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The analysis of microbiome dynamics would allow us to elucidate patterns within microbial

community evolution; however, microbiome state-transition dynamics have been scarcely

studied. This is in part because a necessary first-step in such analyses has not been well-

defined: how to deterministically describe a microbiome9s =state=. Clustering in states

have been widely studied, although no standard has been concluded yet. We propose a

generic, domain-independent and automatic procedure to determine a reliable set of

microbiome sub-states within a specific dataset, and with respect to the conditions of the

study. The robustness of sub-state identification is established by the combination of

diverse techniques for stable cluster verification. We reuse four distinct longitudinal

microbiome datasets to demonstrate the broad applicability of our method, analysing

results with different taxa subset allowing to adjust it depending on the application goal,

and showing that the methodology provides a set of robust sub-states to examine in

downstream studies about dynamics in microbiome.
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ABSTRACT13

The analysis of microbiome dynamics would allow us to elucidate patterns within microbial community

evolution; however, microbiome state-transition dynamics have been scarcely studied. This is in part

because a necessary first-step in such analyses has not been well-defined: how to deterministically

describe a microbiome’s ”state”. Clustering in states have been widely studied, although no standard has

been concluded yet. We propose a generic, domain-independent and automatic procedure to determine

a reliable set of microbiome sub-states within a specific dataset, and with respect to the conditions of the

study. The robustness of sub-state identification is established by the combination of diverse techniques

for stable cluster verification. We reuse four distinct longitudinal microbiome datasets to demonstrate

the broad applicability of our method, analysing results with different taxa subset allowing to adjust it

depending on the application goal, and showing that the methodology provides a set of robust sub-states

to examine in downstream studies about dynamics in microbiome.
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INTRODUCTION25

This manuscript addresses an important challenge in microbiome analysis: identification and description26

of longitudinal microbiome variability and dynamics (Gilbert et al., 2016; Bashan et al., 2016; Bradley27

and Pollard, 2017). Microbiomes are distinct between different cavities (or more generally, distinct28

environments) (Bashan et al., 2016). One widely-accepted view of the microbiome within a given cavity29

is to consider it from a global perspective - that among all individuals there is one shared state, broadly-30

defined, but internally-variable and dynamic (Gibbons et al., 2017). With respect to the gut microbes,31

there were initial attempts to resolve distinct microbial population structures that were associated with32

”habits” such as lifestyle, culture, or eating - called ”enterotypes”. Albeit, there is a big discussion about33

enterotypes (whether, how many and which ones) (Costea et al., 2018). Some studies are agree with34

discrete states (Zhou et al., 2014; Turroni et al., 2017), while other ones with gradients (MacDonald et al.,35

2012; Gibbons et al., 2017). It is well-recognized that distinct and predictable microbial compositions are36

associated with important traits such as health (Gilbert et al., 2016; Shankar, 2017). Nevertheless, even37

if there were no universally-distinct enterotypes, this would not imply that microbiomes cannot exist in38

long- or short-term stable sub-states. Moreover, within a given individual, studies suggest the existence of39

such stable steady-states, both in experimental data (Turroni et al., 2017) and in modeling approaches40

(Stein et al., 2013; Bashan et al., 2016), not considering a state as a constant community composition41

but an average along a period of time (Chan et al., 2017). As such, the proposition of a single, but42

continuously varying, microbiome state within a given environment fails to recognize subtle differences43

that may have significant biological consequences. Thus, the definition of several sub-states could help to44

capture slight microbiome shifts, happened even in a general stability situation, and undetectable in other45

approximations, where only one state or a few with strong divergence were considered.46
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Faust et al. (2015) reported that microbial diversity was quite stable over time, in a stable environment,47

but that stability could be disrupted by a) external perturbations, b) direct modifications or c) transient48

perturbations, all of which cause the microbial community to change. Longitudinal studies focused on49

microbiome changes over time, in a particular habitat, with known interventions, would elucidate the50

mechanisms behind microbial state transitions, and from this information, universal or context-specific51

interventions could be determined (Bashan et al., 2016), and used to manipulate the microbiome in52

desirable ways. Thus a domain-independent (e.g. human/animal body cavities, soils, industrial microbial53

communities in bioreactors, etc.) and flexible approach to analysis of longitudinal microbiome variability54

and dynamics is needed.55

In this manuscript, we define a microbiome ”sub-state” as a collection of constraints satisfied by56

the microbiota of a given sample, that are not satisfied by other samples, allowing them to be reliably57

distinguished from one another. Thus, over time, and depending on perturbations, a dynamic microbial58

community could move through different microbiome sub-states, even within a single ”enterotype” as59

defined by Arumugam et al. (2011b) (or its conceptual equivalent in non-gut environments). Thus, we60

consider microbiome sub-states to be akin to biomarkers, and importantly, these biomarkers differ between61

individuals or even within the same one, as ”a measurable indicator of a biological state or environmental62

exposure” (Gorvitovskaia et al., 2016). Finally, our definition of microbiome sub-state describes the63

microbial community composition over a specific fragment of time.64

There are relatively few studies about temporal dynamics within any microbiome site (Gajer et al.,65

