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Abstract 25 

Diarrhea in piglets is one of the main causes of animal death before and after weaning; In 26 

recent decades, zinc oxide has been used in high doses to control this disease. These doses 27 

are considered to be of concern for the pollutant potential of animal waste through soil and 28 

groundwater pollution. New technologies such as nanotechnology, new matrices such as 29 

biopolymers and encapsulation are suggestions that appear as possible innovations that can 30 

minimize the challenges imposed by piglet weaning. This review aims to collect and 31 

analyze information on novel zinc oxide products developed with innovative technologies. 32 
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Introduction 46 

The challenges of weaning piglets 47 

Modern pig industry is one of the most developed and technological sectors of 48 

agribusiness, however the mortality of live-born piglets is still a major challenge, with no 49 

significant advances in recent decades. Early weaning of piglets is the most critical stage of 50 

production, the first weeks are particularly stressful and immunosuppressive for animals and 51 

usually accompanied by delayed growth, weight loss, diarrhea and mortality (Lallès, 2007; 52 

Lima, 2009; Campbell et al., 2013; Sutherland et al., 2014). The physical separation from the 53 

sows and transition to a solid and complex diet, associated to an immature digestive tract, 54 

resulting in intestinal structural damage characterized by lower intestinal villi height, greater 55 

crypt depth and decreased intestinal enzymatic activity. Further the action of some pathogens, 56 

such as Escherichia coli and rotavirus (Pluske et al., 1997, Boudry et al., 2004, Esquerra et 57 

al., 2011). E. coli is the most important factor for post-weaning diarrhea, also known as 58 

colibacillosis (Fairbrother et al., 2005, Heo, et al., 2013).  59 

The gastrointestinal disturbances cause large economic losses in the pig industry, the mortality 60 

among piglets in the EU is approximately 17% and a significant part of these losses may be 61 

associated with infections through mucosal surfaces (Lallès, 2007). In this context, many 62 

studies have been developed in search of products that contribute to minimize the challenges 63 

imposed by piglet weaning. This review aims to collect and analyze information on novel zinc 64 

oxide (ZnO) products developed with innovative technologies such as nanoparticles, 65 

encapsulation and use of biopolymers. 66 

 67 
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Methodology   68 

This is a literature review of a systematic study of ZnO products for weaned piglets in 69 

worldwide. 70 

 71 

Research Strategies 72 

Online scientific articles available at the Pubmed, Scielo, Science Direct, Google scholar 73 

and Periodicals/CAPES databases, between 2015 and 2018, were selected. The evaluation of 74 

the selected articles was divided into three stages. As an initial screening, in addition to the 75 

term Zinc Oxide or ZnO, studies regarding nanotechnology and biopolymers, conducted in 76 

animal nutrition. 77 

After this initial screening, a second stage was performed based on the selected articles 78 

describing the experiments performed with ZnO on weaned piglets. Finally, a third step 79 

comprised the separation of results from in vitro and in vivo studies. 80 

Check the stages of bibliographic research (identification, selection, eligibility and 81 

inclusion of data) for literature review in Fig.1. 82 
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 83 

Figure 1: Stages of bibliographic research (identification, selection, eligibility and 84 

inclusion of data) for literature review. 85 

 86 

ZnO as an additive to improve animal performance 87 

For decades, pharmacological doses of ZnO, up to 2,000 mg ZnO/kg, have been applied 88 

to combat post-weaning diarrhea and to improve animal performance (Poulsen, 1995; Hollis 89 

et al., 2005; Pettigrew, 2006). Li et al. (2006) have observed that in vitro intestinal epithelial 90 

regeneration capacity increases in the presence of exogenous ZnO and that there is an increase 91 

in the level of intestinal insulin-like growth factor 1 (IGF-1 gene  ) in piglets fed with high 92 

concentrations of ZnO (Li et al., 2006). The IGF-1 gene is a hormone that regulates cell 93 
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growth and may contribute to intestinal tissue repair. Studies indicate that the ZnO promoter 94 

effect occurs mainly in the first two weeks after weaning (Shelton et al., 2009), in the same 95 

period in which piglet intestinal adaptation is practically complete. Different studies have 96 

shown that the inclusion of ZnO has effects on the increase of the gene expression of 97 

antimicrobial peptides in the small intestine, with a positive action on the stability and 98 

diversity of the microbiota, besides the reduction of the electrolyte secretion from enterocytes. 99 

