A peer-reviewed version of this preprint was published in PeerJ on 29 June 2018.

View the peer-reviewed version (peerj.com/articles/5120), which is the preferred citable publication unless you specifically need to cite this preprint.

Shu CC, Smith MM, Appleyard RC, Little CB, Melrose J. 2018. Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice. PeerJ 6:e5120
https://doi.org/10.7717/peerj.5120
Diverse effects of Perlecan-HS on cell and matrix regulation: Tendon destabilization in Hspg2 Exon 3 null HS deficient mice reveals essential homeostatic roles for HS in cellular regulation and tendon functionality

Cindy C Shu 1, Margaret M Smith 1, Richard C Appleyard 2,3, Christopher B Little 1,4, James Melrose Corresp. 1,4,5

1 Raymond Purves Bone and Joint Lab, Kolling Institute of Medical Research, University of Sydney
2 Murray Maxwell Biomechanics Laboratory, Royal North Shore Hospital, University of Sydney, St. Leonards, New South Wales, Australia
3 Surgical Skills Laboratory, Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
4 Sydney Medical School, Northern, University of Sydney, Sydney, Australia
5 Graduate School of Biomedical Engineering, University of New South Wales, St. Leonards, New South Wales, Australia

Corresponding Author: James Melrose
Email address: james.melrose@sydney.edu.au

The aim of this study was to determine the regulatory role of the perlecan HS side chains on cell and matrix homeostasis in tail and Achilles tendons in 3 and 12 week old Hspg2 exon 3 null HS deficient (Hspg2Δ3/Δ3-) and C57 BL/6 Wild Type (WT) mice. Tendons were biomechanically tested (ultimate tensile stress [UTS], tensile modulus [TM]) and glycosaminoglycan (GAG) and collagen (hydroxyproline) compositional analyses undertaken. Monolayer cultures of Hspg2Δ3/Δ3- tenocytes stimulated with FGF-2 showed elevated Adamts4, Mmp2, 3, 13 gene expression compared to WT mice. Col1A1, Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1 showed no major differences between genotypes. Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils imaged using transmission electron microscopy (TEM). The amplified catabolic phenotype of Hspg2Δ3/Δ3- mice may account for the age-dependent decline in GAG observed in tail tendon and changes in UTS/TM biomechanics. Collagen fibril diameter increased in WT but decreased in Hspg2Δ3/Δ3- tail tendons over 3 to 12 weeks. Achilles tenotomy resulted in changes in tendon material properties in both genotypes but, Hspg2Δ3/Δ3- mice had a slower recovery of UTS after tenotomy. HS deficiency in Hspg2Δ3/Δ3- tendon impaired tenocyte repair responses to FGF-2 and led to deleterious changes in tendon organization which was reflected in changes in their material properties.
Diverse Effects of Perlecan-HS on Cell and Matrix Regulation: Tendon Destabilization in Hspg2 Exon 3 Null HS deficient Mice Reveals Essential Homeostatic Roles for HS in Cellular Regulation and Tendon Functionality.

Cindy C Shu¹, Margaret M Smith¹, Richard C Appleyard²,³, Christopher B Little¹,⁴*James Melrose ¹,⁴,⁵

¹Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia. ²Murray Maxwell Biomechanics Laboratory, The Institute of Bone and Joint Research, University of Sydney at the Royal North Shore Hospital, St. Leonards, NSW 2065, Australia. ³Surgical Skills Laboratory, Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia.⁴Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia. ⁵Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

* Corresponding author Email: james.melrose@sydney.edu.au

Running Title: Perlecan HS and tendon homeostasis

Keywords: Tendon; collagen; fibroblast growth factor; extracellular matrix; proteoglycan; heparan sulphate; tenocyte; biomechanics.
ABSTRACT.

The aim of this study was to determine the regulatory role of the perlecan HS side chains on cell and matrix homeostasis in tail and Achilles tendons in 3 and 12 week old Hspg2 exon 3 null HS deficient (Hspg2^{Δ3-Δ3-}) and C57 BL/6 Wild Type (WT) mice. Tendons were biomechanically tested (ultimate tensile stress [UTS], tensile modulus [TM]) and glycosaminoglycan (GAG) and collagen (hydroxyproline) compositional analyses undertaken. Monolayer cultures of Hspg2^{Δ3-Δ3-} tenocytes stimulated with FGF-2 showed elevated Adamts4, Mmp2, 3, 13 gene expression compared to WT mice. Col1A1, Vcan, Bgn, Dcn, Lum, Hspg2, Ltbpl, Ltbp2, Eln and Fbn1 showed no major differences between genotypes. Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils imaged using transmission electron microscopy (TEM). The amplified catabolic phenotype of Hspg2^{Δ3-Δ3-} mice may account for the age-dependent decline in GAG observed in tail tendon and changes in UTS/TM biomechanics. Collagen fibril diameter increased in WT but decreased in Hspg2^{Δ3-Δ3-} tail tendons over 3 to 12 weeks. Achilles tenotomy resulted in changes in tendon material properties in both genotypes but, Hspg2^{Δ3-Δ3-} mice had a slower recovery of UTS after tenotomy. HS deficiency in Hspg2^{Δ3-}/Δ3- tendon impaired tenocyte repair responses to FGF-2 and led to deleterious changes in tendon organization which was reflected in changes in their material properties.
Introduction

Heparan sulphate (HS) is an ancient glycosaminoglycan (GAG) which has evolved over hundreds of millions of years of vertebrate and invertebrate evolution (Yamada, S., Sugahara, K., et al. 2011). HS has developed important cell regulatory and interactive properties with matrix components which stabilize the extracellular matrix (ECM) and maintain tissue homeostasis (Whitelock, J.M. and Iozzo, R.V. 2005). HS is attached to a number of matrix and cell associated proteoglycans (PGs) including, perlecan, agrin, type XVIII collagen, syndecan and glypican (Gallagher, J. 2015, Iozzo, R.V. and Schaefer, L. 2015). Perlecan is an important matrix organizational, stabilizing and cell-signaling hub in tissues. Besides its biodiverse range of interactive ECM components perlecan-HS also binds and delivers a number of growth factors (FGF-2, 7, 9, 18; VEGF; PDGF; Wnt; SHH; VEGF, BMPs) to their cognate receptors (Whitelock, J.M., Melrose, J., et al. 2008). The aim of the present study was to ablate these HS chains by deletion of exon 3 of perlecan core protein and determine what effect this had on the homeostasis and function of tendon. A level of redundancy is normally evident in physiological systems thus we envisaged that we should also see what other molecules assisted the HS chains of perlecan in such processes which maintain tissue functionality and homeostasis. As already noted, HS also occurs on a number of proteoglycans other than perlecan however it is not known to what extent these can fill-in for a deficit in the perlecan-HS chains. Our experimental design also allowed us to ascertain what accessory roles these may have in the maintenance of tissue function and homeostasis.