2012; Ding and Schloss, 2014), and for those studies, the approach to microbiome sample clustering is66

assorted and somewhat ad-hoc. This masks the fact that the definition of states in a temporal sequence67

of microbiomes is non-trivial, and has only been attempted within specific datasets (Koren et al., 2013).68

Therefore, we believe that a generally-applicable algorithm that detects robust and stable microbiome69

sub-states within any input dataset, would be a beneficial contribution to the community, and would aid in70

the cross-replication and comparison of studies in the future. We report such a methodology here.71

The inputs to our pipeline are Operational Taxonomic Unit (OTU) vectors, where each OTU represents72

a group of species considered indistinguishable by the OTU grouping process, and whose abundance73

in a set of samples has then been computed. Given that these abundance distributions are effectively74

continuous, the list of possible OTU combinations as possible sub-states clearly must be simplified to75

ensure that the space of the OTU vector is so large as to be computationally intractable. On the other hand,76

increasing simplification results in an vanishingly small numbers of sub-states, which are insufficiently77

granular as to occur in any “biologically meaningful”association. This is, therefore, the key consideration78

when defining the approximation for grouping similar OTU vectors, for example, by machine learning79

clustering approaches. Effectively, our choice of clustering parameters should be guided by the desire80

to identify several well-populated microbiome sub-states both within and between individuals, which81

can then be used as the basis of a model associating these sub-states with various biologically interesting82

phenomenon. It should be noted that this is a distinct goal from that of most microbiome studies, which83

consider the stable-state microbiome as a single entity (e.g. the enterotype studies). As such, the ‘default’84

clustering parameters that appear in most published approaches do not match our problem requirements,85

and must be re-considered from scratch.86

Our overall procedure for defining sub-states, described in detail below, consists of applying a87

clustering algorithm to the OTU data, taking a metagenomics beta diversity metric as the distance measure88

between samples. We then attempt to robustly define the optimal number of clusters based on a comparison89

between several distance measures, distinct algorithms and different clustering scores.90

Metagenomics sample clustering has been achieved for different studies using a variety of approaches,91

in terms of distance measure, algorithm and number of clusters. For example, as a distance measure, the92

Jensen-Shanon Distance (JSD) (or its root squared, rJSD, as in (Arumugam et al., 2011b)) is the most93

frequently used (Gajer et al., 2012); although the cophenetic or the Euclidean distance are also sometimes94

applied. Several clustering algorithms have been used to group metagenomics samples, such as PAM,95

Agnes, Hclust, or Dirichlet Multinomial Mixture, with different linkage options (Ding and Schloss, 2014).96

For determination of the number of clusters, diverse assessment criteria have been used in the literature:97

the average Silhouette width (SI), Calinski-Harabasz (CH) index, Laplace approximation, etc. In the98

specific case of enterotypes, clustering of samples was applied (Arumugam et al., 2011b). According their99

tutorial (Arumugam et al., 2011a), they computed the distance as the root square of the JSD, with the100

PAM algorithm and selecting the number of clusters with the CH index combined with a SI assessment.101
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Conversely, Gajer et al. (2012) applied hierarchical clustering with JSD and SI assessment.102

This manuscript describes an algorithm consisting of several consecutive steps, where the most robust103

set of sub-states (or clusters) is generated for a given longitudinal microbiome dataset. Briefly, the104

variable factors that are combined to generate the robustness of our algorithm include: five different105

distance measures (JSD, rJSD, Bray-Curtis, Morisita-Horn and Kulczynski), two clustering scored (SI106

and Prediction Strength (PS) scores) followed by an additional bootstrapping process (evaluated with the107

Jaccard similarity score), and two distinct clustering approaches (PAM and Hclust).108

The usability of the proposed new algorithm is verified through the re-analysis of four previously-109

published longitudinal microbiome datasets, where we contribute new insights into the dataset structure,110

and show that sub-state distribution could be further reused by other kinds of downstream associative111

analyses of the same datasets.112

The contribution of this work, therefore, is to provide an objective and robust mechanism for identify-113

ing, and tracking, distinct sub-states and sub-state changes within an individual microbiome time series.114