This association of events results in a bactericidal action (Pluske et al., 2007; Zhang & Guo, 100 

2009). 101 

 102 

Antibacterial activity of ZnO 103 

The antibacterial activity of ZnO is scientifically grounded; however, the mechanisms by 104 

which it modifies the gastrointestinal microbiota are not well elucidated. Roselli et al. (2003) 105 

suggested that ZnO does not inhibit directly enteropathogenic E. coli growth, but rather the 106 

ability of the microorganism to bind to intestinal cells. Concerning the efficacy of ZnO in 107 

gram-positive and gram-negative bacteria, there are controversy results in the literature. 108 

Vahjen et al. (2011) verified a greater susceptibility of gram-positive bacteria to ZnO, an 109 

increase in the diversity of the species present in the intestine, besides the increase of 110 

Enterobacteriaceae that would compete with enteropathogenic E. coli controlling its growth 111 

indirectly. While Applerot (2009), Trandafilovi´c et al. (2012) and Barreto et al. (2017) found 112 

that gram-positive bacteria, such as Staphylococcus aureus, are more resistant to the action of 113 

ZnO when compared to gram-negative, E. coli. The difference in antibacterial activity against 114 

both microorganisms may be related to the different chemical and structural compositions of 115 

cell membranes, particularly in the cell wall, in addition to the material used (Jones et al., 116 

2008; Shantikumar et al., 2008; Xie et al., 2011). According to Ann and Mahmoud (2014), S. 117 

aureus tends to develop defenses against oxidative stress producing enzymes, such as 118 
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superoxide dismutase, catalase and thioredoxin reductase. Superoxide dismutase can convert 119 

O2 of H2O2, catalase can convert H2O2 to H2O and O2, and thioredoxin reductase can protect 120 

the cell against toxic oxygen species (Ann and Mahmoud, 2014; Raghupathi et al, 2011; 121 

Ballal and Manna, 2010). In this way, S. aureus can construct an effective "shield" to reduce 122 

the toxicity of ZnO samples. On the other hand, some ZnO particles may attach to the surface 123 

of the bacterial membrane, and this mechanical damage could also be considered another 124 

method of antimicrobial inhibition (Ann and Mahmoud, 2014). 125 

High doses of ZnO altered intestinal microbial diversity in the ileum and colon of weaned 126 

piglets and had comparable effects to antibiotics, especially affecting the non-predominant 127 

microbiota population in ileum. Understanding the effects of high ZnO on intestinal bacterial 128 

communities may provide information on the future application of the alternative strategy for 129 

the treatment of diarrhea in piglets (Yu et al., 2017). 130 

Limitation associated with using ZnO as a performance enhancer 131 

ZnO is currently effective in improving performance and intestinal health in weaned 132 

piglets at doses ranging from 2,000 to 4,000 mg Zn/kg of feed, which are considered to be of 133 

concern for the pollutant potential of animal waste. These values are much higher than those 134 

found in the in vitro tests, where minimum inhibitory concentrations (MIC) and bactericidal 135 

(MBC) concentrations are often lower for different bacteria. In the literature there are MIC 136 

and MBC results between 260 and 500 ppm for different strains of E. coli (Liedtke and 137 

Vahjen, 2012; Barreto et al., 2017). Studies indicate that the efficacy of ZnO for piglets is not 138 

related to their absorption but to their action on the intestinal lumen, which consequently 139 

causes a large part of the ingested Zn to be excreted via feces (Poulsen, 1995; Rincker et al., 140 

