L.           |

| Peer | Preprints NOT PEER-REVIEWE                                                                  |
|------|---------------------------------------------------------------------------------------------|
| 471  | Veum. 2004. Evaluation of various inclusion rates of organic zinc either as a               |
| 472  | polysaccharide or proteinate complex on the growth performance, plasma, and                 |
| 473  | excretion of nursery pigs. J. Anim. Sci. 82:1359.–1366.                                     |
| 474  | 21. Chang, C.C., Ping L; Chun, H.L. 2008. Synthesis and characterization of nano-sized      |
| 475  | ZnO powders by direct precipitation method. Chemical Engineering Journal 144:509-           |
| 476  | 513.                                                                                        |
| 477  | 22. Chang, P.R., Yua, J., Ma, X., Anderson, D.P. 2011. Polysaccharides as stabilizers for   |
| 478  | the synthesis of magnetic nanoparticles. Carbohydrate Polymers, 83: 640-644.                |
| 479  | 23. Chen, L.; Subirade, M. 2005. Chitosan/ [beta]-lactoglobulin core-shell nanoparticles as |
| 480  | nutraceutical carriers. Biomaterials, v. 26, n. 30, p. 6041-6053.                           |
| 481  | 24. Chopra, M., Bernela, M., Kaur, P., Manuja, A., Kumar, B., Thakur, R. 2015.              |
| 482  | Alginate/gum acacia bipolymeric nanohydrogels — Promising carrier for Zinc oxide            |
| 483  | nanoparticles. International Journal of Biological Macromolecules 72: 827-833.              |
| 484  | 25. Chung, H.E.; Yu, J.; Baek, M.; Lee, J.A.; Kim, M.S.; Kim, S.H.; Maeng, E.H.; Lee,       |
| 485  | J.K.; Jeong, J.; Choi, S.J. 2013. Toxicokinetics of zinc oxide nanoparticles in rats.       |
| 486  | Journal of Physics: Conference Series, Bristol, 429: 12037-12045.                           |
| 487  | 26. Cordero-Arias, L., Cabanas-Polo, S., Goudouri, O.M., Misra, S.K., Gilabert, J.,         |
| 488  | Valsami-Jones, E., Sanchez, E., Virtanen, S., Boccaccini, A.R. 2015. Electrophoretic        |
| 489  | deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for          |
| 490  | antimicrobial applications, Materials Science & Engineering C, 55:137-144.                  |
| 491  | 27. Dash, M., F. Chiellini, R. M. Ottenbriteb, E. Chiellini. 2011. Chitosan-A versatile     |
| 492  | semisynthetic polymer in biomedical applications. Progress in Polymer Science,              |
| 493  | 36:981–1014.                                                                                |
| 494  | 28. Dautzenberg, H. 2001. Em: RADEVA. T. Physical chemistry of polyelectrolytes:            |

495 surfactant science series, v 99, New York: Marcel Dekker, 2001. 743.