Perlecan is a minor proteoglycan in normal tendon but when tendon is damaged such as in a rotator cuff tendinosis model (Melrose, J., Smith, M.M., et al. 2013) the tenocytes dramatically increase their production of perlecan suggesting that it participates in a repair response. In the present study we were interested in ascertaining how ablation of the HS chains in perlecan of Hspg2 exon 3 null mice affected tendon organization and functional properties. We hypothesized that HS deficient tendons should be less capable of undergoing effective repair when challenged by a traumatic insult (tenotomy) or stress deprivation due to an inability of FGF-2 to promote reparative cell proliferation and matrix synthesis with mutant perlecan devoid of its interactive HS chains(Zhou, Z., Wang, J., et al. 2004). Hspg2 exon 3 null mice also lay down significantly lower tissue levels of TGF-β thus this important anabolic growth factor is unavailable to participate in such tissue repair processes(Shu, C., Smith, S.M., et al. 2016).
Materials and Methods

Ethics approval to conduct this study was obtained from The Animal Care and Ethics Review Board of The Royal North Shore Hospital, St. Leonards, Sydney, Australia. (RNS/UTS 0709-035A J Melrose, C Little, R Appleyard. Evaluation of Δ3-/Δ3- HSPG2 HS deficient mice).

Tissues

Hspg2Δ3-/Δ3- homozygous mouse breeding pairs backcrossed into a C57BL/6 background for 12 generations were kindly supplied by Dr R Soinninen, University of Oulu BioCentre, (Oulu, Finland). WT C57BL/6 mice were obtained from Jackson Laboratories (Bar Harbor, Maine, USA). All mice were caged in groups (n=2-5 mice per 500cm² cage floor space) and received acidified water and complete pelleted food ad libitum. All cages were individually ventilated with filter lids, sterilised Aspen chip bedding, environmental enrichment (tissues, house) and maintained at 20-22°C, 50-60% humidity, with a 12 hour light-dark cycle regimen. Only male mice were used for these studies.

Genotyping of Hspg2Δ3-/Δ3- mice

Genomic DNA was extracted from WT and Hspg2Δ3-/Δ3- mouse tail tips using commercial kits (Qiagen). Specific regions of the mouse perlecan gene were amplified by PCR using genotyping primers recognising intron 2 of mouse Hspg2 (GTA GGG ACA CTT GTC ATC CT), exon 3 (CTG CCA AGG CCA TCT GCA AG) and Hspg2Δ3-/Δ3- (AGG AGT AGA AGG TGG CGC GAA GG). The PCR products were identified by electrophoretic separation on 2% w/v agarose gels.
Isolation and identification of perlecan from skeletal muscle.

Muscle from the hind limbs of two WT and two Hspg2 exon 3 null mice were finely minced and extracted with 6M urea 50mM Tris-HCl pH 7.2 (15ml/g tissue) for 48h at 4°C. Perlecan was isolated using Resource Q anion exchange FPLC and electrophoresed on pre-poured 3-8% PAG Tris-acetate gradient gels, blotted to nitrocellulose and perlecan identified using MAb H300 (Santa-Cruz). The GAG side chains of these samples were also analysed by ELISA using MAb 10E4 and 3G10. Selected samples were pre-digested with Heparitinase III to generate Δ-HS stub epitopes to generate 3G10 reactivity.

Biomechanical assessment of murine tail and Achilles tendons

Tail tendons from 3, 6 and 12 wk mice were dissected from underlying bone and connective tissue within 1 h of death. Achilles tendons attached to the calcaneous and gastrocnemius muscles proximally were also collected. Biomechanical testing was undertaken in an Instron 8874 servo-hydraulic material testing apparatus. Tail tendons were marked with two reference points using Alcian blue and anchored in custom-built brass clamps. With Achilles tendons the calcaneous was anchored in the lower clamp, and gastrocnemius muscle attached to the upper clamp. Tendons were loaded to failure at a rate of 1mm/second (10% strain), real-time videos of each test were recorded at 100 frames per second using a high-speed camera mounted perpendicular to the tendon (Marlin F/145B camera, Allied Vision Technology, Massachusetts, USA). The videos of tendon deformation were analysed using LabView software (National Instruments, Austin, Texas, USA) and the data normalised to tendon cross-sectional area to calculate stress. Elastic modulus was calculated from the gradient of the linear region on the stress-strain curve.

Tendon compositional analyses
Finely-diced tail tendons were papain digested and sulfated GAG determined using 1,9-dimethylmethylene blue and bovine tracheal CS as standard (Farndale, R.W., Buttle, D.J., et al. 1986). Aliquots of the tissues were also hydrolysed in 6M HCl for hydroxyproline determinations by the dimethylaminobenzaldehyde procedure (Stegemann, H. and Stalder, K. 1967).

Tendon injury models

Isolated tail tendons from 12-week-old mice were cultured in DMEM/10% FBS/2mM L-glutamine for 5 days, then stored at –20°C wrapped in saline-gauze. This simulates acute stress deprivation.

Achilles tendon tenotomy

Under general anaesthesia (2% isofluorane) one Achilles tendon of 12wk mice in each genotype was sharply transected mid-way between the calcaneal attachment and muscle leaving the plantaris tendon intact. The skin incision was closed with a subcutaneous Vicryl 8/0 suture and sealed with cyanoacrylate tissue glue. Mice were returned to their pre-operative social groups post-tenotemy. Groups of mice (n=10) were sacrificed 2, 4 or 8 wk PO and Achilles material properties measured.

Immunolocalisation of type XI collagen in annulus fibrosus monolayer cultures.

Sheep AF cell monolayers were established as indicated earlier (Melrose, J., Smith, S., et al. 2003). After 3 days culture the cells were washed with TBS, fixed in ice-cold methanol, blocked 20 min in 0.01% H$_2$O$_2$ then 30 min in 5% BSA in TBS and primary antibody (5 µg/ml) was added (pAb HPA058335, Atlas Antibodies, Affinity purified polyclonal antibody to the type XI collagen α1-chain amino acid sequence (single letter code)
VDDFQEYNYG) overnight at 4°C. After washing, horse-radish peroxidase conjugated anti-rabbit IgG secondary antibody 1/1000 diln was used to visualize the bound primary antibody using diaminobenzidene as substrate.

Immunolocalisation of type VI Collagen and perlecan in tail tendon samples.

Longitudinal tail sections (4 μm) of 12 wk mice were attached to microscope slides, de-paraffinised in xylene and graded ethanol washes. Type VI collagen and perlecan were immunolocalised using rabbit anti type VI polyclonal and rat anti perlecan domain IV antibody MAb A7L6 (both obtained from abcam) (2μg/ml) overnight at 4°C. Alkaline phosphatase conjugated anti-mouse and anti-rat secondary antibodies were used for visualization using NovaRED chromogen.