2005). Piglets supplemented with high levels of ZnO excrete between 60% and 80% of the 141 

amount ingested, the higher the excretion being the higher the levels of Zn in the diet (Carlson 142 

et al., 2004). 143 
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The high level of Zn2+ excreted in feces is an environmental concern. Although Zn is 144 

present in a relatively small amount, there is interest about the possible accumulation of this 145 

metal in the environment (Gräber et al., 2005). Zn is a necessary nutrient for the maintenance 146 

and growth of plant tissues, but high concentrations in the soil can cause phytotoxicity (Zhang 147 

et al., 2012). Concern over the contamination of water by metals is even greater in artesian 148 

well production systems or in farms close to rivers and lakes due to the low tolerance of 149 

various species of fish to Zn toxicity (Gräber et al., 2005; Zhang et al., 2012). In addition, 150 

fecal Zn is also a potential environmental inducer of bacterial resistance (Hölzel et al., 2012; 151 

Bednorz et al., 2013; Yazdankhah et al., 2014). In view of this, European legislation limits a 152 

maximum of 150 mg Zn kg in pig diets (European Communities, 2003), dose well below the 153 

pharmacological levels of ZnO reported as growth promoters for these animals. 154 

 155 

ZnO Nanoparticles (ZnO Nano) 156 

Nanoparticulate ZnO is one of the most researched oxides due to its differentiated 157 

physical, chemical and biological properties. Its low cost, versatility and availability make it 158 

highly suitable for numerous industrial applications (Giraldi, et al., 2012). According to the 159 

literature, ZnO nanoparticles can be synthesized by different techniques, such as hydrothermal 160 

(Suwanboon et al., 2013), sol-gel (Muneer et al., 2013), ultrasound (Khorsand et al., 2013) of 161 

precipitation (Chang et al., 2008), among others. Nanoparticles are particles smaller than 100 162 

nanometers (nm), in this way, ZnO nano has smaller particle size, larger number of particles 163 

per unit mass and greater specific surface area compared to conventional ZnO microparticles 164 

(Raghupathi et al., 2011, Xie et al., 2011), characteristics that make them more reactive in 165 

chemical and biological systems. In addition, nanoparticles more easily cross biological 166 

barriers such as the intestine (Buzea et al., 2007). 167 

Research on ZnO nanoparticles (Jones et al., 2008, Xie et al., 2011) indicates that the 168 
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surface effects of the molecule may also be responsible for its antibacterial action. The 169 

interaction of the nanoparticles with the microorganisms, damaging the integrity of bacterial 170 

cells (Zhang et al., 2008) and the formation of reactive oxygen species (ROS) (Jalal et al., 171 

2010) are considered the main mechanisms. Jones et al. (2008) and Barreto et al. (2017) 172 

suggest that ZnO nanoparticles have significant antibacterial effects on S. aureus.  173 

The antibacterial effect of ZnO nanoparticles was investigated in Campylobacter 174 

jejuni for inhibition and inactivation of cell growth. The results demonstrated that C. jejuni 175 

was extremely sensitive to the treatment with ZnO nanoparticles and that the action of the 176 

nanoparticles was bactericidal rather than bacteriostatic. According to the authors, the data 177 

indicate that the antibacterial mechanism of the ZnO nanoparticles occurs due to the rupture of 178 

the cell membrane and the cellular oxidative stress (Xie et al., 2011). Nanoparticles of ZnO in 179 

vitro exhibited strong antibacterial activity against E. coli in studies by Wang et al. (2012) and 180 

Barreto et al. (2017), who believe that nanoparticles can damage the membrane and cause 181 

lysis of bacterial cells. Studies have shown that ZnO nanoparticles may be potentially 182 

antibacterial for the treatment of diseases caused by E. coli. 183 

Minor particles of ZnO with larger contact surface with the gastrointestinal medium 184 

seem to favor the effectiveness of ZnO as a growth promoter. In the literature, there are few 185 

studies investigating the effects of ZnO nanoparticles on the zootechnical indexes of animals, 186 

especially on swine. Nanoparticles of ZnO have been reported to increase growth 187 

performance, improve power utility and provide benefits in weaned piglets (Yang and Sun, 188 