496

- 497 2009. Effects of Different Parameters on the Characteristics of Chitosan–Poly(acrylic
  498 acid) nanoparticles obtained by the method of coacervation. Journal of Applied
  499 Polymer Science, 111:2362–2371.
- 30. Esquerra R.G., Zhao J., Harrell R. 2011. Zinco e cobre como promotores de
   crescimento para suínos. Anais: IV Simpósio Brasil Sul de Suinocultura, Chapecó, SC
   Brasil.
- 503 31. European Communities. Official Journal of the European Union. Commission
  504 regulation (EC) n° 1334/2003 of 25 July 2003. Amending the conditions for
  505 authorization of a number of additives in feeding stuffs belonging to the group of trace
  506 elements, 2003. 6 p.
- 507 32. Fairbrother, J. M., Nadeau, E. & Gyles, C. L. 2005. Escherichia coli in postweaning
  508 diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies.
  509 Anim Health Res Rev 6:17–39.
- 33. Gräber, I.; Hansen, J.F.; Olesen, S.E.; Petersen, J.; Ostergaard, H.S.; Krogh, L. 2005.
  Accumulation of Copper and Zinc in Danish Agricultural Soils in Intensive Pig
  Production Areas. Geografisk Tidsskrift Danish Journal of Geography, Kjøbenhavn,
  105(2):15-22.
- 514 34. Gan, Q., T. Wang, C. Cochrane, P. McCarron. 2005. Modulation of surface charge,
  515 particle size and morphological properties of chitosan–TPP nanoparticles intended for
  516 gene delivery. Colloids and Surfaces B: Biointerfaces. 44:65–73.
- 517 35. George, M., T. E. Abraham. 2006. Polyionic hydrocolloids for the intestinal delivery
  518 of protein drugs: alginate and chitosan a review. Journal of Controlled Release,
  519 114:1-14.
- 520 36. Giraldi, T. R., Santos, G. V. F., de Mendonca, V. R., Ribeiro, C., Weber, I.T. 2012.

| Peer | Preprints NOT PEER-REVIEWED                                                                |
|------|--------------------------------------------------------------------------------------------|
| 521  | Effect of synthesis parameters on the structural characteristics and photocatalytic        |
| 522  | activity of ZnO. Materials Chemistry and Physics, 136:505–511.                             |
| 523  | 37. Gutowska, A., Jeong, B., Jasionowski, M. 2001. Injectable gels for tissue engineering. |
| 524  | The Anatomical Record, 263:342–3499.                                                       |
| 525  | 38. Hamman, J. H. 2010. Chitosan based polyelectrolyte complexes as potential carrier      |
| 526  | materials in drug delivery systems. Marine Drugs, 8:1305-1322.                             |
| 527  | 39. Harris, R.; Lecumberri, E.; Mateos-Aparicio, I.; Mengibar, M.; Heras, A. 2011.         |
| 528  | Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants      |
| 529  | extracted from Ilex paraguariensis. Carbohydrate Polymers, 84:803-806.                     |
| 530  | 40. Hess, M.; Jones, R. G; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.;          |
| 531  | Mormann, W., Stepto, R.F.T., Tabak, D., Vohlídal, J., Wilks, E.S. 2006. Terminology        |
| 532  | of polymers containing ionizable or ionic groups and of polymers containing ions           |
| 533  | (IUPAC Recommendations 2006). Pure and Applied Chemistry, 78(11):2067-2074.                |
| 534  | 41. Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, C. M. Nyachoti.     |
| 535  | 2013. Gastrointestinal health and function in weaned pigs: a review of feeding             |
| 536  | strategies to control post-weaning diarrhea without using in-feed antimicrobial            |
| 537  | compounds. Journal of Animal Physiology and Animal Nutrition, 97:207–237.                  |
| 538  | 42. Hollis, G.R.; Carter, S.D.; Cline, T.R. Crenshaw, T.D., Cromwell, G.L., Hill, G.M.,    |
| 539  | Kim, S.W., Lewis, A.J., Mahan, D.C., Miller, P.S., Stein, H.H., Veum, T.L 2005.            |
| 540  | Effects of replacing pharmacological levels of dietary zinc oxide with copper dietary      |
| 541  | levels of various organic zinc sources for weanling pigs. Journal of Animal Science,       |
| 542  | 83(9): 2123-2129.                                                                          |
| 543  | 43. Hölzel, C.S.; Müller, C.; Harms, K.S.; Mikolajewski, S.; Schäfer, S.; Schwaiger, K.;   |
| 544  | Bauer, J. 2012. Heavy metals in liquid pig manure in light of bacterial antimicrobial      |
| 545  | resistance. Environmental Research, New York, 113:21-27.                                   |
|      |                                                                                            |