This will enable downstream analyses about what, how and why transitions between sub-states happen,115

and this could in-turn address the challenge of applying microbiota dynamics to important objectives such116

as personalized medicine (Gilbert et al., 2016), sustainable agriculture or industrial production (Valseth117

et al., 2017).118

MATERIALS AND METHODS119

Algorithm: Automation of the robust sub-states definition120

This section describes a brief overview of our automatic procedure to define microbiome sub-states. Our121

robust clustering methodology takes a normalized OTU matrix as input: a) a phyloseq object (McMurdie122

and Holmes, 2013) or b) a BIOM format file (McDonald et al., 2012), together with their corresponding123

metadata that identifies each sample and taxa.124

Our clustering procedure is based on: 1) Koren et al. (2013)’s study 2) bootstrapping in clustering,125

and 3) similarity measures from (Barwell et al., 2015). Koren et al. (2013) recommends, for the definition126

of enterotypes, testing multiple approaches and comparing results. Following these suggestions, our127

algorithm first finds clusters using two different methods (PAM and Hclust), with five different distance128

metrics (JSD, root-JSD, Bray-Curtis, Morisita-Horn and Kulczynski) each, and with nine different seed129

cluster numbers, k (in the range from 2 to 10).130

From the output of this first step, we begin to identify the most robust results through a novel131

assessment approach that utilizes the following criteria:132

1. Choosing the k number of clusters (from 2 to 10) with the highest average Silhouette width (SI)133

among all combinations of pairs of beta diversity measures, with the score being above the SI134

threshold (0.25), and135

2. Checking if that k value also passes the Prediction Strength (PS) threshold (0.80) for robustness, or136

3. Confirming if those k clusters are stable according to the Jaccard threshold (0.75) from a bootstrap-137

ping process138

Those criteria are applied to the output of the 90 combinations (2 algorithms x 5 distances x 9 k values)139

per dataset, in order to discard those that are not robust and/or not reproducible. Next sections explains140

the steps in detail, and the relevant factors within our automatic procedure. In particular, we adapt the141

Koren et al. (2013) approach to the distinct problem of defining microbiome states that exhibit short-term142

transitions within the same individual, rather than the long-term stereotypes common to enterotype studies,143

with sparse transitions and where each individual has just one associated state.144

The final output of our algorithm is a phyloseq object with a new variable defining the cluster identifier145

into which each sample has been grouped, a file with <sampleID, clusterID> pairs, and the robust146

clustering assessment graphs (described below).147

Clustering approaches148

We selected these two algorithms as representatives of the two most common clustering approaches:149

a) PAM (Kaufman and Rousseeuw, 1990), as a partitioning approach, and b) Hclust (Kaufman and150

Rousseeuw, 1990), as an agglomerative hierarchical approach.151
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We selected PAM (Partitioning Around Medoids) (Kaufman and Rousseeuw, 1990) because it is an152

improved approach to the well-known non-deterministic k-medoids (Kaufman and Rousseeuw, 1987).153

This improvement is achieved in two ways. First, PAM selects k medoids among the input instances in a154

greedy phase, rather than the random selection of the k-medoids approach (Reynolds et al., 2006). The155

greedy phase takes each new medoid to minimize the objective function, that is, the sum of distances156

between each instance and its medoid. Therefore, PAM is a deterministic algorithm and does not need157

to be run multiple times, as is the case for k-medoids. Second, it spreads out the rest of the instances158

among the defined medoids according to the minimum distance-to-medoid criterion, using the values159

defined in the distance matrix. PAM then selects each possible pair of instances <medoid, not-medoid>,160

and evaluates whether the swapping between different clusters results in a smaller value for the objective161

function. This final step is repeated until the set of medoids do not change.162

Hclust, a hierarchical clustering algorithm, adopts a bottom-up approach (Kaufman and Rousseeuw,163

1990). Hclust begins with an independent cluster per instance. The two nearest clusters are then grouped,164

in an iterative way, until it arrives at a single cluster, which is therefore the root of an inverted tree165

structure. We chose average (i.e. UPGMA) distance between cluster members as the linkage criteria used166

to compute the distance between two clusters, rather than single or complete linkage which takes only167

one cluster element into account when computing the distance (Kaufman and Rousseeuw, 1990).168

Beta diversity metrics or distance measures169

We took Koren et al. (2013)’s study as reference, because they evaluated beta diversity metrics’ influence170

on the clustering results of microbiome samples, which is similar to our goal here. They recommended171

comparing at least 2 or 3 different distance measures in the clustering process; we chose to compare 5172

distinct measures. Those were chosen from a large list available in the R vegan package (version 2.3-1)173

(Oksanen et al., 2015), based on suggestions from the work of Koren et al. (2013) and a comprehensive174

study ranking all available beta diversity measures with abundance data (Barwell et al., 2015), which175

compared multiple quantitative and qualitative properties.176

First, we selected well-extended Jensen-Shanon Distance (JSD), rootJSD and Bray-Curtis, due177

to they are used in our reference study (Koren et al., 2013). Then, in addition, because our method is178

independent of the availability of a phylogenetic tree associated to the OTU count matrix, we choose 2179

additional metrics from Barwell et al. (2015) to replace the phylogenetic tree-dependent Unifrac metric180

(weighted and unweighted) used by (Koren et al., 2013). Although there was a precedent study with181