2006), a study with piglets fed basal diets supplemented with 200, 400, 600 mg/kg of ZnO 189 

nano or 3,000 mg/kg Zn showed encouraging average daily gain (Hongfu, 2008). On the other 190 

hand, Li et al. (2016) and Milani et al. (2017) did not find concrete results of the effectiveness 191 

of ZnO nanoparticles in piglets, but Milani et al. (2017) verified that ZnO nanoparticles 192 

promoted a reduction in Zn excretion in feces of animals and, consequently, the environment. 193 
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Lina et al. (2009) in their study indicated that ZnO nano improved the performance 194 

and production of broiler chickens at 42 days of feeding at the 40 mg/kg in the diet. The 195 

supplementation of 20 to 60 mg of Zn/kg in the diet in the form of nanoparticulate ZnO 196 

improved performance in broilers without presenting toxic or harmful effects when compared 197 

to conventional ZnO (Ahmadi et al., 2014; Zhao et al., 2014). These authors observed higher 198 

weight gain and better feed conversion in animals supplemented with ZnO nano compared to 199 

conventional ZnO (Ahmadi et al., 2013; Zhao et al., 2014). According to Tsai et al. (2016), 200 

ZnO nanoparticles for dietary supplementation of laying hens can increase Zn retention, 201 

carbonic anhydrase enzyme activity, growth hormone and serum Zn level, and egg shell 202 

thickness, proving that this nanometric oxide may increase Zn uptake in the intestine and have 203 

positive effects when compared to ZnO conventionally used in laying diets. 204 

Buentello et al. (2009) in their study reported that there are differences in the growth 205 

rate in response to different dietary sources of Zn and different chemical substances Zn forms 206 

showed differential bioavailability in fish. According to Tawfik et al. (2017) supplementation 207 

of ZnO nanoparticles with fish feed may possibly improve the growth rates of these animals, 208 

such as weight gain, specific growth rates and growth hormone in blood. This could be better 209 

than conventional ZnO, so that it could be used in fish farms and aquaculture with their low 210 

concentrations and this could improve the economy of aquiculture. 211 

There are several researches focuses on investigating the toxicity of ZnO nanoparticles 212 

in mices. It is known that doses above 500 and 1000 mg Zn/kg body weight cause small toxic 213 

effects with elevated plasma Zn concentration, accumulation in kidneys, liver and lungs, 214 

nephrotoxicity, respiratory tract inflammation and oxidative stress in cell membranes (Wang et 215 

al., 2008; Yan et al., 2012; Chung et al., 2013; Hong et al., 2014; Roy, et al., 2015). 216 

In recent years, the contribution of several researchers has increased in the 217 

investigation of the antibacterial effect of ZnO nano, of the involved mechanisms, of safety, 218 
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and how its use can enable the reduction of the total amount of Zn needed to optimize the 219 

results and, consequently, the polluting effect of the waste generated. Free ZnO nanoparticles, 220 

structured or encapsulated in different matrices, appear as possible technological alternatives 221 

in the use of ZnO as an additive for swine farming. 222 

 223 

 Biopolymers 224 

 Polyelectrolytes and Complexes Polyelectrolytes (PEC) 225 

 According to Canevarolo (2006), polymer is a word of greek origin composed of the 226 

radical poly (many) and mere (unit of repetition). Polymers are macromolecules composed of 227 

tens of thousands of repeating units and joined by covalent bonds. The monomers can be of 228 

different types and present themselves in several combinations, they are the ones that 229 

determine the length of the molecule and its molar mass (Canevarolo, 2006). 230 

 A polyelectrolyte is a polymer in which some groups of monomers along the chain 231 

have ionic and/or ionizable groups (Hess et al., 2006). In polar solution, the groups generally 232 

ionize and acquire positive charge (polyactions), negative (polyanions) or both (polyphoton). 233 

This feature gives polyelectrolytes the ability to interact strongly with macromolecules and 234 

charged surfaces with opposing charges. Generally, they are quite hydrophilic, sensitive to pH 235 

variation and the amount and types of electrolytes present in the solution (Lyklema, 2005). 236 

 The polyelectrolytes stand out for the ability to form interpolymer complexes, called 237 

Polyelectrolyte Complexes (PECs) (Schatz et al., 2004). The formation of PECs occurs 238 

spontaneously by the simple mixing of oppositely charged polyelectrolytes with release of 239 

counterions (Fig. 2).  240 

 The main force that leads to the formation of the PECs is the entropy gain caused by 241 

the release of the low molar mass counterions. However, hydrogen bonds, hydrophobic 242 

interactions and van der Waals forces, or the combination of these interactions, are important 243 
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in the formation of complexes (Dautzenberg, 2001). 244 