| Peer | Preprints NOT PEER-REVIEWED                                                              |
|------|------------------------------------------------------------------------------------------|
| 546  | 44. Hong, JS.; Park, MK.; Kim, MS.; Lim, JH.; Park, GJ.; Maeng, EH.; Shin, J             |
| 547  | H.; Kim, MK.; Jeong, J.; Park, JA.; Kim, JC.; Shin, HC. 2014. Prenatal                   |
| 548  | development toxicity study of zinc oxide nanoparticles in rats. International Journal of |
| 549  | Nanomedicine, Auckland, 9(2): 159-171.                                                   |
| 550  | 45. Hongfu, Y.B.Z. 2008. Effects of Nano-ZnO on growth performance and diarrhea rate     |
| 551  | in weaning piglets, China Feed, 1:08.                                                    |
| 552  | 46. Jalal, R., Goharshadi, E.K., Abareshi, M., Moosavi, M., Yousefi, A., Nancarrow, P.   |
| 553  | 2010. ZnO nanofluids: green synthesis, characterization, and antibacterial activity.     |
| 554  | Materials Chemistry and Physics, 121:198–201.                                            |
| 555  | 47. Jones, N., Ray, B., Koodali, T.R., Adhar, C.M. 2008. Antibacterial activity of ZnO   |
| 556  | nanoparticle suspensions on a broad spectrum of microorganisms. FEMS FEMS                |
| 557  | Microbiology Letters, 279:71-76.                                                         |
| 558  | 48. Jones, O. G.; McClements, D. J. 2010. Functional Biopolymer Particles: Design,       |
| 559  | Fabrication, and Applications. Comprehensive Reviews in Food Science and Food            |
| 560  | Safety, 9(4):374-397.                                                                    |
| 561  | 49. Karbowniczek, J., Cordero-Arias, L., Virtanen, S., Misra, S.K., Valsami-Jones, E.,   |
| 562  | Rutkowski, B., Górecki, K., Bała, P., Czyrska-Filemonowicz, A., Boccaccini, A.R.         |
| 563  | 2017. Electrophoretic deposition of organic/inorganic composite coatings containing      |
| 564  | ZnO nanoparticles exhibiting antibacterial properties. Materials Science &               |
| 565  | Engineering C, doi: 10.1016/j.msec.2017.03.180.                                          |
| 566  | 50. Khorsand Zak, A; Majid, W.H; Wang, H.Z; Yousefi, R; Moradi Golsheikh, A; Ren,        |
| 567  | Z.F. 2013. Sonochemical synthesis of hierarchical ZnO nanostructures, Ultrasonics        |
| 568  | Sonochemistry, 20:395–400.                                                               |
| 569  | 51. Kim, S.J., Chang, H.K., Park, B.C., Lee, C.Y., Han, J.H. 2015. Effects of a lipid-   |
| 570  | encapsulated zinc oxide dietary supplement, on growth parameters and intestinal          |
|      |                                                                                          |