23 presence-absence beta diversity metrics (Koleff et al., 2003), we decided to focus on the richer182

metrics with continuous species abundance Barwell et al. (2015). In general, abundance metrics are183

less biased than presence-absence ones when under-sampling. (Barwell et al., 2015) compares 29 beta184

diversity measures with 23 assorted properties. We chose the Morisita-Horn and Kulczynski metrics185

from amongst the almost thirty analyzed metrics, taking into account the overall ranking and some specific186

individual properties that are more important for our use of beta diversity metrics as distance measures in187

clustering. Morisita is the highest scored beta diversity measure according to the comprehensive set of188

properties analyzed in Barwell et al. (2015); although we must select the Morisita-Horn implementation189

(the third best scored) since we work with normalized relative abundances. In addition, both Morisita and190

Horn-Morisita have been described as being “able to handle different sample sizes”(Wolda, 1981), which191

is an important characteristic in our studies, where the re-used longitudinal microbiome datasets vary192

dramatically in size. Kulczynski, meanwhile, is the next-best ranked metric among those available in the193

R vegan package, ranking sixth out of 29 metrics. Kulczynski is characterized as Pareto-dominant, and194

“found to have a robust linear (proportional) relationship until ecological distances became large”(Faith195

et al., 1987).196

Clustering assessment scores197

Koren et al. (2013) recommend using at least two assessment clustering scores. The three different,198

complementary clustering scores we selected, and how they are included in our automatic procedure, are199

as follows:200

1. SI: average Silhouette width: First, we search for the k number of clusters with the best SI, with201

k limited to the range of 2 to 10. This first step was also taken in a previous study, computing202

microbiome states in a particular dataset (Gajer et al., 2012). Here, we compute the average of all203

possible combinations of SI values for two different distance measures and each k, selecting that204
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one with the highest average. The average SI must be greater than 0.25 in all selected measures,205

because it is the minimum threshold for ‘sensible’ clusters, according to (Rousseeuw, 1987). This206

score takes into account the similarity between the samples in the same and in the nearest clusters.207

If the selected pair of distance measures does not outperform the following robustness constraint,208

the next best combination is checked.209

2. PS: Prediction Strength: Although Koren et al. (2013) indicate that clustering selection could be210

restricted just to SI score in small datasets, we include this alternative, PS, which is also used in211

Koren et al. (2013). Our method runs 100 repetitions where the dataset is split into 2 halves and212

clustering is applied on both; then we search for a correspondence between both group of clusters,213

classifying points in half A to cluster in half B and vice-versa. Each pair is considered as well214

classified if both points are classified to the same cluster in the other half. The score is the frequency215

of correct classification pairs.216

3. Jaccard similarity: Though the computation of PS implies some kind of bootstrapping, our217

methodology allows an alternative, explicit bootstrapping step, to verify the stability of the clusters218

selected with the previous scores. This bootstrapping consists of a resampling with replacement,219

where clustering is computed over the whole dataset and, in addition, again 100 resamples. Since220

the Jaccard score compares groups of elements, we computed the similarity of the original cluster221

with each resampling cluster. Thus, the resulting similarity score is the mean of the size of the222

intersection divided by the size of the union of samples.223

In summary, a total of 18,090 different clustering processes are executed to decide the best microbiome224

sub-states in a specific dataset. 18.090 comes from 9 (k = 2 : 10) potential number of clusters x 5 distance225

measures (JSD, rJSD, Bray-Curtis, Morisita-Horn and Kulczynski) x 201 assessment scores (1 SI + 100226

PS + 100 Jaccard) x 2 clustering algorithms (PAM and Hclust).227

Clustering and the distances between OTU vectors were computed with the implementation of different228

R packages, including the distance function in the phyloseq R package (v1.19.1) (McMurdie and Holmes,229

2013), the pam function in the cluster R package (v2.0.6), the hclust function in the stats R package230

(v3.4.3). Those algorithms take, as input, a distance matrix, where we use the metagenomics beta diversity231

measures comparing samples, rather than a {samples x features} matrix as required by other algorithms.232

The first clustering assessment was computed with the silhouette function in the cluster R package; the233

robustness evaluation is computed with the prediction.strength function (Tibshirani and Walther, 2005)234

and the corresponding bootstrapping scored by Jaccard similarity with the clusterboot function (Hennig,235

2007, 2008), both in fpc R package (v2.1-11).236

RESULTS237

This section describes the application in identifying robust clusters in previously published longitudinal238

microbiome datasets. For each reused dataset, we first show its microbiome sub-state definition and239

evaluation, followed by a brief interpretation of the clusters (if feasible).240

Human gut microbiome sub-states241

The dataset from David et al. (2014) is, to our knowledge, the longest and most frequently sampled242

longitudinal study of the human gut microbiome in healthy subjects. Briefly, it consists of near-daily243

stool sampling of two distinct subjects, throughout an entire year, including 493 gut samples with 4746244

taxa. The input OTU table with absolute abundances was kindly shared by the authors in a personal245

communication. Dataset details and availability are provided in the Data Citation section.246