  245 

 246 

 247 

 248 

 249 

Figure 2: Schematic representation of the formation of the PECs. 250 

 251 

 Because of their properties, the PECs have attracted interest for biotechnological, food 252 

and pharmaceutical applications such as protein immobilizers and drug carriers (Dautzenberg, 253 

2001). The use of polymers in the synthesis of ZnO has been proposed by some authors as an 254 

interesting strategy to control the growth and agglomeration of nanoparticles. The chitosan 255 

(Murugadoss, Chattopadhyay, 2008, Shih, et al, 2009), the starch (Bozani'c et al, 2011; 256 

Raveendran et al 2003) and alginate (Gutowska et al., 2001; Chang et al., 2011) are 257 

particularly interesting as matrix polymers because their chains have a large number of 258 

hydroxyl groups that form complexes with the metal ions, for example Zn. 259 

 In addition to nanoparticle growth controllers, natural biopolymers are examples of 260 

materials that allow the development of capsules resistant to the upper gastrointestinal tract 261 

and release the encapsulated material into the intestinal environment, as verified by different 262 

authors (Braccini & Pérez, 2001; Chen & Subirade, 2005; Liu et al., 2007; Jones & 263 

McClements, 2010; Patel et al., 2011; Barreto et al., 2017). In this sense, biopolymers are 264 

interesting as coatings or complexing materials with ZnO. 265 

 266 

+ 
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 Alginate 267 

 Sodium alginate is a sodium salt of alginic acid, a water-soluble anionic polymer. 268 

Alginic acid is a natural polysaccharide, extracted from brown seaweed, formed by β-D-269 

mannuronic acid (M) and α-L-guluronic acid (G) residues bound by binding (1 → 4), 270 

composition and sequence varied (Fig. 3). The ratio between these two units influences the 271 

physical properties of this biopolymer (Lawrie et al., 2007). The carboxylic acid groups on 272 

these units assign negative charges to the alginate, making it capable of interacting 273 

electrostatically with the positively charged molecules to form gels. The gels formed due to 274 

the dimeric association of the G-G blocks in egg-box are induced by multivalent cation.    275 

 The alginate can be easily cross-linked with bivalent cations such as Ca2+, Sr2+, Zn2+ or 276 

Ba2+, among which Ca2+ is the most investigated (Luo & Wang, 2014). Alginate is 277 

characterized by being biocompatible, hydrophilic, biodegradable under normal physiological 278 

conditions and chemically stable at pH values between 5.0 and 10.0 (Sankalia et al., 2007; 279 

Saether et al., 2008; Aelenei et al., 2009). Alginate is one of the most widely used 280 

biopolymers as a matrix for drug release, being abundant, easily manipulable, low cost and 281 

interesting physicochemical properties (Liew, 2006). 282 

 Several authors have demonstrated the antimicrobial activity of different alginate 283 

compositions and ZnO nanoparticles (Trandafilovi´c et al., 2012; Trandafilovi´c et al., 2014; 284 

Chopra et al., 2015; Cordero-Arias et al., 2015; Karbowniczek et al., 2017). 285 

 286 

 287 

Figure 3: Sodium alginate chemical structure. 288 

 289 
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Chitosan 290 

Chitosan is a biopolymer composed of repeating units of β-(1,4)-2-deoxy-2-amino-D-291 

glucose and is obtained from chitin by deacetylation in alkaline medium (Fig. 4) (Sharma, 292 

2009; Shukla, 2013). In turn, chitin is a polysaccharide constituted by repetitive constitutional 293 

units of β-(1,4)-2-deoxy-2-acetylamino-D-glucose (N-acetylglucosamine), abundantly found 294 

in nature. 295 

 296 

 297 

Figure 4: Chemical structure chitosan molecule. 298 

 299 

The degree of deacetylation of chitosan ranges from 70 to 95% and the molar mass 300 

between 10-1000 kDa (Hamman, 2010). Chitosan is a weak base with pKa values between 301 

