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The consolidation of a non-analogous climate shortly will likely affect the structure and

functioning of Amazon, the most biodiverse terrestrial ecosystem on the planet. However,

the ecological mechanisms underlying these potential events are still poorly understood.

Here, we investigate the mechanism responsible for controlling the forest-savanna

transition regime through an objective measure of resilience, based on the

multidimensional climatic niche of ecosystems. Our results suggest that there is an

alternating dominance, where forest and savanna have their respective basins of

attraction. However, we note that the two stable states can coexist only in a narrow

ecotonal zone of bistability. In this particular region, there is an equivalence between

forest and savanna in quantitative terms and its presence indicates, in addition to a low

hysteresis, a propensity for a catastrophic transition regime between forest and savanna.

In this sense, we determine the critical levels of resilience that intermediate the dynamics

of transition between forest and savanna through such bistable ecotonal zone. Also, we

found that bistable region is strongly associated with critical climatic thresholds, mainly on

the axis of the moisture availability and climatic seasonality, but with the lower effect of

the average annual temperature. Thus, we can expect that if such climatic thresholds are

reached, due to ongoing climate change, and forest resilience limits are exceeded; large-

scale catastrophic events will suddenly be triggered. The expected effects are the erosion

of Amazonian biodiversity, with the massive extinction of species, culminating in the

consolidation of a stable state with simplified ecosystems, with a lower density of tree

cover.
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27 Abstract 

28 The consolidation of a non-analogous climate shortly will likely affect the structure and 

29 functioning of Amazon, the most biodiverse terrestrial ecosystem on the planet. However, the 

30 ecological mechanisms underlying these potential events are still poorly understood. Here, we 

31 investigate the mechanism responsible for controlling the forest-savanna transition regime through 

32 an objective measure of resilience, based on the multidimensional climatic niche of ecosystems. 

33 Our results suggest that there is an alternating dominance, where forest and savanna have their 

34 respective basins of attraction. However, we note that the two stable states can coexist only in a 

35 narrow ecotonal zone of bistability. In this particular region, there is an equivalence between forest 

36 and savanna in quantitative terms and its presence indicates, in addition to a low hysteresis, a 

37 propensity for a catastrophic transition regime between forest and savanna. In this sense, we 

38 determine the critical levels of resilience that intermediate the dynamics of transition between 

39 forest and savanna through such bistable ecotonal zone. Also, we found that bistable region is 

40 strongly associated with critical climatic thresholds, mainly on the axis of the moisture availability 

41 and climatic seasonality, but with the lower effect of the average annual temperature. Thus, we 

42 can expect that if such climatic thresholds are reached, due to ongoing climate change, and forest 

43 resilience limits are exceeded; large-scale catastrophic events will suddenly be triggered. The 

44 expected effects are the erosion of Amazonian biodiversity, with the massive extinction of species, 

45 culminating in the consolidation of a stable state with simplified ecosystems, with a lower density 

46 of tree cover.

47

48 Keywords: Tipping point, Resilience, Bistability, Forest-savanna transitions.
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50 Introduction

51 Observational data indicate that the 2016 year was the warmest and driest in the Amazon 

52 basin since the beginning of observations (Jiménez-Muñoz et al., 2016). In this context, El Niño 

53 (ENSO) plays an essential role as a determining factor of extreme interannual climatic events in 

54 the Amazon. This climate pattern, with higher temperatures and longer dry season duration, seems 

55 to compose a trend for the biome, especially in its eastern to southwestern borders (Li et al., 2008b; 

56 Fu et al., 2013; Jiménez-Muñoz et al., 2013). For the foreseeable future, this scenario is expected 

57 to accentuate. Climate simulations predict that by the end of the 21st century the Amazon basin 

58 will suffer from non-analogous conditions with little overlap with the current climate (Williams et 

59 al., 2007; Malhi et al., 2009; Garcia et al., 2014).