This and the subsequent sub-sections show the three complementary clustering assessment steps247

defined in section Algorithm: Automation of the robust sub-state definition (corresponding to the three248

columns in Fig 1), with two different clustering approaches, and five distinct diversity metrics (corre-249

sponding to the colored lines).250

Figure 1 contains the following analyses:251

1. The first column shows the results of the algorithms attempt to choose the most suitable number252

of clusters, k, according to distinct beta diversity measures (i.e. distance among samples) scored253

according to SI. The selected k value (from 2 to 10) must report the highest average SI in the best254
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Figure 1. Robust clustering evaluation, with PAM algorithm, in different datasets. From top to

bottom: (1) Human gut microbiome (David et al., 2014), (2) Chick gut (Ballou et al., 2016), (3) Vagina

(Gajer et al., 2012), (4) Preterm infant gut (La Rosa et al., 2014).
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Figure 2. Clusters represented as Principal Coordinates graphs. A (up left): Human Gut. B (up

right): Chick Gut. C (bottom left): Vagina. D (bottom right): Preterm Infant Gut.

pair of two beta diversity measures. In Fig 1.1, first column, the selected number of clusters is255

k=3. With 3 clusters, SI takes its highest value (0.602) when utilizing the PAM algorithm (top256

row), and the JSD metric; the remainder metrics are also higher than the minimum threshold, with257

Morisita-Horn being the second best metric, scoring above the threshold for strong clusters.258

2. The second column allows us to check if the k value chosen by SI in the former step is sufficiently259

robust, by testing it against the PS criterion of being greater than 0.8. The second column of260

Fig 1.1 shows that JSD and rJSD in PAM with k=3 satisfies the robustness test with PS=0.950 and261

PS=0.935. At k=4, however, the PS value decreases to the point where the threshold is not passed262

using any other metric, despite being acceptable based on the SI.263

3. Finally, the third column reinforces the stability of the selected k clusters, by testing if the Jaccard264

similarity of the chosen diversity measures exceed 0.75. The last column of Fig 1.1 verifies the265

stability criterion, with Jaccard=0.986 for the selected k=3 clusters for JSD and, in this case, also266

for all remaining beta diversity metrics.267

Cluster interpretation: Fig 2 shows, as Principal Coordinates (PCoA) graphs, the final set of clusters268

selected by our algorithm for each dataset. Fig 2.A shows the 3 sub-states (clusters) that could be269

associated to an annotated biological phenomenon. In this case, the associations are with: {subject A,270

subject B before dysbiosis, subject B after dysbiosis}. No further interpretation was possible using this271

complicated dataset because insufficient additional metadata was available to test for association.272
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Chick gut microbiome sub-states273

The second dataset was generated by Ballou et al. (2016). It analyses the response of the developing274

chick gut microbiome to different treatments (salmonella vaccine and/or probiotics) during their first275

month of life. The dataset consists of 119 samples with 1583 taxa. The samples include six time points,276

with 4 or 5 subjects per each of the four treatment combinations. Our goal, therefore, was to define the277

natural groupings of chick gut microflora. Dataset details and availability are provided in the Data Citation278

section.279

Clustering assessment: Fig 1.2 shows that two clusters are identified by our method; k=2 presents280

the highest SI value (0.431) in PAM with the JSD metric (with additional metrics above the 0.25 limit)281

(first column), and also passes the robustness threshold of PS with 0.935 (second column) and the stability282

threshold of Jaccard similarity with 0.964 (third column).283

Cluster interpretation: Fig 2.B shows that the 2 clusters largely correspond to immature/young284

chicks and mature/adult chicks, reinforcing the conclusion of the original manuscript, which showed285

chick age to be the primary differential factor among samples.286

Vaginal microbiome sub-states287

The Gajer et al. (2012) dataset consists of 937 samples and 330 OTUs, corresponding to 32 women,288

with samples collected twice per week for 16 weeks. Dataset details and availability are provided in the289

Data Citation section. In this case, the original data counts are already pre-processed, and normalized290

to a sum of 100 per sample, as relative abundances. This contrasts with the previous datasets, where a291

normalization procedure was applied by us before entering the data into our algorithm.292

Clustering assessment: In the Gajer et al. (2012) dataset, our methodology determines that the293

strongest sample groups appear with 4 clusters, with the highest SI value (0.730) resulting from the294

clustering with PAM and Morisita-Horn metric. They similarly fulfil the robustness and stability criterion,295

with PS=0.931 and Jaccard=0.990, respectively, as Fig 1.3 shows.296

Cluster interpretation: Our method defines 4 clusters (see Fig 2.c) rather than the 5 clusters identified297

in the original manuscript (Gajer et al., 2012). Their cluster labeled as cluster IV-A disappears, being298

distributed among the other bigger clusters; approximately half of samples go to cluster I (our cluster299

no.4), some go to IV-B (our cluster no.3), and a few to cluster III (our cluster no.1). We note that, using300

our algorithm, the Prediction Strength decreases dramatically when passing from k=4 to k=5 clusters.301