Gene expression in tail tendons

Mouse tail tendons from 3, 6, and 12wk WT and Hspg₂⁻⁻⁻ mice were pooled to provide ~50mg wet weight of tissue for each RNA isolation. Tendons were snap frozen in liquid nitrogen, freeze-shattered using a Mikro dismembranator (B. Braun Biotech International, Melsungen, Germany) and total RNA extracted using Trizol (Invitrogen, Mulgrave, VIC, Australia), purified using Qiagen RNeasy columns (Qiagen, Chadstone Centre, VIC, Australia) and quantified by NanoDrop (ThermoFisher Scientific, Scoresby, VIC, Australia). RNA (1μg) from each sample was reverse transcribed using Omniscript Reverse Transcription Kit (Qiagen) with random pentadecamers (50ng/ml, Sigma-Genosys, Castle Hill, NSW, Australia) and RNase inhibitor (10U per reaction, Bioline, Sydney, NSW, Australia). The cDNA was subjected to q RT-PCR in a Rotorgene 6000 (Qiagen) using Immomix (Bioline,
Sydney, NSW, Australia), SYBR Green I (Cambrex Bioscience, Rockland, ME, USA), and 0.3µM validated murine-specific primers. Relative copy numbers for genes of interest were determined using a standard curve generated from pooled cDNA normalised to Gapdh. PCR primer specificity was confirmed by sequencing (SUPAMAC, Sydney University). Genes, primers, and annealing temperatures are listed in Table 1.

Tendon outgrowth tenocyte culture

3 wk tail tendons were macerated and cultured in 2ml DMEM/10% FBS/2mM L-glutamine under an atmosphere of 5% CO₂, with media changes every 3-4 days. After 2 weeks the tissue was removed and the attached cells detached with trypsin-EDTA and sub-cultured in fresh media. Passage 3 cells were cryopreserved (10⁇ cells/ml, 0.5ml aliquots) in 10% v/v DMSO, 20% v/v FBS in DMEM. Tenocytes were re-seeded in 6-well plates at 2 x 10⁵ cells per well for 48 h. The cultures were washed three times in serum-free DMEM, and incubated in DMEM/1% v/v FBS containing 0, 1, 10 or 100ng/ml FGF-2 (PeproTech Inc, Rocky Hill, NJ, USA) for 24 h. Total RNA was extracted using Trizol, 1µg RNA was reverse-transcribed then qRT-PCR undertaken for Mmp2, Mmp3, Mmp13, Timp1, Timp3 and Adamts4.

Transmission electron microscopy of tail and Achilles tendon

Three tendons from 3- and 12-wk WT and Hspg₂³⁻/³⁻ mice were washed in 0.1M sodium cacodylate buffer containing 3mM CaCl₂, 100mM sucrose at pH 7.4 and fixed in 2.5% v/v glutaraldehyde/0.5% v/v paraformaldehyde for 30 min at room temperature, 4°C for 24h, followed by storage in 70% v/v ethanol. The fixed tissues were trimmed and post-fixed in 2% w/v OsO₄ in 0.1M cacodylate buffer for 1-2h at 4°C followed by dehydration in graded ethanol washes (25%, 50%, 75%, 95%, 100%, 100%, all v/v). The tissues were infiltrated with
Spurrs resin/ethanol (1:1) overnight then with two overnight infiltrations of 100% resin then polymerised at 60°C for 48h. Ultra-thin transverse tissue sections (70 nm) were cut using an Ultracut T microtome and transferred to copper grids (200 mesh). The specimens were stained/contrasted for 10 min with 2 % w/v uranyl acetate and Reynold’s lead citrate (1.33g lead nitrate, 1.76g sodium citrate dihydrate, 5ml 1M NaOH, in 50ml H₂O final total volume). The specimens were examined in a JEOL1400 transmission electron microscope at 120 kV at 25,000× magnification. The images were analysed using ImageJ (public domain Java-based image processing software developed by NIH) to determine fibril diameters. Three separate regions of each specimen were photographed and all fibrils were measured in each image. When the fibril had a non-circular configuration the diameter across the minimum axis was measured. The frequency distribution of the collagen fibril diameters was calculated as a percentage of the total fibril numbers measured.

Statistical analyses
Parametric data (mechanical properties, hydroxyproline, sGAG, fibril diameters) were analysed by unpaired Students-t test for differences between age and genotypes. Non-Gaussian data (qRT-PCR) were analysed by Mann-Whitney U ranked tests. The alpha level was set at 0.05.
Results

Genotyping of mouse strains

The schema in Fig 1a depicts the replacement of perlecan exon-3 with a pGK-neo cassette in the $Hspg2^{\Delta3-/\Delta3-}$ mice. $Hspg2^{\Delta3-/\Delta3-}$ mice were fertile and litters were of expected size. There were no gross abnormalities or difference in appearance between WT and $Hspg2^{\Delta3-/\Delta3-}$ animals at birth. By 3 weeks of age, the previously reported microphthalmia in $Hspg2^{\Delta3-/\Delta3-}$ animals was evident. Age-matched $Hspg2^{\Delta3-/\Delta3-}$ mouse body weights were less than corresponding WT mice 10 to 18 weeks of age (Fig 1b). Although smaller, $Hspg2^{\Delta3-/\Delta3-}$ mice had similar skeletal proportions to WT mice and no apparent musculoskeletal abnormalities. Mutant mice were more docile when handled but no other behavioral abnormalities were noted.

Perlecan isolated from C57BL/6 Wild Type and Hspg2 exon 3 null mice.

Perlecan isolated from skeletal muscle demonstrated a core protein of ~420 kDa for WT perlecan while mutant perlecan had a molecular weight of ~300-390 kDa. ELISA analysis demonstrated that perlecan from C57BL/6 Wild Type mice contained HS chains while $Hspg2$ exon 3 null perlecan did not (Fig 1c).

Tendon material properties and biochemical composition

Ultimate tensile stress (UTS) (Fig 1d, e) and tensile modulus (TM) (Fig 1 f, g) measurements of tail (Fig 1d, f) and Achilles (Fig 1e, g) 3-12 wk tendons demonstrated there were no difference in 3-wk tendons. UTS and TM of tail and Achilles tendons
increased with maturation (Fig 1 d-g). Tail tendon sGAG levels underwent a maturation-dependent decline in \(Hspg^{2\Delta^3/\Delta^3}\) mice (Fig 1h), with 50% reduction in GAG content at 12 weeks compared to 3 weeks (3 > 6 > 12 week), and lower GAG content in \(Hspg^{2\Delta^3/\Delta^3}\) mice whereas hydroxyproline contents did not change significantly with age or genotype (Fig 1i).