60 Terrestrial ecosystems are known to depend on energy and moisture availability to 

61 maintain their structure and functioning (Murphy & Bowman, 2012; Donoghue & Edwards, 2014; 

62 Oliveras & Malhi, 2016)(Murphy & Bowman, 2012; Donoghue & Edwards, 2014; Oliveras & 

63 Malhi, 2016). However, forests are not only a passive recipient of abiotic conditions (Zemp et al., 

64 2017)(Zemp et al., 2017). Amazon forest, with its immense biological richness (Mittermeier et al., 

65 2003), plays a vital role in the global climate system, integrating an intricate network of material 

66 and energy feedbacks at large scales (Aragão et al., 2014; Nobre et al., 2016). Therefore, it is 

67 expected that ongoing climate change, promoted mainly by the increasing rate of greenhouse gas 

68 emissions to the atmosphere (IPCC, 2014), will affect the integrity and functioning of the Amazon 

69 forest (Davidson et al., 2012). Such climate state will entail the commitment of a vast set of goods 

70 and services provided to humans (Cardinale et al., 2012; Pecl et al., 2017).

71 However, there are still many uncertainties about how the forest will respond if there is a 

72 consolidation of such changes in the climate. In this regard, in large part, is due to the non-inclusion 
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73 of biological mechanisms in the construction of predictive models (Urban et al., 2016). According 

74 to the ecological stability theory (Scheffer et al., 2001), along with an environmental gradient, a 

75 catastrophic transition regime can be triggered suddenly between stable states if a given resilience 

76 threshold is reached. In this way, it is possible to identify the effects of bistability (Hirota et al., 

77 2011; Staver, Archibald & Levin, 2011). A central concept in ecological stability theory is that of 

78 resilience. Resilience, in the context of complex ecological systems, can be interpreted as the 

79 ability of an ecosystem to recover after suffering a disturbance (Holling, 1973; Pimm, 1984; 

80 Scheffer et al., 2001; Folke et al., 2004).

81 In this study, to understand the potential responses of the Amazon forest to changes in 

82 climate, we propose to investigate the ecological mechanism that controls forest-savanna transition 

83 regimes and the implications for the forest ecosystem. To achieve this goal, we measured and 

84 mapped the resilience of forest and savanna by modeling the multidimensional climatic niche of 

85 ecosystems using high spatial resolution remote sensing data. This new approach, which integrates 

86 different theoretical and methodological bodies, represents a significant advance for the 

87 conservation of Amazonian biodiversity in order to will improve our predictive capacity in 

88 anticipating catastrophic transitional events.

89

90 Material & Methods

91 Modeling the multidimensional climate niche of forest and savanna

92 The presence-absence data of the stable ecosystem states, used as input in ecological niche 

93 modeling, were defined from a trimodal frequency histogram of the tree cover variable (0-100%) 

94 from the MODIS (Moderate Resolution Imaging Spectroradiometer Satellite) (Townshend et al., 

95 2011). The spatial resolution of the raster is 6 km inside and covers all of South America. The 
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96 stable savanna state presents tree cover values between 5 and 60%, while forest presents values 

97 over 60% (Hirota et al., 2011). Within this range, the steady state in question assumes the presence 

98 value (1), and out is considered as absent (0). After correction of classification inaccuracies due to 

99 the historical land use bias, based on a consensual basis of high-resolution vegetation classes 

100 (Tuanmu & Jetz, 2014), the raster was converted to the point vector format, where each observation 

101 received its geographical coordinate of longitude and latitude.

102 As bioclimatic predictors for ecological niche modeling, we used the climatic dataset CHPclim 

103 (v.1.0) produced by the Climate Hazards Group's Precipitation Climatology with a spatial 

104 resolution of 0.05 ° (~6 km) to describe the precipitation patterns of South America (Funk et al., 

105 2015). The temperature patterns along the continent were represented with the WorldClim 

106 database (Hijmans et al., 2005) with a spatial resolution of 0.041° (~ 5 km). We have selected four 

107 bioclimatic predictors related to energy availability (temperature) and humidity (precipitation), 

108 which are recognized as essential factors from the ecophysiological point of view of ecosystems 

109 (Lehmann et al., 2014; Oliveras & Malhi, 2016): annual cumulative precipitation (ACP); (2) 

110 precipitation seasonality coefficient (PSC); (3) annual average of temperature (AAT) and (4) 

111 annual range of temperature (ART).