Our cluster no.3 is that associated with bacterial vaginosis, and overlaps significantly with the disease302

cluster IV-B in Gajer et al. (2012)). The remaining clusters correspond to a (nominally) healthy vaginal303

microbiome.304

Preterm infant gut microbiome sub-states305

The dataset from La Rosa et al. (2014) has 922 samples and 29 OTUs at the class level. That collection306

includes data from 58 preterm babies, along different time points, for their first month and a half of life.307

Dataset details and availability are provided in the Data Citation section.308

Clustering assessment: Without any previous attempt to distribute samples into groups for this309

dataset (La Rosa et al., 2014), our robust clustering methodology determined that there were optimally 4310

clusters that could be robustly partitioned (see Fig 1.4). The highest SI value (0.749) is achieved with311

PAM algorithm and Morisita-Horn metric for k=4, with all remaining metrics higher than the SI threshold.312

The robustness and stability of these 4 clusters are also verified by outperforming the Prediction Strength313

and Jaccard similarity limits (0.897>0.8 and 0.911>0.75, respectively).314

Cluster interpretation: When we analyse the microbial composition of the 4 clusters shown in315

Fig 2.D, we found that cluster no.2 contains ∼50% of the samples, cluster no.1 contains ∼25%, cluster316

no.3 ∼20% and cluster no.4 has <5% of the samples. Cluster no.3 appears to include the set of youngest317

babies (see the darkest squares in Fig 2.D); cluster no.1 the oldest babies (see the clearest circles); and318

cluster no.2 those being those of intermediate age. Analyzing the microbial composition of samples in319

each cluster, we found cluster no.1 and 3 are mainly enriched in Firmicutes, cluster 2 in Proteobacteria and320

cluster 4 in Bacteroidetes. This group distribution is in agreement with the La Rosa et al. (2014) results,321

where they suggest a beginning-of-life with primarily Bacilli (phylum: Firmicutes, as in our cluster no.3322

with the youngest babies); subsequently, there would have a Gammaproteobacteria prevalence (phylum:323

Proteobacteria, as in our cluster no.2); and finally, the infants would have Clostridia as the dominant324

species (phylum: Firmicutes, corresponding to our cluster no.1). We could not determine a biological325

association for the small cluster 4, based on the metadata captured by (La Rosa et al., 2014).326
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Taxa subset327

In this section, we analyze what happens when we take distinct subsets of taxa and apply our approch to328

find robust clusters in the different datasets. First, we select only the dominant taxa, that is a percentage329

(exactly we took the 1%) of the most frequent taxa; and also the complementary subset with the non-330

dominant taxa (number of taxa available in table 1). Second, we aggregate taxa at a higher resolution,331

i.e. at genus taxonomic level, when possible. Then, we again build clusters with all, dominant and332

non-dominant taxa at this genus level to compare with the previous results at species level, or the most333

detailed available one (see table 2).334

Table 1 shows a summary with the results comparing clustering with different taxa subsets. The first335

row corresponds to the default results reported by our method (all taxa) and already explained in previous336

sections. The other two rows in table 1 point out that the final number of sub-states trends towards only337

plus/minus one variation when the clustering takes a subset of taxa. Mostly, clusters with dominant338

taxa seems better according to clustering assessment measures. Moreover, it is relevant to note these339

best evaluated clusters are found with a maximum of 13 taxa. Some studies have found that enterotypes340

distinctions were primarily the result of different proportions of a small number of dominant species341

(Gorvitovskaia et al., 2016), probably similar to our results with dominant taxa. Sometimes, the additional342

appeared clusters could be outliers more than a new sub-state. For example, in Ballou et al. (2016) with343

dominant taxa, in the third new cluster only there are 6 samples, from unrelated young chicks. Clusters344

without those dominant taxa are clearly worse in assessment measures; even not finding robust clusters in345

one case (Gajer et al. (2012)). However, some studies have reported relevant interactions for microbiome346

dynamics among rare taxa (Claussen et al., 2017). So, these clusters could be useful in some particular347

cases.348

Table 1. Robust clustering results with all, dominant and non-dominant taxa. Clustering quality

scores (SI>0.25 and (PS>0.8 or Jaccard>0.75)). Not clusters found in Gajer2012 with non-dominant

taxa, due to not 2 distance measures with SI>threshold.

no.clusters

SI\PS\Jaccard David2014 Ballou2016 Gajer2012 LaRosa201

no.taxa

3 2 4 4

All 0.60/0.95/0.99 0.43/0.94/0.96 0.73/0.93/0.99 0.75/0.90/0.91

4746 1583 298 29

2 3 5 3

Dominant 0.70/0.99/0.99 0.83/0.71/0.81 0.79/0.48/0.88 0.91/0.98/0.99

13 6 13 3

3 6 - 4

Non-dominant 0.60/0.97/0.99 0.33/0.33/0.76 - 0.87/0.64/0.82

4733 1577 285 26

Table 2 summarizes the clustering results after aggregating taxa at genus level. Our procedure only349

found clusters in two datasets, because of Gajer et al. (2012) dataset was not provided with taxonomic350

information in the original publication, and La Rosa et al. (2014) dataset does not allow the taxa351

simplification at genus level because the samples have taxonomy associated at a higher level (i.e. class352

level). SI values are lower than before aggregation at genus level reporting weaker clusters, while PS and353