Effect of stress-deprivation and Achilles tenotomy on tendon repair response

Increased UTS (2.0±0.4 fold; \(P = 0.026\)) and TM (2.9±0.8 fold; \(P = 0.026\)) was evident in cultured 12wk WT tail tendon compared to *ex vivo* but no significant change in UTS (1.5±0.2 fold) or TM (1.5±0.3 fold) in \(Hspg^{2\Delta^3/\Delta^3}\) tail tendons following 5 days of culture (data not shown). This differential response to stress-deprivation meant that after 5 days culture there was no longer a difference in material properties between WT and \(Hspg^{\Delta^3/\Delta^3}\) tail tendons. There was a significant reduction in UTS and TM at 2 weeks after Achilles tenotomy in both genotypes compared to the contralateral tendon (Fig 1j-m), and a progressive increase in material properties with time after injury. The injured WT Achilles tendon recovered to the contralateral value by 8 weeks however \(Hspg^{2\Delta^3/\Delta^3}\) Achilles tendons did not recover to the same extent (Fig 1j-m).

Pericellular localization of perlecan and type XI collagen in monolayer cultures of annulus fibrosus disc cells and articular chondrocytes.

Fine microfibrillar perlecan positive material was observed in the pericellular matrix of monolayer cultures of annulus fibrosus disc cells (Fig 2a), type XI collagen had a similar localization pattern (Fig 2c). Studies with articular chondrocytes have also demonstrated a
pericellular localization of type XI collagen using antibodies to its HS binding regions (Fig 2d, e). This localization was HS dependent, pretreatment of chondrocyte cultures with heparitinase-III greatly diminished this type XI collagen lcalisation pattern (Fig 2f, g).

Hierarchical organization of tendon collagen fibres/fibrils and tenocytes

Tendons are assembled from collagen fibre bundles, and each fibre is composed of a number of collagen fibrils. These are depicted diagrammatically (Fig 2h). Tenocytes are embedded within the collagen fibrillar arrangements and are an elongated cell type (Fig 2i). Type I collagen is the major tendon component, type VI collagen and elastin are also pericellular components around tenocytes. Minor amounts of type V and type XI collagen are distributed throughout the type I/XI/V heterofibril (Fig 2j). The □1 chain of collagen XI has a prominent N-terminal domain which protrudes through to the fibre surface and has two HS interactive sites which may attach the heterofibril pericellularly to HS chains of perlecan.

Immunolocalisation of type VI collagen and perlecan in tail tendon

Type VI collagen was immunolocalised in longitudinal sections of mouse tail tendons from C57BL/6 Wild Type and Hspg2 exon 3 null mice (Fig 2k, l). Higher power views showed a significant reduction in collagen VI deposition in the Hspg2 exon 3 null tendons. Perlecan was also localized in ovine ACL positive control, WT and Hspg2 exon 3 null tendons (Fig 2). Mouse tendon perlecan was evident at each pole of the tenocytes (Fig 2).

Tail tendon gene expression
qRT-PCR of selected ECM genes in mouse tail tendons, (Col1a1, Vcn, Bgn, Dcn), demonstrated a maturation-dependent decline in gene expression over 3 to 12 weeks in both genotypes (Figure 3a). Relative gene expression levels for perlecan core protein (Hspg2) and the elastin micro-fibril associated proteins Ltbp1, Fbn1, and Eln were significantly lower in Hspg2^2Δ3^-Δ3- mice compared to age-matched WT mice. Ltbp2 gene expression displayed an increase with ageing in both genotypes.

Tendon outgrowth cell responses to FGF-2

Mmp2, Mmp3, Mmp13 and Adamts4 expression were significantly higher in basal Hspg2^2Δ3^-Δ3- mice compared to WT tenocyte cultures (0ng/ml FGF-2). Mmp2 expression in Hspg2^2Δ3^-Δ3- cultures remained significantly higher than WT at all doses of FGF-2 examined. Mmp3 and Mmp13 expression increased dose-dependently in both genotypes, and this response was greater in Hspg2^2Δ3^-Δ3- tenocytes at high doses of FGF-2 (Mmp3 33-36 fold versus 50 fold and Mmp13 134-192 fold versus 226-248 fold at 10 and 100ng/ml in WT and Hspg2^2Δ3^-Δ3) (Fig 3b). Adamts4 gene expression was significantly decreased by FGF-2 treatment in Hspg2^2Δ3^-Δ3- tenocyte cultures but still remained significantly greater than in WT cultures at all doses. FGF-2 up-regulated Timp1 gene expression, less so in Hspg2^2Δ3^-Δ3- compared to WT cultures, favoring a pro-catabolic phenotype in the mutant mice. Expression of Timp3, the naturally occurring inhibitor of the ADAMTS (A Disintigrin And Metalloprotease with Thrombospondin motifs) enzymes, while equivalent in basal culture, was decreased to a greater extent by FGF-2 in Hspg2^2Δ3^-Δ3- tenocyte cultures at the highest dose.

Tail tendon collagen fibril diameter by transmission electron microscopy
Figure 4 shows the changes in collagen fibril diameter of tail and Achilles tendon measured from TEM images of 3 and 12 wk mouse tendons. In 3 wk mice there were small differences between genotypes in mean fibril diameter (±SD) in tail (WT = 202±60nm, \(Hspg2^{\Delta3/-\Delta3} \) = 193±46nm; not significant) and Achilles (WT = 160±44nm, \(Hspg2^{\Delta3/-\Delta3} \) = 139±37nm; \(P < 0.001 \)) tendons (Fig 4a, b). This was reflected in minor differences in frequency distributions of collagen fibril diameters in the two genotypes in these immature mice (Fig 4c, d). An increase in average collagen fibril diameter was evident from 3 to 12 wk in the WT tail (202±60nm to 243±81nm; \(P < 0.0001 \)) and Achilles (160±44nm to 210±63nm; \(P < 0.001 \)) tendons, accompanied by an increase in collagen fibril diameter distribution in both tendons (Fig 4c, d). Mean Achilles collagen fibril diameter also increased from 3-12 wk in \(Hspg2^{\Delta3/-\Delta3} \) mice (139±37nm to 150±34nm \(p < 0.001 \)) to a lesser extent than in WT mice (8 versus 31%), and significantly decreased in \(Hspg2^{\Delta3/-\Delta3} \) tail tendons (193±46nm to 84±28nm; \(P < 0.001 \)). Thus differences between genotypes in mean collagen fibril diameter and distribution in tail and Achilles tendons were more marked by 12 weeks of age.
Discussion

In the present study we describe for the first time how ablation of HS chains from perlecan domain-I detrimentally affected tenocyte behavior, tendon material properties and collagen fibril structure in Achilles and tail tendons. HS interacts with soluble effectors (e.g. growth factors, morphogens, chemokines), membrane receptors and cell adhesion proteins such as fibronectin, fibrillin and several collagens including type IV, V, VI, XI collagen (Gallagher, J. 2015). The extensive interactive properties of HS, and its pericellular distribution provides a direct link between the cell and its extracellular microenvironment, both of these are critical in the maintenance of tissue homeostasis and functional properties. The principal extracellular HS-PGs are perlecan, agrin and collagen XVIII which possess large modular core proteins that interact with a diverse repertoire of other ECM components and contribute significantly to matrix organization and stabilization (Whitelock, J. and Melrose, J. 2011). Two families of cell surface PGs are also substituted with HS the transmembrane syndecans and the GPI-anchored glypicans however neuropilin, betaglycan and CD44 also occasionally contain HS (Gallagher, J. 2015).