5.9-6.6 (Kumar et al., 2004; Park et al., 2010), and above this value its solubility is limited. 302 

The amino groups present along the polymer chain act as cationic polyelectrolytes at pH <6.5 303 

(George & Abraham, 2006). Therefore, chitosan is soluble in dilute weak acid solutions, such 304 

as acetic acid (Laranjeira & Fávere, 2009). Thus, the cationic character of chitosan, acquired 305 

in acid solution, by protonation of the amino groups, allows the electrostatic interaction with 306 

specific polyanions and, consequently, the formation of intra- and intermolecular crosslinks. 307 

However, as the pH is adjusted above 6.5, the amino groups become deprotonated and the 308 

chitosan loses its charges, becoming insoluble (Dash et al., 2011). 309 
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Chitosan presents, among other properties, biocompatibility, biodegradability, 310 

antimicrobial activity and bioadhesiveness due to its polycationic nature. The number of 311 

studies investigating chitosan as carrier and nanocarrier has increased significantly in the last 312 

decades (Gan et al., 2005; Boddohi et al., 2009; Hamman, 2010; Dash et al., 2011; Luo & 313 

Wang, 2014). According to Laranjeira and Fávere (2009), the rate of drug release from 314 

chitosan matrices is affected by the pH change. In vitro studies, simulating the gastrointestinal 315 

tract, revealed that the dissolution profiles of these systems depend on the type of polymer 316 

matrix and the pH of the simulated fluid (Laranjeira & Fávere, 2009).  317 

Different methodologies can be used for the preparation of nano and microparticles 318 

containing chitosan, which involve one or two types of association between macromolecules 319 

(Tavares et al., 2012). The formation of covalent crosslinking that requires a crosslinking 320 

agent, such as glutaraldehyde, genipine and sodium tripolyphosphate (TPP) (Banerjee, et al., 321 

2002; Liu & Huang, 2008; Ocak, 2012) and the physical interaction, which involves methods 322 

such as spray-drying, ionic gelling, reverse microemulsion, solvent evaporation/diffusion, 323 

polyelectrolyte complexation and coacervation/precipitation (Harris et al., 2011; Lee et al., 324 

2010; Mukhopadhyay et al. 2012). 325 

 In the literature, it is possible to verify that the complexation of chitosan with 326 

polyanions such as pectin, collagen, xanthan gum, cellulose and sodium alginate has been 327 

shown to be efficient in the development of formulations for drug delivery (Davidenko et al., 328 

2009; Plapied et al., 2011). Alginate is often used in the formation of complexes with 329 

chitosan, in addition to the complex formed remain biodegradable and biocompatible, it 330 

becomes mechanically strong at low pH values where chitosan is soluble. While chitosan is 331 

easily degraded by lysozymes, the chitosan-alginate complex has shown greater strength due 332 

to the strong interaction between the polymer chains (Hamman, 2010). Several results have 333 

been found on the use of chitosan and sodium alginate in the formation of micro and 334 
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nanoparticles by means of ionic interaction (Sarmento et al., 2006; Cafaggi et al., 2007; 335 

Sankalia et al., 2007; Li et al., 2008; Aelenei et al., 2009; Lertsutthiwong et al., 2009; Barreto 336 

et al., 2017).  337 

 Studies of the antibacterial activity of the nano complexed or chitosan coated ZnO 338 

presented positive results regarding the control of gram positive and gram negative bacteria 339 

(Bhadra et al., 2011; Malini et al., 2015; Vaseeharan et al., 2015). Investigating Zn 340 

nanoparticles encapsulated in biocompatible chitosan polymer, Bhadra et al. (2011) found that 341 

the chitosan encapsulation helped to restrict the growth of the ZnO nanomaterial and that the 342 

chitosan coated ZnO compound was bound to the external cell membrane of the bacteria 343 

through the chitosan-NH2. This increased the permeability of the cell membrane and resulted 344 

in cell cytoplasm to leak the entire cell leading to destruction. The inhibition zone study 345 

confirmed the highest antibacterial effect of chitosan-capped ZnO nanoparticles compared to 346 

unencapsulated ZnO nanomaterial as well as chitosan against E. coli (Bhadra et al., 2011). In 347 

another study, the antibacterial activity of membranes synthesized with chitosan/ZnO 348 

nanoparticles was investigated in Klebsiella planticola and Bacillus substilis. In all cases, the 349 

gram negative K. planticola was inhibited in a greater proportion compared to gram positive 350 