112 To model the ecological niche of ecosystems as stable states, we used the biomod2 package 

113 implemented in the R software (Thuiller et al., 2009). Niche models were calibrated using 

114 presence-absence data from each ecosystem combined with the four bioclimatic predictors 

115 described above. We have adopted the ensemble strategy, which emphasizes the most consensual 

116 predictions among different modeling methods (Araújo & New, 2007; Franklin, 2010), thus 

117 minimizing the effect of uncertainties on model prediction (Diniz-Filho et al., 2009)(Diniz-Filho 

118 et al., 2009). We utilized ten different methods for build the models: Bioclim (SRE), Classification 
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119 Tree Analysis (CTA) (Scull, Franklin & Chadwick, 2005); Maxent (Phillips et al., 2006, 2016); 

120 Random Forest (RF) (Breiman, 2001); Generalized Linear Models (GLM) (Guisan, Edwards & 

121 Hastie, 2002); Generalized Aditive Models (GAM) (Hastie & Tibshirani, 1986); Function 

122 Discriminant Analysis (FDA) (Manel, Dias & Ormerod, 1999); Artificial Neural Networks (ANN) 

123 (Manel, Dias & Ormerod, 1999); Multiple Aditive Regression Splines (MARS) (Friedman, 1991).

124 For each method, we ran ten replicates with 75, and 25% partition for training and test, 

125 respectively. We evaluated the quality of the models produced by the different methods with the 

126 True Skill Statistics (TSS) and Receiver Operating Characteristic (ROC) metrics. The best models 

127 to compose the ensemble were selected using the TSS metric that measures quality combining 

128 sensitivity and specificity (Allouche, Tsoar & Kadmon, 2006). For threshold effect, only the 

129 models with TSS>=0.6 were considered to compose the ensemble. The model of consensual 

130 distribution was then obtained through the arithmetic mean among the best models of the different 

131 methods (Diniz-Filho et al., 2010).

132

133 Spatial resilience boundary for forest and savanna

134 This study emphasizes the natural transition mechanisms between the Amazonian forest and 

135 adjacent savanna ecosystems (e.g., cerrado) from a resilience gradient based on the 

136 multidimensional climatic niche of steady states. Therefore, the study area comprises the entire 

137 Amazon basin and the adjacent regions bordering the biome, located between latitudes 10 °N and 

138 20 °S and longitudes 40 ° W and 80 °W. The spatial resolution of the raster is 0.05 ° (~ 6 km) 

139 containing 432,042 pixels.

140 Here, climate suitability models derived from ecological niche modeling are used alternatively as 

141 a direct and objective measure of ecosystem resilience. To identify the geographical limits of 
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142 resilience between the Amazon forest and adjacent savannas, we calculated the amplitude between 

143 the resilience gradients of the two stable states over all the pixels in the study area to identify the 

144 dominance zones and those where there is bistability in spatially explicit ways. Regions with high 

145 amplitude values indicate that forest or savanna, depending on the area, dominate regarding 

146 resilience, while low amplitude values (close to zero) suggest that there is a counterbalance of the 

147 resilience between the two ecosystems, ecosystems would be equivalent to having bistability.

148

149 Predicting resilience thresholds in transition regimes

150 To identify critical resilience thresholds before forest-savanna transition regimes, we calculated 

151 the observed proportion of each stable state (forest or savanna) along each measured unit of forest 

152 resilience to the study area. We counted a total of 446 independent and non-autocorrelated samples, 

153 where the forest and savanna ratio were calculated, ranging from 0 (zero) to 1 (one) along the 

154 resilience gradient. The observed proportions, such as response variable, were then plotted as a 

155 function of the forest resilience gradient. Then, we fitted a non-linear local regression statistical 

156 model (LOESS) to the observed data to estimate the critical cut points under the resilience gradient 

157 at the moment the curves assumed independent behavior and diverged each other.