HS interacts with a number of growth factors including the FGF family, VEGF, PDGF, Wnt, SHH and BMPs. When attached to perlecan domain-1, HS equips perlecan with low affinity co-receptor properties sequestering these growth factors and presenting them to their cognate receptors(Whitelock, J.M., Melrose, J., et al. 2008).
In the present study we have proposed that HS-collagen V and XI interactions in the type I collagen heterofibril were critical to tendon stability. Thus in the HS deficient Hspg2 exon 3 null mouse we observed a destabilization of tail and Achilles tendons over time which was not observed in WT tendons and TEM demonstrated the appearance of collagen fibrils of small diameter over time in the HS deficient mice. This was accompanied by deleterious changes in tendon material properties in the HS deficient tendons. We also observed a maturational decline in the sulphated GAG content of murine tendons and this was more marked in the HS deficient tendons. The Hspg2 exon 3 null mouse also had a poor repair response following Achilles tenotomy. This is consistent with the tenocyte FGF-2 culturing experiments which demonstrated a disturbance in the ability of the HS deficient tenocytes to signal through FGF-2. FGF-2 failed to elicit an anabolic response in Hspg2 exon 3 null tenocytes but upregulated production of MMP-2, 3, 9, 13 and ADAMTS-4 and lowered expression of TIMP-1 and TIMP-3. MMP-2 not only cleaves collagens and other matrix components (Bauvois, B. 2012, Wells, J.M., Gaggar, A., et al. 2015) (reviewed in (Burrage, P.S., Mix, K.S., et al. 2006)) but it also releases the active FGFR1 ecto-domain (Levi, E., Fridman, R., et al. 1996). FGF-2 signalling through FGFR1 produces catabolic effects in cartilage leading to excessive ECM turnover and may also antagonise productive associations between FGF-2 with FGFR3, which promote anabolic responses (Levi, E., Fridman, R., et al. 1996, Yan, D., Chen, D., et al. 2011). FGF-2 is a mechanotransducer in articular cartilage acting via perlecain domain-I HS to sequester FGF-2 in the tissue (Vincent, T.L., McLean, C.J., et al. 2007). Unloading/injury causes release of FGF-2 in tendon and cartilage (Ellman, M.B., Yan, D., et al. 2013). By analogy with FGF-2 mediated mechanotransduction in cartilage (Vincent, T., Hermansson, M., et al. 2002, Vincent, T. and Saklatvala, J. 2006,
Vincent, T.L., Hermansson, M.A., et al. 2004) *Hspg^2Δ3^-/Δ3^-* tendon displayed compromised FGF-2 dependent mechano-transductive cell signaling (Solchaga, L.A., Penick, K., et al. 2010). Findings of the present study showed that the presence of HS substitution on other matrix and cell associated proteoglycans does not appear to be able to compensate for the HS-deficiency in perlecan exon 3 mutant mice demonstrating the key role the HS chains of perlecan plays in tissue homeostasis and the maintenance of tendon functional properties.

Conclusions

Ablation of the HS side chains of perlecan in *Hspg2* exon 3 null mice resulted in maturational changes in tendon organization and material properties and a reduction in the GAG content of tail and Achilles tendon. Collagen fibril organization was also disrupted with HS deficiency with the appearance of collagen fibrils of significantly smaller cross-sectional area. The ability of Achilles tendon to undergo repair was also diminished following tenotomy due to an inability of tenocytes of *Hspg2* exon 3 null tendons to participate in anabolic repair processes and was also reflected in tendon material properties. Monolayer cultures of tenocytes isolated from *Hspg2* exon 3 null tendons were less responsive to FGF-2 stimulation in terms of synthesis of matrix components (collagen, GAG). Tenocytes from *Hspg2* exon 3 null tendons however expressed elevated levels of active MMPs and reduced production of TIMPs correlating with reduced GAG levels at 12 weeks. The disruption in tendon organization in *Hspg2* exon 3 null tendons apparently was due to a lack of HS mediated interactions with tendon Type VI and XI collagen which normally stabilize tendons and exacerbated by the catabolic phenotype of tenocytes in these tendons. Perlecan HS thus has important roles in the maintenance of tendon homeostasis and normal tenocyte function. The HS chains of other HS-proteoglycans such as type
XVIII collagen, agrin and the cell associated syndecan and glypican families were incapable of rescuing these degenerative changes in Hspg2 exon 3 null tendon.

Disclosure of potential conflict statement

The authors state they have no conflicts or financial interests to disclose.

Author Contributions.

CBL and JM conceived and designed the experiments, interpreted the results and made intellectual contributions to manuscript writing and editing. CS performed all of the experiments and data preparation and analysis and aided in manuscript preparation and editing. MMS undertook statistical analyses, critical editing of the manuscript and had intellectual input into experimental design. RCA designed the biomechanical apparatus and biomechanical protocols, supervised experiments, had input into data analysis and had input into manuscript preparation and editing. All authors approved the final version of the manuscript.

Acknowledgements

This study was funded by NHMRC Project Grant 1004032. Dr Joanna Peterson developed the tendon materials testing procedures used in this study as part of her PhD studies at The Murray-Maxwell Biomechanics Laboratory within the Institute of Bone and Joint Institute of The Kolling Institute of Medical Research. The expert assistance of Ms Susan Smith for the tendon immunolocalisations reported in this study is acknowledged.
Figure 1. (a) Genomic organisation of exons 2-5 of the WT and Hspg2\(^{2\Delta3/-\Delta3}\) mice (a). Body weights of male WT (□ - □) and Hspg2\(^{2\Delta3/-\Delta3}\) mice (□ - □) from 10-20 weeks of age (b). ELISA analysis of perlecan GAG side chains using MAAb 10E4 to native HS and MAAb 3G10 to the \(\Delta\)HS stub epitope generated by heparitinase III pre-digestion demonstrating an absence of HS in the mutant perlecan. (c)

Tendon material properties: ultimate tensile stress (d, e) and tensile modulus (f, g). GAG (h) and HyPro (i) content of 3 to 12 week-old WT and Hspg2\(^{2\Delta3/-\Delta3}\) tail tendons. Box plots show mean (line in box) and data range (box 25-75%, whiskers maximum-minimum). White bars: WT; Gray bars: Hspg2\(^{2\Delta3/-\Delta3}\). Bar graph shows mean ± standard error of mean. Brackets - \(P < 0.05\) between samples, * \(P < 0.05\) between genotypes. N = 6-8 for each sample.