Bacillus substilis and according to the authors, the chitosan/ZnO nanocomposites appeared to 351 

be very promising in relation to their antibacterial property (Malini et al., 2015). Similarly, 352 

antibacterial activity of chitosan-ZnO composite demonstrated the effective growth control as 353 

gram negative Vibrio parahaemolyticus as gram positive Bacillus lechiniformis bacteria 354 

isolated from aquatic environments (Vaseeharan et al., 2015). 355 

 In the literature, the application of complexes of ZnO and biopolymers in the animal 356 

nutrition is not observed. In an in vitro study, Barreto et al. (2017) synthesized ZnO 357 

nanoparticles complexed with chitosan and alginate polyelectrolytes with and without TPP. 358 

The authors obtained compounds that showed a pronounced antibacterial effect against E. coli 359 
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and S. aureus, in addition to a release profile of the Zn2+ ions suitable for delivery to the 360 

simulated enteric piglet environment, indicating that the polyelectrolyte complexes can 361 

efficiently protect ZnO in the piglets' gastric environment (Barreto et al, 2017). 362 

 363 

 Encapsulated ZnO 364 

 The encapsulation of ZnO in different matrices has emerged as one of the alternatives 365 

to protect the ZnO in the stomach and to allow the maximization of its release in the small 366 

intestine. 367 

In piglets, the addition of coated and microencapsulated zinc containing 100 g of 368 

ZnO/kg of finished product, showed results equal to or greater than those of conventional 369 

ZnO. Microencapsulated Zn is designed to provide ions (Zn2+) in the ideal fraction of the 370 

gastrointestinal tract resulting in maximum efficiency of control and treatment of post-371 

weaning diarrhea (Moran, 2007). Shen et al. (2014) found that a low concentration of coated 372 

ZnO alleviated diarrhea in piglets and promoted intestinal development by protecting the 373 

intestinal mucosa barrier from damage, stimulating the mucosal immune system and 374 

regulating the intestinal microbiota, as well as high concentration of ZnO. In addition, 375 

compared to a high concentration of ZnO, a low concentration of coated ZnO prevented 376 

excessive accumulation of Zn in animals and reduced the Zn concentration of excreted feces 377 

in order to achieve the goal of saving the Zn source and reducing the environmental pollution 378 

of Zn (Shen et al., 2014). However, Park et al. (2014) investigated the effects of lipid 379 

encapsulated ZnO supplementation at a physiological level and the result was superior to that 380 

of conventional ZnO at the same level in the weight gain of weaned piglets, but their effects 381 

on suppression of diarrhea were lower than that of conventional ZnO. The results found by 382 

Kim et al. (2015) indicated that dietary supplementation of 72 ppm of Zn as ZnO 383 

encapsulated in lipids was as effective as that of 2,000 to 2,500 ppm Zn supplied as 384 
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conventional ZnO or antibiotics to improve growth performance, goblet cell density in the 385 

intestine, as well as reduction of diarrhea in challenged piglets with a low dose of E. coli 386 

(K88). The authors suggest that studies be performed under production conditions to 387 

determine the effects of lipid-coated ZnO over conventional ZnO in weaned piglets. 388 

 389 

Table 1: A brief overview of ZnO products and data found in vivo and in vitro assays. 390 

References Products Results 

Jones et al. (2008)  ZnO nano (50 - 70 nm) Antibacterial activity: Staphylococcus 

aureus 

Xie et al. (2011) ZnO nano (50 nm) Antibacterial activity: Campylobacter 

jejuni 

Zhang et al. (2008) ZnO nano (90-100 nm) Antibacterial activity: Escherichia coli 

Jalal et al. (2010) ZnO nano (37-41 nm) Antibacterial activity: Escherichia coli 

Barreto et al. (2017)  ZnO nano (17 nm) Antibacterial activity: Escherichia coli 

and Staphylococcus aureus 

Wang et al. (2012)  ZnO nano (55-95 nm) Antibacterial activity: Escherichia coli 

Yang and Sun (2006) ZnO nano (ND) In vivo: Increase growth performance, 

improve power utility and provide 

benefits in weaned piglets. 
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Hongfu (2008) ZnO nano (ND) In vivo: Diarrhoea incidence reduced in 

piglets 

Milani et al. (2017)  ZnO nano (31-108 nm) In vivo: Weaning diarrhea control  

Trandafilovi´c et al. 