158

159 Calculating the trend towards a transition regime and its associated climatic thresholds

160 We measured the propensity for transitions regimes from the spatial anomaly of resilience 

161 calculation between the rasters of the two stable states. The values of the output of the operation 

162 vary between [+1000] (positive), which are related to the increase of the forest resilience, and [-

163 1000] (negative) indicating an increase of the resilience of savanna. Using this gradient, we 

164 counted the number of forest and savanna observations under each unit of the measured anomaly 
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165 to calculate the observed proportion of forest and savanna along the gradient of the anomaly. After 

166 this procedure, which generated a set of 1,805 observations with statistical independence and 

167 without spatial autocorrelation, we plot the observations under a two-dimensional scatterplot, 

168 where the respective bioclimatic predictors are the axes.

169 We separate the factors under the two-dimensional climate space in (a) energy availability and 

170 humidity and (b) climatic seasonality. After this, we then fit a linear model, which the orientation 

171 of the line will indicate the type of statistical relationship between the predictors and the tendency 

172 to transformations between the ecosystems. By assigning a color gradient, related to the trend 

173 variable to a transition regime, it was also possible to identify the climatic thresholds critical to the 

174 transition between stable states from abrupt color changes.

175

176 Results

177 We map the distribution of ecosystem resilience of stable forest and savanna states based on the 

178 occupation of their respective multidimensional climatic niches (Figure 1A and B). The models 

179 presented high sensitivity in predicting the alternating dominance of stable states over space with 

180 synchronized geographic substitution between ecosystems. Such pattern of alternating dominance 

181 between the two stable states is further evident in Figure 1C, where high resilience amplitude 

182 values dominate almost the entire study area. However, we have detected only a narrow boundary 

183 of bistability between the two ecosystems, where low values of resilience amplitude (close to zero) 

184 prevail, highlighted by the black rectangles in Figure 1C. Such a bistable ecotonal zone should be 

185 responsible for the mediation of transition events between the two stable states, being described in 

186 the theoretical field as Maxwell's point. Its presence indicates, in addition to bistability among the 

187 ecosystems, a low hysteresis, in case the return to the original stable state occurs.
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188 Figure 1. Ecosystem resilience gradient and Maxwell point detection. Estimated climate resilience 

189 for the forest (A) and savanna (B). In (C), the amplitude of resilience between forest and savanna 

190 gradients. The rectangles in (C) under the lowest values indicate the boundary between the two 

191 ecosystems, where a bistability pattern and low hysteresis prevail.

192

193 In Figure 2, we observed empirically, under the forest resilience gradient, that, from a given 

194 boundary, towards the highest values, there is a predominance of the stable state of forest (green 

195 balls), reflected in the highest proportion of observations when compared to savannas (purple 

196 balls). Below an absolute limit of resilience, toward the lower values, the pattern reverses, since 

197 there is proportionately more savanna than forest. However, between the two extremes of the 

198 gradient, we identified an ecotonal resilience zone (green-moss rectangle), where the observed 

199 values between forest and savanna are proportionally similar (~ 0.5). Such pattern indicates the 

200 presence of mosaics of habitats in the landscape, where there is a dominance of either of the two 

201 stable states (Figure 2). With the aid of a non-linear local regression model fitted to the data, we 

202 observed that critical resilience values before catastrophic transition events between forest and 

203 savanna are between 704 to 448 under the forest resilience gradient.

204

205 Figure 2. Critical resilience thresholds and the bistable ecotonal zone. Under high resilience values 

206 (>= 704) dominance of forests (green balls), while in low values  (<= 448) savannas stand out 

207 (purple balls). Under an intermediate zone of the resilience gradient (green-moss polygon), there 

208 is a balance of the observed proportions of forest and savanna, indicating an area of bistability. 

209 This transition zone should play a vital role in the mediation of stable state change events between 

210 forest and savanna.
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211 In Figure 3, we present a trend metric for catastrophic transition regimes under the two-

212 dimensional climate space of the study area. In the graph of energy availability and humidity for 

213 ecosystems (Figure 3A), we observed that there is a strong tendency towards catastrophic 

214 transformations between forest and savanna associated with a critical threshold of moisture 

215 availability. At precipitation levels below the threshold of 1500 mm/year (ACP), there is a sudden 

216 change with an evident increase in the chance to savanna, independent of the observed mean annual 

217 temperature (AAT) values. On the other hand, in the climatic seasonality graph (Figure 3B), the 

218 results indicate that the increase in climatic seasonality, both regarding temperature (ART) and 

219 precipitation (PSC), are positively correlated with the tendency to more open environments in the 

220 area of study. Such pattern may lead to events of sudden transitions from forest to savanna.