Achilles tendon material properties at 2, 4 and 8 weeks after surgical tenotomy: normal contralateral (j, k) and surgical tenotomy (l, m), equivalent to 14, 16 and 20 weeks of age. White bars: WT; Gray bars: Hspg2\(^{2\Delta3/-\Delta3}\). Box plot show median (line in box), inter-quartile range (box) and data range (whiskers, maximum – minimum). Bracket – \(P < 0.05\) between samples. * \(P < 0.05\) between genotypes. # \(P < 0.05\) to contralateral. N = 6-8.

Figure 2. Demonstration of pericellular perlecan (a) and type XI collagen (c) produced by AF cells in monolayer culture and pericellular type XI collagen produced by chondrocytes and identified with antibodies to its HS binding sites (d, e). Heparitinase-III treatment significantly reduced the pericellular localization of type XI collagen (f, g). Segments d-g reproduced from (Warner, L.R., Brown, R.J., et al. 2006).

Diagram showing the hierarchical organization of collagen fibres and fibrils (h) in heterotopic type I/XI/V collagen fibres in tendon and the pericellular microenvironment of tenocytes. Pericellular perlecan/type VI collagen distribution pericellularly and strings of tenocytes (i). Perlecan C-terminal interaction with \(\alpha 2\alpha 1\) integrin and the \(\alpha 1\) chain of type XI collagen with the HS chains of perlecan domain-I (j). Type XI and V collagen regulate fibrillogenesis and stabilize the collagen fibril.

Immunolocalisation of type VI collagen and perlecan in mouse tail tendon. Vertical sections of mouse tails with collagen VI localization shown in C57 BL/6 Wild Type (k) and Hspg2 exon 3 null (l) mouse tails. Negative control slides are also shown for each phenotype (m, n). The boxed areas in (k) and (l) are also presented at higher magnification. Notice the reduced size of the Hspg2 exon 3 null tendons compared to WT. Immunolocalisation of perlecan in ovine ACL positive control tissue (o) and corresponding negative control (p) and in WT mouse tail tendon and Hspg2 exon 3 null tendon.

Figure 3. Comparative gene expression of selected extracellular matrix genes and elastin-associated protein genes in mouse ex vivo tail tendons at 3, 6 and 12 weeks old (a). * \(P < 0.05\) between genotype. Data were normalised to Gapdh expression. White bars: WT; Gray bars: Hspg2\(^{2\Delta3/-\Delta3}\). Box plot shows mean (line in box), interquartile range (box) and data range (whiskers, maximum – minimum). N = 6 per sample.

Gene expression in 3 week-old mouse tail tendon outgrowth tenocytes cultured with FGF-2 (0, 1, 10 or 100ng/ml) (b). Data expressed as a fold change relative to the expression in the WT control (0 ng/ml FGF-2). White bars: WT; Gray bars: Hspg2\(^{2\Delta3/-\Delta3}\). Box plot shows mean (line in box), interquartile range (box) and maximum – minimum (whiskers). N = 6 for each
sample. \# $P < 0.05$ compared to untreated control; * $P < 0.05$ between genotypes at that concentration of FGF-2. Note Mmp13 Y-axis differs from all other genes with range from 0.1-10000x instead of 0.1-100x.

Figure 4. Measurement of the collagen fibril diameters in cross-section of 3 and 12 week-old mouse tail and Achilles tendons from transmission electron microscopy (TEM) images. Representative TEM images (A, B) are shown with respective mean ± standard deviations. Fibril diameter data were categorised into defined nanometer ranges (x axis) giving the overall size distribution (C, D). The frequencies were expressed as a percentage of the total fibril numbers counted (y axis). Three tendon samples from three animals per age/genotype were measured. Bar graph shows mean ± standard deviation. White bars: WT; Gray bars: Hspg2Δ3-Δ3-.
Table 1. Murine-specific primers designed using MacVector for real time PCR

<table>
<thead>
<tr>
<th>Molecule (gene)</th>
<th>Mouse Accession #</th>
<th>Sequence 5’ to 3’</th>
<th>Annealing Temp (°C)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracellular matrix proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen I (Col1a1)</td>
<td>X06753</td>
<td>F TCT CCA CTC TTC TAG TTC CT R TTG GGT CAT TTC CAC ATG C</td>
<td>55</td>
<td>269</td>
</tr>
<tr>
<td>Versican (Vcan)</td>
<td>XM994074</td>
<td>F ATG ATG GGG AAG GAA GGG GTT C R AGC CAG CCG TAA TCG CAT TG</td>
<td>57</td>
<td>236</td>
</tr>
<tr>
<td>Biglycan (Bgn)</td>
<td>L20276</td>
<td>F ACT TCT GTC CTA TGG GCT TCG G R GCT TCT TCA TCT GGC TAT GTT CCT C</td>
<td>57</td>
<td>218</td>
</tr>
<tr>
<td>Lumican (Lum)</td>
<td>NM008524</td>
<td>F TAC AAC AAC CTG ACC GAG TCC G R CGA GAC AGC ATC CTC TTT GAG C</td>
<td>55</td>
<td>159</td>
</tr>
<tr>
<td>Decorin (Dcn)</td>
<td>NM007833</td>
<td>F CAA CAA CAA ACT CCT CAG GGT GC R TTG CCG TAA AGA CTC ACA GCC G</td>
<td>57</td>
<td>165</td>
</tr>
<tr>
<td>Elastin and associated proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlecan (Hspg2)</td>
<td>NM008305</td>
<td>F TCT GTC TGC CTG GCT TCT CT R CGA ATT CAA TTG TCT CGG GT</td>
<td>56</td>
<td>204</td>
</tr>
<tr>
<td>LTBP-1 (Ltbp1)</td>
<td>NM019919</td>
<td>F GGG AGC ATC TGA GTG AGG AG R TCA CAG GGA TAT TGC ACA GC</td>
<td>56</td>
<td>165</td>
</tr>
<tr>
<td>LTBP-2 (Ltbp2)</td>
<td>NM13589.3</td>
<td>F CAC CCA GAC CAG CCT TCC CA R AGT CCT TGC AGA GGC CCA GG</td>
<td>57</td>
<td>126</td>
</tr>
<tr>
<td>Fibrillin-1 (Fbn1)</td>
<td>NM007993</td>
<td>F ATC CGC TGT ATG AAT GGG GG R CTG GCA CAT CTG GTT GCT TAC C</td>
<td>58</td>
<td>228</td>
</tr>
<tr>
<td>Elastin (Eln)</td>
<td>NM007925.3</td>
<td>F AGC CAA ATA TGG TGC TGC TG</td>
<td>58</td>
<td>246</td>
</tr>
<tr>
<td>Molecule (gene)</td>
<td>Mouse Accession #</td>
<td>Sequence 5’ to 3’</td>
<td>Annealing Temp (°C)</td>
<td>Product size (bp)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>MMPs/TIMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-2 (Mmp2)</td>
<td>NM008610</td>
<td>R GGG TCC CCA GAA GAT CAC TT</td>
<td>59</td>
<td>231</td>
</tr>
<tr>
<td>MMP-3 (Mmp3)</td>
<td>NM010809.1</td>
<td>F ATT TGG CGG ACA GTG ACA CCA C</td>
<td>53</td>
<td>120</td>
</tr>
<tr>
<td>MMP-13 (Mmp13)</td>
<td>NM008607</td>
<td>R ATC TAC TTG CTG GAC ATC AGG GGG</td>
<td>55</td>
<td>357</td>
</tr>
<tr>
<td>ADAMTS-4 (Adamts4)</td>
<td>NM172845</td>
<td>F GAT GAC CTG TCT GAG GAA G</td>
<td>60</td>
<td>245</td>
</tr>
<tr>
<td>TIMP-1 (Timp1)</td>
<td>BC051260</td>
<td>R ATC TCT GGA TGG GCA GGG GGG TTC</td>
<td>56</td>
<td>154</td>
</tr>
<tr>
<td>TIMP-3 (Timp3)</td>
<td>NM011595</td>
<td>F ATT ACC GCT ACC ACC TGG GTT G</td>
<td>58</td>
<td>198</td>
</tr>
<tr>
<td>GAPDH (Gapdh)</td>
<td>BC083149</td>
<td>R TCT GCT CAG TGT CCT TGC TG</td>
<td>55</td>
<td>200</td>
</tr>
</tbody>
</table>
Bibliography