| Peer | Preprints NOT PEER-REVIEWED                                                                |
|------|--------------------------------------------------------------------------------------------|
| 571  | morphology in weanling pigs artificially infected with enterotoxigenic Escherichia         |
| 572  | coli. Journal of Animal Science and Technology, 57:4.                                      |
| 573  | 52. Kumar, B.; Sandhu, K.; Kaur, I. 2004. Topical 0.25% methotrexate gel in a hydrogel     |
| 574  | base for palmoplantar psoriasis. Journal of Dermatology, 31:798-801.                       |
| 575  | 53. Lallès, J., Bosi, P., Smidt, H., Stokes, C.R., 2007. Weaning-a challenge to gut        |
| 576  | physiologists. Livest. Sci. 108:82-93.                                                     |
| 577  | 54. Laranjeira, M.C.M. & Fávere, V.T. 2009. Quitosana: biopolímero funcional com           |
| 578  | potencial industrial biomédico. Química Nova, 32:672-678.                                  |
| 579  | 55. Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.;      |
| 580  | Grøndahl, L. 2007. Interactions between Alginate and Chitosan Biopolymers                  |
| 581  | Characterized Using FTIR and XPS. Biomacromolecules, 8:2533-254.                           |
| 582  | 56. Lee, E. J.; Khan, S. A.; Kim, Y. B.; Lim, K. H. 2010. Preparation of                   |
| 583  | chitosan/carboxymethyl dextran nanoparticles by polyelectrolyte complexation.              |
| 584  | Journal of Biotechnology, 150:450-451.                                                     |
| 585  | 57. Lertsutthiwong, P.; Rojsitthisak, P.; Nimmannit, U. 2009. Preparation of turmeric oil- |
| 586  | loaded chitosan-alginate biopolymeric nanocapsules. Materials Science and                  |
| 587  | Engineering C, 29:856–860.                                                                 |
| 588  | 58. Li, M.Z., Huang, J.T., Tsai, Y.H., Mao, S.Y., Fu, C.M., Lien, T.F., 2016. Nanosize of  |
| 589  | zinc oxide and the effects on zinc digestibility, growth performances, immune              |
| 590  | response and serum parameters of weanling piglets. Anim. Sci. J. 87:1379-1385.             |
| 591  | 59. Li, P.; Dai, Y.; Zhang, J.; Wang, A.; Wei, Q. 2008. Chitosan-Alginate Nanoparticles as |
| 592  | a Novel Drug Delivery System for Nifedipine. International Journal of Biomedical           |
| 593  | Science, 4: 221-228.                                                                       |
| 594  | 60. Li X, Yin J, Li D, Chen X, Zang J, Zhou X. 2006. Dietary supplementation with zinc     |
| 595  | oxide increases IGF-I and IGF-I receptor gene expression in the small intestine of         |

| Peer | Preprints NOT PEER-REVIEWEI                                                                |
|------|--------------------------------------------------------------------------------------------|
| 596  | weanling piglets. The Journal of Nutrition, 136:1786–1791.                                 |
| 597  | 61. Liedtke, J., Vahjen, W. 2012. In vitro antibacterial activity of zinc oxide on a broad |
| 598  | range of reference strains of intestinal origin. Veterinary Microbiology, 160: 251–255.    |
| 599  | 62. Liew, C.V.; Chan, L.W.; Ching, A.L.; Heng, P.W. 2006. Evaluation of sodium alginate    |
| 600  | as drug release modifier in matrix tablets. International Journal of Pharmaceutics,        |
| 601  | 309:25-37.                                                                                 |
| 602  | 63. Lima G.J.M.M., Mores N. & Sanches R.L. 2009. As diarréias nutricionais na              |
| 603  | suinocultura. Acta Scientiae Veterinariae, 37:17-30.                                       |
| 604  | 64. Lina, T., Jianyang, J., Fenghua, Z., Huiying, R. and Wenli, L. 2009. Effect of nano-   |
| 605  | zinc oxide on the production and dressing performance of broiler. Chinese Agricultural     |
| 606  | Science Bulletin, 2: 003.                                                                  |
| 607  | 65. Liu, B. S. & Huang, T. B. 2008. Nanocomposites of genipin-crosslinked                  |
| 608  | chitosan/silver nanoparticles - structural reinforcement and antimicrobial properties.     |
| 609  | Macromolecular Bioscience, 8:932.                                                          |
| 610  | 66. Liu, L.; Fishman, M.; Hicks, K. 2007. Pectin in controlled drug delivery – a review.   |
| 611  | Cellulose, 14(1):15-24.                                                                    |
| 612  | 67. Luo, Y. and Q. Wang. 2014. Recent development of chitosan-based polyelectrolyte        |
| 613  | complexes with natural polysaccharides for drug delivery. International Journal of         |
| 614  | Biological Macromolecules, 64:353–367.                                                     |
| 615  | 68. Lyklema, J. The bottom size of colloids. 2005. Bulletin of the Polish Academy of       |
| 616  | Sciences Technical Sciences, 53:317-323.                                                   |
| 617  | 69. Malini, M., Thirumavalavan, M., Yang, W.Y., Lee, J.F., Annadurai, G. 2015. A           |
| 618  | versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties.               |
| 619  | International Journal of Biological Macromolecules 80: 121–129.                            |
| 620  | 70. Milani, N.C., Sbardella, M. Ikeda, N.Y., Arno, A., Mascarenhas, B.C., Miyada, V.S.     |
|      |                                                                                            |