221

222 Figure 3. The propensity for catastrophic transition regimes under bidimensional climate space. In 

223 (A) on the X-axis is the average annual temperature gradient (AAT) and on the Y-axis the annual 

224 cumulative precipitation (ACP). In (B) on the X-axis is the annual range of temperature (ART) 

225 and on the Y-axis is the seasonal precipitation coefficient (PSC). In all, we used n=1805 

226 observations.

227

228 Discussion

229 The evidence presented here, such as Maxwell's point detection in a spatially explicit way, 

230 reinforces that a possible transition regime between forest and savanna would occur suddenly and 

231 in catastrophic proportions, if the critical resilience threshold is reached (Staal et al., 2016). The 

232 erosion of biodiversity, with the massive extinction of forest species through a phenomenon 

233 described as die-back forest (Cox et al., 2004), would result in the systematic loss of resilience 
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234 induced by anthropogenic environmental changes. This process of degradation, in theory, would 

235 culminate in the consolidation of another level of ecological stability on the Amazon basin, with a 

236 lower density of tree cover (e.g., savannas) (Zemp et al., 2017). This result is possible because 

237 forests are more vulnerable to climate change shortly than other terrestrial ecosystems (Perez, 

238 Stroud & Feeley, 2016).

239 It appears that the transition process over the Amazon basin has already begun (Malhi et al., 2008; 

240 Davidson et al., 2012). Observed empirical evidence, with data from different sources, has shown 

241 that the forest is losing its natural self-regeneration capacity. In general, slower recovery of these 

242 ecosystems has been observed in structural and functional terms after disturbances, mainly under 

243 the southeastern and eastern edges of the biome, near the ecotonal zone with the cerrado. For 

244 example, the ability of forests to retain carbon in biomass in this region has been compromised as 

245 a function of the observed moisture deficit (Phillips et al., 2009; Brienen et al., 2015; Feldpausch 

246 et al., 2016; Baccini et al., 2017). Amazonian floodplain forests have also shown a slower recovery 

247 rate after fire events and prolonged dry periods (Flores et al., 2017). In the same sense, severe 

248 drought events are also associated with high tree mortality rates (Allen et al., 2010; Greenwood et 

249 al., 2017), with effects aggravated by forest fires (Barlow & Peres, 2008; Brando et al., 2014).

250 In this sense, the explicit determination of critical thresholds of resilience at large scales means a 

251 particularly significant advance for Amazonian conservation, since we would have a better 

252 predictive capacity to anticipate the effects of climate changes on the forest. Such information will 

253 guarantee a more precise action towards ecosystem conservation plans (Scheffer et al., 2015). 

254 Some authors have already explored this hypothesis previously based on coupled models of 

255 climate and vegetation dynamics (Oyama & Nobre, 2003; Nobre & Borma, 2009; Salazar & 
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256 Nobre, 2010), but without explicitly exploring the ecological mechanism underlying transition 

257 regimes.

258 The bistable ecotonal zone (Maxwell point) is associated with catastrophic transition regimes and 

259 also indicates the presence of an environmentally well-defined threshold (Wuyts, Champneys & 

260 House, 2017). In this sense, the correlation of the observed trends to a transition regime under the 

261 two-dimensional climate space allowed the design of a useful climatic metric, which indicates the 

262 thresholds for the monitoring of catastrophic events. Also, with such a procedure it was possible 

263 to measure the importance of bioclimatic predictors in determining potential devastating transition 

264 regimes.