Flexible Roles for Proteoglycan Sulfation and Receptor Signaling

Figure 1. (a) Genomic organisation of exons 2-5 of the WT and \(Hspg2^{\Delta3/\Delta3}\) mice (a). Body weights of male WT (□ -□) and \(Hspg2^{\Delta3/\Delta3}\) mice (☐-☐) from 10-20 weeks of age (b). ELISA analysis of perlecan GAG side chains using MAb 10E4 to native HS and MAb 3G10 to the ΔHS stub epitope generated by heparitinase III pre-digestion demonstrating an absence of HS in the mutant perlecan. (c) Tendon material properties: ultimate tensile stress (d, e) and tensile modulus (f, g). GAG (h) and HyPro (i) content of 3 to 12 week-old WT and \(Hspg2^{\Delta3/\Delta3}\) tail tendons. Box plots show mean (line in box) and data range (box 25-75%, whiskers maximum-minimum). White bars: WT; Gray bars: \(Hspg2^{\Delta3/\Delta3}\). Bar graph shows mean ± standard error of mean. Brackets - \(P < 0.05\) between samples, * \(P < 0.05\) between genotypes. \(N = 6-8\) for each sample. Achilles tendon material properties at 2, 4 and 8 weeks after surgical tenotomy: normal contralateral (j, k) and surgical tenotomy (l, m), equivalent to 14, 16 and 20 weeks of age. White bars: WT; Gray bars: \(Hspg2^{\Delta3/\Delta3}\). Box plot show median (line in box), inter-quartile range (box) and data range (whiskers, maximum – minimum). Bracket – \(P < 0.05\) between samples. * \(P < 0.05\) between genotypes. # \(P < 0.05\) to contralateral. \(N = 6-8\).
Exon 2 Exon 3 Exon 4 Exon 5

pGK-Neo

a.

Body weight (g)

10 12 14 16 18 20

Age (weeks)

WT Hspg2 Δ3/-Δ3-

b.

Material properties

Composition

Tail Achilles Glycosaminoglycan

d. e. f.

Ultimate tensile stress (N)

30 20 10

Tail Achilles Glycosaminoglycan

300 200 100

Age (weeks)

3 6 12

f. g.

Tensile modulus (Nm²)

300 200 100

3 6 12

3 6 12

3 6 12

3 6 12

WT Hspg2 Δ3/-Δ3-

j. k.

Ultimate Tensile Stress (N)

45 35 25

Achilles Contralateral Achilles tenotomy

45 35 25

45 35 25

45 35 25

45 35 25

j. k.

Tensile Modulus (Nm²)

300 200 100

2 4 6 8

3 6 12

3 6 12

3 6 12

3 6 12

3 6 12

3 6 12

3 6 12

m.

Relative antibody reactivity (A405nm)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

HS C57 BL/6

WT Hspg2 Δ3/-Δ3-

Hspg2 exon 3 null C57 BL/6

10-E-4 3-G-10

c.
Figure 2 (on next page)

Immunolocalisation of type VI and XI collagen and perlecan in WT and HSPG2 exon 3 null tendons and schematic of tendon organisation.

Figure 2. Demonstration of pericellular perlecan (a) and type XI collagen (c) produced by AF cells in monolayer culture and pericellular type XI collagen produced by chondrocytes and identified with antibodies to its HS binding sites (d, e). Heparitinase-III treatment significantly reduced the pericellular localization of type XI collagen (f, g). Segments d-g reproduced from (Warner, L.R., Brown, R.J., et al. 2006). Diagram showing the hierarchical organization of collagen fibres and fibrils (h) in heterotopic type I/XI/V collagen fibres in tendon and the pericellular microenvironment of tenocytes. Pericellular perlecan/type VI collagen distribution pericellularly and strings of tenocytes (i). Perlecan C-terminal interaction with $\alpha_2\beta_1$ integrin and the α_1 chain of type XI collagen with the HS chains of perlecan domain-I (j). Type XI and V collagen regulate fibrillogenesis and stabilize the collagen fibril. Immunolocalisation of type VI collagen and perlecan in mouse tail tendon. Vertical sections of mouse tails with collagen VI localization shown in C57 BL/6 Wild Type (k) and Hspg2 exon 3 null (l) mouse tails. Negative control slides are also shown for each phenotype (m, n). The boxed areas in (k) and (l) are also presented at higher magnification. Notice the reduced size of the Hspg2 exon 3 null tendons compared to WT. Immunolocalisation of perlecan in ovine ACL positive control tissue (o) and corresponding negative control (p) and in WT mouse tail tendon and Hspg2 exon 3 null tendon.
Figure 3 (on next page)

Comparative gene expression of ECM and elastin-associated protein genes in WT and HSPG2 exon 3 null tendons.