| Peer | Preprints NOT PEER-REVIEWED                                                               |
|------|-------------------------------------------------------------------------------------------|
| 621  | 2017. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs, Animal       |
| 622  | Feed Science and Technology http://dx.doi.org/10.1016/j.anifeedsci.2017.03.001.           |
| 623  | 71. Moran, C. 2007. Designing a new growth promoter in the 21st century. In: J.Patterson  |
| 624  | (ed.) Australasian Pig Science Association, p. 159-169. Manipulating pig production       |
| 625  | XI, Werribee, Vic. Australia.                                                             |
| 626  | 72. Mukhopadhyay, P.; Mishra, R.; Rana, D.; Kundu, P. 2012. Strategies for effective oral |
| 627  | insulin delivery with modified chitosan nanoparticles: A review. Progress in Polymer      |
| 628  | Science, 37:1457–1475.                                                                    |
| 629  | 73. Muneer, M., Ba-Abbad, Abdul Amir H., Kadhum, Mohamad, A.B., Mohd S. Takriff,          |
| 630  | Kamaruzzaman Sopian. 2013. The effect of process parameters on the size of ZnO            |
| 631  | nanoparticles synthesized via the sol-gel technique. Journal of Alloys and                |
| 632  | Compounds, 550:63–70.                                                                     |
| 633  | 74. Murugadoss, A., Chattopadhyay, A. 2008. A 'green' chitosan-silver nanoparticle        |
| 634  | composite as a heterogeneous as well as micro-heterogeneous catalyst.                     |
| 635  | Nanotechnology, 19: 015603 doi: 10.1088/0957-4484/19/01/015603.                           |
| 636  | 75. Ocak, B. 2012. Complex coacervation of collagen hydrolysate extracted from leather    |
| 637  | solid wastes and chitosan for controlled release of lavender oil. Journal of              |
| 638  | Environmental Management, 100: 22-28                                                      |
| 639  | 76. Park, J. H., Saravanakumar, G., Kim, K., Kwon, I. C. 2010. Targeted delivery of low   |
| 640  | molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews,       |
| 641  | 63:28-41.                                                                                 |
| 642  | 77. Park, B.C., Jung, D.Y., Kang, S.Y., Ko, Y.H., Ha, D.M., Kwonc, C.H., Park, M.J.,      |
| 643  | Hanc, J.H., Jang, I., Lee, C.Y. 2014. Effects of dietary supplementation of a zinc oxide  |
| 644  | product encapsulated with lipid on growth performance, intestinal morphology, and         |
| 645  | digestive enzyme activities in weanling pigs. Animal Feed Science and Technology,         |
|      |                                                                                           |

200:112-115.