265 Our findings indicate that changes in mean temperature would have little influence on the 

266 transition regime between forest and savanna. In other words, with a higher concentration of 

267 greenhouse and increasing global temperatures, will not be the primary factor that will determine 

268 catastrophic transition events between forest and savanna. Although the relevance of the effect of 

269 CO2 fertilization on forest productivity is recognized (Lloyd & Farquhar, 2008; Cox et al., 2013; 

270 Huntingford et al., 2013).

271 Our results indicate that the most important factor when analyzing the energy and humidity 

272 availability axis is the annual cumulative volume of precipitation. According to our findings, in 

273 order not to trigger catastrophic transition events between forest and savanna, it would have to rain 

274 at least 1500 mm/year in a particular region. Some authors corroborate this critical climatic 

275 threshold with other methodological approaches (Malhi et al., 2009; Wuyts, Champneys & House, 

276 2017). In a recent study, the author indicates a breakpoint of approximately 2000 mm/year 

277 (Ahlström et al., 2017) as a critical value for the maintenance of high values of gross primary 

278 productivity. Although, the conclusion was not based on an objective measure of ecosystem 
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279 resilience. However, all the data observed and simulated indicate a tendency to increase aridity 

280 over the Amazon basin (Li et al., 2008a; Malhi et al., 2009; Fu et al., 2013; Boisier et al., 2015; 

281 Erfanian, Wang & Fomenko, 2017), specially on the southwest and east edges of the biome.

282 Under the climatic seasonality, our results indicate that the increase in seasonality of precipitation 

283 and temperature has a direct association with a higher propensity for catastrophic transition 

284 regimes between forest and savanna. These data suggest that rainfall is more frequent in the 

285 Amazon basin due to the prolongation of the dry season, mainly on the eastern edges of the 

286 southwest (Li et al., 2008a; Fu et al., 2013; Boisier et al., 2015). Another negative factor, which 

287 has further accentuated the increasing seasonality of precipitation, is the increase in the frequency 

288 of extreme drought events, mainly caused by more severe El-Niño (Jiménez-Muñoz et al., 2016).

289 Our results indicate that, as a function of the alternating dominance pattern through the resilience 

290 gradient, the Amazonian forest and adjacent savanna ecosystems represent two independent stable 

291 states, where each one has its basin of attraction, previous corroborating studies (Hirota et al., 

292 2011; Staver, Archibald & Levin, 2011). However, our findings suggest that coexistence between 

293 savanna and forest is restricted to a narrow ecotonal zone of best ability, known as Maxwell's 

294 point, contrary to the hypothesis that forests and savannas have extensive areas of bimodality 

295 (Staver, Archibald & Levin, 2011). Such pattern can be explained by the fact that our models were 

296 based on the multidimensional climatic niche of stable states, which means a higher sensitivity due 

297 to better ecological resolution when compared to previous, generally two-dimensional, studies. 

298 Wuyts et al. (2017) found a similar result to this study, also indicating that human activities, such 

299 as changes in soil use, have promoted the increase of bistability in the tropical region of South 

300 America.

301
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302 Conclusions

303 The loss of resilience due to climate change can lead to sudden catastrophic transition events 

304 between forest and savanna in the tropical region. Reducing the availability of moisture and 

305 increasing climatic seasonality appear as the main risk factors. If such critical climatic thresholds 

306 are reached, there will probably be the massive extinction of biodiversity in the Amazon rainforest.

307
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Figure 1

Ecosystem resilience gradient and Maxwell point detection.

Estimated climate resilience for the forest (A) and savanna (B). In (C), the amplitude of

resilience between forest and savanna gradients. The rectangles in (C) under the lowest

values indicate the boundary between the two ecosystems, where a bistability pattern and

low hysteresis prevail.
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Figure 2

Critical resilience thresholds and the bistable ecotonal zone.

Under high resilience values (>= 704) dominance of forests (green balls), while in low values 

(<= 448) savannas stand out (purple balls). Under an intermediate zone of the resilience

gradient (green-moss polygon), there is a balance of the observed proportions of forest and

savanna, indicating an area of bistability. This transition zone should play a vital role in the

mediation of stable state change events between forest and savanna.
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Figure 3

The propensity for catastrophic transition regimes under bidimensional climate space.

In (A) on the X-axis is the average annual temperature gradient (AAT) and on the Y-axis the

annual cumulative precipitation (ACP). In (B) on the X-axis is the annual range of temperature

(ART) and on the Y-axis is the seasonal precipitation coefficient (PSC). In all, we used n=1805

observations.
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