Figure 3. Comparative gene expression of selected extracellular matrix genes and elastin-associated protein genes in mouse ex vivo tail tendons at 3, 6 and 12 weeks old (a). * $P < 0.05$ between genotype. Data were normalised to Gapdh expression. White bars: WT; Gray bars: $Hspg2^{\Delta 3-\Delta 3}$. Box plot shows mean (line in box), interquartile range (box) and data range (whiskers, maximum – minimum). N = 6 per sample. Gene expression in 3 week-old mouse tail tendon outgrowth tenocytes cultured with FGF-2 (0, 1, 10 or 100ng/ml) (b). Data expressed as a fold change relative to the expression in the WT control (0 ng/ml FGF-2). White bars: WT; Gray bars: $Hspg2^{\Delta 3-\Delta 3}$. Box plot shows mean (line in box), interquartile range (box) and maximum – minimum (whiskers). N = 6 for each sample. # $P < 0.05$ compared to untreated control; * $P < 0.05$ between genotypes at that concentration of FGF-2. Note $Mmp13$ Y-axis differs from all other genes with range from 0.1-10000x instead of 0.1-100x.
Figure 4 (on next page)

Measurement of the cross-sectional collagen fibril diameters in WT and HSPG2 exon 3 null tendons.

Figure 4. Measurement of the collagen fibril diameters in cross-section of 3 and 12 week-old mouse tail and Achilles tendons from transmission electron microscopy (TEM) images. Representative TEM images (A, B) are shown with respective mean ± standard deviations. Fibril diameter data were categorised into defined nanometer ranges (x axis) giving the overall size distribution (C, D). The frequencies were expressed as a percentage of the total fibril numbers counted (y axis). Three tendon samples from three animals per age/genotype were measured. Bar graph shows mean ± standard deviation. White bars: WT; Gray bars: $Hspg2^{\Delta 3/-\Delta 3}$.
Table 1 (on next page)

primers used for qRTPCR

Table 1. Murine-specific primers designed using MacVector for real time PCR
<table>
<thead>
<tr>
<th>Molecule (gene)</th>
<th>Mouse Accession #</th>
<th>Sequence 5’ to 3’</th>
<th>Annealing Temp (°C)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracellular matrix proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen I (Col1a1)</td>
<td>X06753</td>
<td>F TCT CCA CTC TTC TAG TTC CT R TTG GGT CAT TTC CAC ATG C</td>
<td>55</td>
<td>269</td>
</tr>
<tr>
<td>Versican (Vcan)</td>
<td>XM994074</td>
<td>F ATG ATG GGG AAG GAA GGG GTT C R AGC CAG CCG TAA TCG CAT TG</td>
<td>57</td>
<td>236</td>
</tr>
<tr>
<td>Biglycan (Bgn)</td>
<td>L20276</td>
<td>F ACT TCT TCA TTA TGG GCT TCG G R GCT TCT CAA TCA TGG TAT CCT C</td>
<td>57</td>
<td>218</td>
</tr>
<tr>
<td>Lumican (Lum)</td>
<td>NM008524</td>
<td>F TAC AAC AAC CTG ACC GAG TCC G R CGA GAC AGC ATC CTC TTT GAC C</td>
<td>55</td>
<td>159</td>
</tr>
<tr>
<td>Decorin (Dcn)</td>
<td>NM007833</td>
<td>F CAA CAA CAA ACT CCT CAG GGT GC R TTG CCG TAA AGA CTC ACA GGC G</td>
<td>57</td>
<td>165</td>
</tr>
<tr>
<td>Elastin and associated proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlecan (Hspg2)</td>
<td>NM008305</td>
<td>F TCT GTC TGC CTG GCT TCT CT R CGA ATT CAA TTA TGG CAC AGT C</td>
<td>56</td>
<td>204</td>
</tr>
<tr>
<td>LTBP-1 (Ltbp1)</td>
<td>NM019919</td>
<td>F GGG AGC ATC TGA GTG AGG AG R TCA CAG GGA TAT TGC ACA GC</td>
<td>56</td>
<td>165</td>
</tr>
<tr>
<td>LTBP-2 (Ltbp2)</td>
<td>NM13589.3</td>
<td>F CAC CCA GAC CAG CCT TCC CA R AGT CCT TGC AGA GGC CCA GG</td>
<td>57</td>
<td>126</td>
</tr>
<tr>
<td>Fibrillin-1 (Fbn1)</td>
<td>NM007993</td>
<td>F ATC GGC TGT ATG AAT GGG GG R GCA CTA CAT TCT CTT TGT CCT C</td>
<td>58</td>
<td>228</td>
</tr>
<tr>
<td>Elastin (Eln)</td>
<td>NM007925.3</td>
<td>F AGC CAA ATA TGG TGC TGT TG R GGG TCC CCA GAA GAT CAC TT</td>
<td>58</td>
<td>246</td>
</tr>
<tr>
<td>MMPs/TIMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-2 (Mmp2)</td>
<td>NM008610</td>
<td>F ATT TGG CGG ACA GTG ACA CCA C R ATC TAC TTT TCT GAC ATG AGG G</td>
<td>59</td>
<td>231</td>
</tr>
<tr>
<td>MMP-3 (Mmp3)</td>
<td>NM010809.1</td>
<td>F GCT GAG GAC TTT CCA GGT GGT G R GGT CAC TTG AGT TGC C</td>
<td>53</td>
<td>120</td>
</tr>
<tr>
<td>MMP-13 (Mmp13)</td>
<td>NM008607</td>
<td>F GAT GAC CTG TCT GAG GAA G R ATG CAA GCA GCT TTT GGA G</td>
<td>55</td>
<td>357</td>
</tr>
<tr>
<td>ADAMTS-4 (Adams4)</td>
<td>NM172845</td>
<td>F TAA CTT GAA TGG GCA GGG GGG TTC R GAT GGC TCA TTT AAT TGG TTC TGC</td>
<td>60</td>
<td>245</td>
</tr>
<tr>
<td>TIMP-1 (Timp1)</td>
<td>BC051260</td>
<td>F ATG ATG GGG AAG GAA GGG GTT C R AGC CAG CCG TAA TCG CAT TG</td>
<td>57</td>
<td>236</td>
</tr>
<tr>
<td>TIMP-3 (Timp3)</td>
<td>NM011595</td>
<td>F ATC TCT GGC ATC TGC TCA GCT C R GGT GGT CTC GAT TGC TGG G</td>
<td>56</td>
<td>154</td>
</tr>
<tr>
<td>GAPDH</td>
<td>BC083149</td>
<td>F TGC GAC TAC ACC AGC AAC TC R CTC GTG TAA TGG TCT TG</td>
<td>55</td>
<td>200</td>
</tr>
</tbody>
</table>