- 647 78. Patel, K.R.; Patel, M.R.; Mehta, T.J.; Patel, A.D.; Patel, N.M. 2011.
  648 Microencapsulation: Review on novel approaches. International Journal of Pharmacy
  649 and Technology, 3:894-911.
- 650 79. Pettigrew, J.E. 2006. Reduced use of antibiotic growth promoters in diets fed to
  651 weanling pigs: Dietary tools, part 1. Animal Biotechnology, 17:207–215.
- 80. Plapied, L.; Duhem, N.; Rieux, A.; Préat, V. 2011. Fate of polymeric nanocarriers for
  oral drug delivery. Current Opinion in Colloid & Interface Science, 16:228–237.
- 81. Pluske, J.R.; Hampson, D.J.; Williams, I.H. 1997. Factors influencing the structure and
  function of the small intestine in the weaned pig: a review. Livestock Production
  Science, Amsterdam, 51(1/3): 215-236.
- 82. Pluske, J.R., Hansen, C.F., Payne, H.G., Mullan, B.P., Kim, J.-C. and Hampson, D.J.
  2007. Gut health in the pig. In Manipulating Pig Production XI (J.E. Paterson and J.A.
  Barker, eds.), pp. 147-158. Australasian Pig Science Association, Werribee, Victoria,
  Australia.
- 83. Poulsen, H.D. 1995. Zinc Oxide for Weanling Piglets. Journal Acta Agriculturae
  Scandinavica A, 45(3): 159-167.
- 84. Raghupathi, K.R., R.T. Koodali, A.C. Manna. 2011. Size-dependent bacterial growth
  inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles,
  Langmuir 27:4020–4028.
- 85. Raveendran, P., Fu, J., Wallen, S. L. 2003. Completely green synthesis and
  stabilization of metal nanoparticles. Journal of the American Chemical Society,
  125:13940–13941.
- 86. Rincker, M.J.; Hill, G.M.; Link, J.E.; Meyer, A.M.; Rowntree, J.E. 2005. Effects of
  dietary zinc and iron supplementation on mineral excretion, body composition, and

| Peer | Preprints NOT PEER-REVIEWEI                                                                |
|------|--------------------------------------------------------------------------------------------|
| 671  | mineral status of nursery pigs. Journal of Animal Science, Champaign, 83(12): 2762-        |
| 672  | 2774.                                                                                      |
| 673  | 87. Roy, R.; Das, M.; Dwivedi, P.D. 2015. Toxicological mode of action of ZnO              |
| 674  | nanoparticles: Impact on immune cells. Molecular Immunology, Oxford, 63(9): 184-           |
| 675  | 192.                                                                                       |
| 676  | 88. Roselli, M., Finamore A., Garaguso I., Britti M.S. & Mengheri E. 2003. Zinc oxide      |
| 677  | protects cultured enterocytes from the damage induced by Escherichia coli. Journal of      |
| 678  | Nutrition. 133:4077-4082.                                                                  |
| 679  | 89. Saether, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Bjørn, T.; Stokke, H. 2008.    |
| 680  | Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate                |
| 681  | Polymers, 74:813–821.                                                                      |
| 682  | 90. Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. 2007. Reversed chitosan-  |
| 683  | alginate polyelectrolyte complex for stability improvement of alpha-amylase:               |
| 684  | Optimization and physicochemical characterization. European Journal of                     |
| 685  | Pharmaceutics and Biopharmaceutics, 65: 215–232.                                           |
| 686  | 91. Sarmento, B.; Ferreira, D.; Veiga, B.; Ribeiro, A. 2006. Characterization of insulin-  |
| 687  | loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and          |
| 688  | FTIR studies. Carbohydrate Polymers, 66:1–7.                                               |
| 689  | 92. Schatz, C., Domard, A., Viton, C., Pichot, C., Delai, T. 2004. Versatile and efficient |
| 690  | formation of colloids of biopolymer-based polyelectrolyte complexes.                       |
| 691  | Biomacromolecules, 5:1882-1892.                                                            |
| 692  | 93. Shantikumar N., S. Abhilash, V. V. Divya, M. Deepthy, N. Seema, K Manzoor Satish.      |
| 693  | 2008. Antibacterial activity of zinc oxide nanoparticles. African Journal of               |
| 694  | Microbiology Research, 24: 465-471.                                                        |
| 695  | 94. Sharma, S., Soni, V.P., Bellare, J.R. 2009. Chitosan reinforced apatite-wollastonite   |
|      |                                                                                            |

)

696 coating by electrophoretic deposition on titanium implants. Journal of Materials
697 Science. Materials in Medicine, 20:1427–1436.