(2012) 

ZnO nano + Alginate (3.9 

- 6.8 nm) 

Antibacterial activity: Staphylococcus 

aureus and Escherichia coli 

Trandafilovi´c et al. 

(2014)  

ZnO nano + Alginate 

(100 nm) 

Antibacterial activity: Staphylococcus 

aureus and Escherichia coli 

Chopra et al. (2015) ZnO nano + Alginate 

(75-80 nm) 

Antibacterial activity: Pseudomonas 

aeruginosa 

High encapsulation efficiency 

Cordero-Arias et al. 

(2015) 

ZnO nano + Alginate 

(20-60 nm) 

Antibacterial activity: Escherichia coli 

Karbowniczek et al. 

(2017) 

ZnO nano (40,8 nm) + 

Alginate + Chitosan 

Antibacterial activity: Salmonella 

enteric and Staphylococcus aureus 

Bhadra et al. (2011)  ZnO nano (80 nm) + 

Chitosan 

Antibacterial activity: Escherichia coli 
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Malini et al. (2015) ZnO nano + Chitosan Antibacterial activity: Klebsiella 

planticola and Bacillus substilis 

Vaseeharan et al. 

(2015) 

ZnO nano (30 - 60 nm) + 

Chitosan 

Antibacterial activity: Vibrio 

parahaemolyticus and Bacillus 

lechiniformis 

Barreto et al. (2017)  ZnO nano (17 nm) + 

Chitosan + Alginate 

Antibacterial activity: Escherichia coli 

and Staphylococcus aureus 

 In vitro: Optimum in vitro release 

profile of Zn2+ in simulated enteric 

fluids assays.  

Moran (2007) Microencapsulated ZnO: 

Lipid matrix 

In vivo: Maximum efficiency of control 

and treatment of post-weaning diarrhea  

Shen et al. (2014) Microencapsulated ZnO: 

Lipid matrix 

In vivo: Reduced diarrhoea and  reduced 

the Zn concentration of excreted faeces 

Park et al. (2014 Microencapsulated ZnO: 

Lipid matrix 

In vivo: Weight gain of weaned piglets 

Kim et al. (2015)  Microencapsulated ZnO: 

Lipid matrix 

In vivo: Reduced plasma Zn 

concentration 

and faecal Zn excretion levels 

 391 

ConsiderationsZnO is an important antimicrobial used to combat diarrhea common to 392 

weaned piglets, its antimicrobial activity has been extensively researched and confirmed for 393 

gram negative and gram positive bacteria. Elevated doses of ZnO have been shown to be 394 

effective in the field; however, much is lost with animal waste, contaminating soils and 395 
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groundwater. In the last two decades, the interest has been increased by alternatives that 396 

protect ZnO in the gastric environment and allow the maximization of its release in the enteric 397 

environment. Novel knowledge such as nanotechnology and biopolymers as release matrices 398 

arise bringing new perspectives to animal nutrition and to the challenges inherent in weaning 399 

piglets. 400 

However, scientific research on novel ZnO products, such as ZnO nanoparticles, 401 

complexes ZnO/biopolymers, or ZnO encapsulated in animal nutrition, especially in pigs, is 402 

still scarce. Further in vitro and in vivo studies are recommended for a better understanding of 403 

the effect of ZnO nanoparticles, their location and mechanism of absorption, and the risk of 404 

intoxication in animals. Adequate levels of ZnO in the diet should be focused in order to 405 

minimize piglet mortality, confer better animal performance and economic benefits in a safe 406 

way. 407 

 408 
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