Jaccard scores are preserved at high values, meaning high robustness in the new found sub-states. In many354

studies, the OTU tables are aggregated at genus level, therefore this alternative way to find sub-states355

could be useful in some specific scenarios.356

Figure 3 shows the distribution of samples in clusters with the six considered alternative subsets of357

taxa in the gut microbiome dataset (see supplementary figure S2 for corresponding results in the chick358

gut dataset). In the bottom row (genus aggregation), in the first and second columns (all and dominant359

taxa) the clusters are difficult to distinguish. The differences in the general shape of the scatterplots360

among different cases is also due to the distance measure, being JSD in all the cases where there are361

3 clusters. Apparently, it is difficult to say whether one of these three clustering configurations in 3362

sub-states is clearly better than others. Hence, more knowledge or meta-data about the specific domain363
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Table 2. Robust clustering results after genus aggregation with all, dominant and non-dominant

taxa. Clustering quality scores (SI>0.25 and (PS>0.8 or Jaccard>0.75))

no.clusters

SI\PS\Jaccard David2014 Ballou2016

no.taxa

2 2

All 0.58/0.93/0.96 0.63/0.93/0.98

386 180

2 2

Dominant 0.58/0.85/0.96 0.67/0.96/0.99

10 9

3 4

Non-dominant 0.62/0.89/0.99 0.44/0.56/0.81

376 171

where sub-states would be applied might be necessary to conclude which clustering configuration is more364

suitable than others.365
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Figure 3. Clusters in Human Gut with different number of taxa, represented as Principal

Coordinates graphs. Top row: default taxonomic level (i.e. species), bottom row: genus aggregation.

Columns from left to right: all, dominant and non-dominant.

DISCUSSION366

Our analysis suggests that, in general, an agglomerative approach (such as PAM) is more suitable than a367

hierarchical partitioning (such as Hclust) in our microbiome clustering scenario, where we are trying to368

optimize the number of distinct sub-states to make more precise biological associations, for example, for369

the purpose of defining biomarkers. As such, we attempt to avoid singletons or very small clusters (with370

size < 5). In our analyses, Hclust tends to often generate just 2 clusters, according to the limit established371

by the robustness PS score (see central columns of supplementary figure S1), leading us to suggest that it372
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is not suitable for this task. The final bootstrapping step, measured in Jaccard similarity terms, determines373

that PAM partitions represent valid and stable clusters, with almost all k values. This contrasts with374

Hclust, where many k values with different distance measures do not reach the minimum of 0.75 of mean375

Jaccard similarity. Additionally, PS seems to be the most restrictive score we can apply to discriminate376

between a viable partition of microbiome samples, and other non-robust possibilities where the scores fall377

below its threshold of 0.8 (see central columns of Figure 1). Regarding beta diversity measures, JSD and378

Morisita-Horn are the metrics that usually resulted in the highest SI values, in whatever number of taxa.379

We want to contribute to standardization in microbiome, promoted by the International Human380

Microbiome Standards (IHMS) (Morton et al., 2017) and the Microbiome Quality Control Project381

(MBQC) (Costea et al., 2017) with a reproducible pipeline to find sub-states in longitudinal microbiome,382

and ensure comparability. We do not combine data from different studies, to avoid mix different ways of383

extracting DNA and pre-processing it, but we does combine samples from different subjects, increasing384

the diversity of the subjects and, consequently, their wider applicability.385

Within the four datasets used in this manuscript, our novel method found varying numbers of386

microbiome sub-states depending on the particular dataset composition: one with 2 clusters (chick gut);387

another with 3 clusters (human gut); and two datasets with 4 clusters (vaginal microbiome and preterm388

infant gut). These results provide evidence that our algorithm is applicable to domains with a wide range389

of diversity and heterogeneity. There are many papers talking about stability and dynamics in microbiome,390

and many of them are focused in human gut microbiome, while our approach is wider, applicable to391

whatever microbiome. There is not an objective way to check the correctness of our cluster definition, due392

to a lack of gold standard datasets with groups definition. However, we find biologically-relevant clusters393

although our datasets were not designed to be analysed in this way, and are perhaps too small for this kind394

of analysis.395

There are multiple choices when clustering metagenomics data, and someones do not consider them396

statistically significant enough grouped. However, the same weak statistics arised when clustering different397

bodysites, and the difference in microbiomes of distinct body sites is scientifically widely accepted (Costea398

et al., 2018). Moreover, even though the longitudinal microbiome data would evolve more continuously399

than in a discrete way, a discretization approach could be plausible as a simplification to make viable400

computational modeling analysis about the influence of external perturbations on microbiome dynamics.401