- 698 95. Shelton, N. W.; Derouchey, J. M.; Neill, C. R.; Tokach, M. D.; Dritz, S. S.; Goodband,
  699 R. D.; Nelssen, J. L. 2009. Effects of increasing feeding level during late gestation on
  700 sow and litter performance. In: SWINE DAY. Report of progress. Kansas State
  701 University, p 38-50.
- 96. Shen, J. H., Chen, Y., Wang, Z., Zhou, A.G., He, M., Mao, L., Zou, H., Peng, Q., Xue,
  B., Wang, L., Zhang, X., Wu, S., Lv, Y. 2014. Coated zinc oxide improves intestinal
  immunity function and regulates microbiota composition in weaned piglets. Br. J.
  Nutr. 111: 2123–2134.
- 97. Shih, C.-M., Shieh, Y.-T., e Twu, Y.-K. 2009. Preparation of gold nanopowders and
  nanoparticles using chitosan suspensions. Carbohydrate Polymers, 78:309–315.
- 98. Shukla, S. K. 2013. Chitosan-based nanomaterials: A state-of-the-art review.
  International Journal of Biological Macromolecules, 59:46-58.
- 99. Sutherland, M.A., Backus, B.L. and McGlone, J.J. 2014. Effects of Transport at
  Weaning on the Behavior, Physiology and Performance of Pigs. Animals 4:657-669.
- 100. Suwanboon, S., Amornpitoksuk, P., Bangrak, P., Randorn, C. 2013. Physical
  and chemical properties of multifunctional ZnO nanostructures prepared by
  precipitation and hydrothermal methods. Ceramics International, 40: 975-983.
- Tawfik M.M.M, Moustafa M.M., Abumourad I.M.K., El-Meliegy EM, Refai
  M.K. 2017. Evaluation of Nano Zinc Oxide feed additive on tilapia Growth and
  Immunity, 15th International Conference on Environmental Science and Technology
- 718 Rhodes, Greece, 31 August to 2 September 2017.
- 719 102. Tavares, I. S.; Caroni, C.; Dantas Neto, A.; Pereira, M. R.; Fonseca, J. 2012.
  720 Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids and

721

NOT PEER-REVIEWED

Surfaces B: Biointerfaces, 90: 254 – 258.

- Trandafilovi´c, L.V., Whiffen, R.K., Dimitrijevi´c –Brankovi´c, S., Stoiljkovi´c,
  M., Luyt, A.S., Djokovic, V. 2014. ZnO/Ag hybrid nanocubes in alginate biopolymer:
  Synthesis and properties. Chemical´ Engineering Journal 253: 341–349.
- 725 104. Trandafilovi'c, L.V.; Bo`zani'c, D.K; Dimitrijevi'c-Brankovi'c, S.; Luyt, a.S.;
- Djokovi´c, V. 2012. Fabrication and antibacterial properties of ZnO–alginate
  nanocomposites. Carbohydrate Polymers, 88:263-269.
- Tsai, Y.H., Mao, S.Y., Li, M.Z., Huang, J.T., Lien, T.F., 2016. Effects of
  nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum
  parameters of aged laying hens. Anim. Feed Sci. Technol. 213:99-107.
- 731 106. Vahjen, W., Pieper, R., Zentek, J. 2011. Increased dietary zinc oxidechanges the
  732 bacterial core and enterobacterial composition in theileum of piglets. Journal of
  733 Animal Science, 89:240–243.
- 107. Vaseeharan, B., Sivakamavalli, J., Thaya, R. 2015. Synthesis and
  characterization of chitosan-ZnO composite and its antibiofilm activity against aquatic
  bacteria. Journal of Composite Materials, 49(2):177-184.
- 737 108. Wang, B., Feng, W., Wang, M., Wang, T., Gu, Y., Zhu, M., Ouyang, H., Shi, J.,
- Zhang, F., Zhao, Y., Chai, Z., Wang, H., Wang, J. 2008. Acute toxicological impact of
  Nano and submicro-scaled zinc oxide powder on healthy adult mice, J Nanopart Res,
  10:263-76.
- 741 109. Wang, C.; Liu, L.-L.; Zhang, A.-T.; Xie, P.; Lu, J.-J.; Zou, X.-T. 2012yang.
  742 African Journal of Biotechnology, Nairobi, 11(44): 10248-10254.
- Yan, G.; Huang, Y.; Bu, Q.; LV, L.; Deng, P.; Zhou, J.; Wang, Y.; Yang, Y.; Liu,
  Q.; Cen, X.; Zhao, Y. 2012. Zinc oxide nanoparticles cause nephrotoxicity and kidney
  metabolism alterations in rats. Journal of Environmental Science and Health Part A,

| Peer | Prep   | orints NOT PEER-REVIEWED                                                           |
|------|--------|------------------------------------------------------------------------------------|
| 746  | Toxic  | c/hazardous substances & environmental engineering, New York, 47(4):577-588.       |
| 747  | 111.   | Yang, Z.P. and Sun, L.P. 2006. Effects of nanometre ZnO on growth                  |
| 748  | perfo  | rmance of early weaned piglets. J. Shanxi Agric. Sci., 3: 024.                     |
| 749  | 112.   | Yazdankhah, S.; Rudi, K.; Bernhoft, A. 2014. Zinc and copper in animal             |
| 750  | feedd  | levelopment of resistance and co-resistance to antimicrobial agents in bacteria of |
| 751  | anima  | al origin. Microbial Ecology in Health and Disease, Chichester, 25: 1-7.           |
| 752  | 113.   | Yu, T., Zhu, C., Chen, S., Gao, L., Lv, H., Feng, R., Zhu, Q., Xu, J., Chen, Z.,   |
| 753  | Jiang  | , Z. (2017). Dietary High Zinc Oxide Modulates the Microbiome of Ileum and         |
| 754  | Color  | n in Weaned Piglets. Frontiers in Microbiology, 8, 825.                            |
| 755  | 114.   | Xie, Y., Y. He, P. L. Irwin, T. Jin, X. Shi. 2011. Antibacterial activity and      |
| 756  | mech   | anism of action of zinc oxide nanoparticles against Campylobacter jejuni.          |
| 757  | Appli  | ied and Environmental Microbiology, 77: 2325–2331.                                 |
| 758  | 115.   | Zhang, L; Y. Ding, M. Povey, D. York. 2008. ZnO nanofluids - A potential           |
| 759  | antiba | acterial agent, Progress in Natural Science, 18:939-944.                           |
| 760  | 116.   | Zhang, B and Guo, Y. 2009. Supplemental zinc reduced intestinal permeability       |
| 761  | by en  | hancing occluding and zonula occludens protein 1 (ZO-1) expression in weaning      |
| 762  | piglet | ts. British Journal of Nutrition 102:687-693.                                      |
| 763  | 117.   | Zhang, F.S., Li, Y.X., Yang, M., Li, W. 2012. Content of heavy metals in animal    |
| 764  | feeds  | and manures from farms of different scales in northeast China. Int. J. Environ.    |
| 765  | Res. 1 | Pub. Health 9:2658–2668.                                                           |
| 766  | 118.   | Zhao, Y.C., Shu, T.X., Xiao, Y.X., Qiu, S.X., Pan, Q.J., Tang, X.Z., 2014.         |
| 767  | Effec  | ts of dietary zinc oxide nanoparticles on growth performance and antioxidative     |
| 768  | status | s in broiler. Biol. Trace Elem. Res. 160, 361-367.                                 |