In fact, many real processes (including many biological ones) are not discrete in time, although they are402

simplified as discrete to allow their modeling to be studied with computational and mathematical models403

(Faust and Raes, 2012; Faust et al., 2015), as we are claiming in our proposal of clustering longitudinal404

microbiome data in sub-states.405

In the result section, we compare the clustering decisions with different sets of taxa applied to real406

longitudinal metagenomics data. Focusing on less abundant taxa to characterize microbiome clusters407

is not a common practice, even though some studies highlight interesting events about that: Claussen408

et al. (2017) found there are interactions between low abundances (i.e. rare) taxa, and Martı́ et al. (2017)409

concludes that the most abundant taxa are less volatile than the less abundant ones. Thus, it could imply410

that giving importance to not-dominant species when sub-states definition, as our approach allows, could411

evince shifts in microbiome not visible using only-dominant-based sub-states. The default decision in412

our pipeline is with all the available taxa in the data, although different sets of taxa can be considered413

({dominant, without dominant taxa} x {genus or species level}), allowing the users to select the clusters414

at the level most suitable to their goal.415

The concept of a ”microbiome biomarker” (Gorvitovskaia et al., 2016) aligns well which our observa-416

tions of microbiome sub-states being dependent on perturbations. In fact, our clustering pipeline is likely417

best-suited to identifying sub-states of dysbiosis or otherwise ”perturbed” situations, and less suitable for418

studying non-perturbed steady-state microbiomes expressing more continuous dynamic changes (Gibbons419

et al., 2017) versus the discrete state-changes resulting from disease, dysbiosis or other perturbations.420

CONCLUSIONS421

This manuscript describes an automatic algorithm that determines a set of distinct microbiome sub-states422

in longitudinal data, given an available set of a particular cavity microbiome time series. Our novel423

methodology is characterized by a robust, objective, transparent and reproducible assessment of the424

quality of the identified sub-states. The algorithm is flexible with regards to the data source and taxa, and425

may be applied to a wide range of investigations over diverse species and intervention scenarios.426
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In summary, there is not an standard method to define clusters or sub-states in microbiome, even less in427

longitudinal microbiome datasets. After reviewing and analyzing many studies, with different procedures428

and distinct results about clustering gut microbiome datasets, Costea et al. (2018) concludes any procedure429

is not preferred versus others, but it depends on the conditions in each particular case, however all of them430

have allowed to carry out a particular microbiome analysis. Likely, the best procedure will depend on the431

posterior application of those clusters. Therefore, given there is not a universal standard, in our defined432

scenario about clustering longitudinal microbiome datasets of several subjects together, we decided to run433

a wide variety of those clustering procedures and to select the best one in each case, based on clustering434

assessment measures, to help users to take the decision, facilitating the use of the resulting sub-states.435

As an additional outcome from our analyses, we make available the data files containing the sub-states436

we defined, to enhance the data provided by the datasets authors, and allow additional posterior analyses,437

for example, to elucidate the causes of transitions between different microbiome sub-states.438

Natural variations and stress factors modify microbiota composition (Weiss and Hennet, 2017),439

however it is an open problem to discover which element(s) lead a specific shift and how and why that440

transitions happen. Thus, our new pipeline could help to develop novel methods to predict how to move441

from one to another of these microbiome sub-states depending on external perturbations.442

Code and data availability443

Our algorithm, implemented in R, is freely available at GitHub: https://github.com/wilkinsonlab/robust-444

clustering-metagenomics. Our output data files are available at Zenodo: http://doi.org/10.5281/zenodo.167376445

Data Citation446

This section describes the sources of the different input datasets.447

Human gut microbiome (David et al., 2014):448

• Metadata: David, L. et al. Genome Biology. Additional file 18: https://static-content.449

springer.com/esm/art:10.1186/13059-016-0988-y/MediaObjects/13059_450

2016_988_MOESM18_ESM.csv or http://web.mit.edu/ldavid/www/MF_David_451

FWD_LAD_2014_06_10.xlsx (2014)452

• OTU table: it was kindly shared by the authors in a personal communication453

• Raw data: EBI/ENA ERP006059 (2014)454

Chick gut microbiome (Ballou et al., 2016):455

Qiita 10291 (2016)456

Vaginal microbiome (Gajer et al., 2012):457

• OTU table and metadata: Gajer P. et al. Science Supplementary table S2 (2012)458

• Raw data: SRA SRA026073 (2012).459

Preterm infant gut microbiome (La Rosa et al., 2014):460

OTU table and metadata: La Rosa, P.S. et al. PNAS Supporting Information, Dataset S01: http://www.461

pnas.org/lookup/suppl/doi:10.1073/pnas.1409497111/-/DCSupplemental/pnas.462

1409497111.sd01.xlsx463
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