

A peer-reviewed version of this preprint was published in PeerJ on 23
July 2018.

View the peer-reviewed version (peerj.com/articles/cs-158), which is the
preferred citable publication unless you specifically need to cite this preprint.

Hinsen K. 2018. Verifiability in computer-aided research: the role of digital
scientific notations at the human-computer interface. PeerJ Computer Science
4:e158 https://doi.org/10.7717/peerj-cs.158

https://doi.org/10.7717/peerj-cs.158
https://doi.org/10.7717/peerj-cs.158

Digital Scientific Notations as a1

Human-Computer Interface in2

Computer-Aided Research3

Konrad Hinsen1,2
4

1Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France5

2Synchrotron SOLEIL, Division Expériences, Gif sur Yvette, France6

Corresponding author:7

Konrad Hinsen1
8

Email address: konrad.hinsen@cnrs.fr9

ABSTRACT10

Most of todays scientific research relies on computers and software not only for administrational tasks,
but also for processing scientific information. Examples of such computer-aided research are the anal-
ysis of experimental data or the simulation of phenomena based on theoretical models. With the rapid
increase of computational power, scientific software has integrated more and more complex scientific
knowledge in a black-box fashion. As a consequence, its users do not know, and do not even have a
chance of finding out, which assumptions and approximations their computations are based on. The
black-box nature of scientific software has thereby become a major cause of mistakes. The present
work starts with an analysis of this situation from the point of view of human-computer interaction in sci-
entific research. It identifies the key role of digital scientific notations at the human-computer interface,
reviews the most popular ones in use today, and describes a proof-of-concept implementation of Leib-
niz, a language explicitly designed as a digital scientific notation for models formulated as mathematical
equations.

11

12

13

14

15

16

17

18

19

20

21

22

1 INTRODUCTION23

Computers have profoundly changed the way scientific research is done. While the same statement24

can be made about many other human activities, the impact of computers on scientific research goes25

beyond their use as mere tools for managing data, writing articles, or communicating with colleagues.26

Computers process information, and information is the core resource of science. In the natural sciences,27

practically all results that are obtained from experimental or theoretical work are at some point processed28

by computers. Algorithms and their implementations in software have become an integral part of the29

models and methods that scientists apply and study.30

The first few decades of computer-aided research have been marked by the development and appli-31

cation of new computational techniques. They have permitted the exploration of ever more complex32

systems with ever better precision, but also lead to completely new styles of scientific enquiry based on33

analyzing large amounts of data by statistical methods. However, the initial enthusiasm about the new34

possibilities offered by computer-aided research has been dampened in recent years as scientists began35

to realize that the new technology also brings new kinds of problems. Errors in software, or in the way36

software is applied, are the most obvious one (Merali, 2010; Soergel, 2014). A more subtle problem is37

the widespread non-reproducibility of computational results, in spite of the fact that computations are38

fully deterministic (Claerbout and Karrenbach, 1992; Stodden et al., 2016). But perhaps the most insid-39

ious effect of the use of computers is that scientists are losing control over their models and methods,40

which are increasingly absorbed by software and thereby opacified, to the point of disappearing from41

scientific discourse (Hinsen, 2014). As I will discuss in section 2.3, the consequence is that automated42

computations are often no longer verifiable, which is an important cause of errors in computer-aided43

research.44

In the philosophy of science, these practical questions and more fundamental ones that practitioners45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

do not tend to worry about, are discussed in the context of the epistemic opacity of automated computa-46

tion (Imbert, 2017). The overarching issue is that performing a computation by hand, step by step, on47

concrete data, yields a level of understanding and awareness of potential pitfalls that cannot be achieved48

by reasoning more abstractly about algorithms. As one moves up the ladder of abstraction from manual49

computation via writing code from scratch, writing code that relies on libraries, and running code written50

by others, to having code run by a graduate student, more and more aspects of the computation fade from51

a researcher’s attention. While a certain level of epistemic opacity is inevitable if we want to delegate52

computations to a machine, there are also many sources of accidental epistemic opacity that can and53

should be eliminated in order to make scientific results as understandable as possible.54

As an example, a major cause for non-reproducibility is the habit of treating an executable computer55

program, such as the Firefox navigator or the Python interpreter, as an abstraction that is referred to56

by a name. In reality, what is launched by clicking on the Firefox icon, or by typing “python” on57

a command line, is a complex assembly of software building blocks, each of which is a snapshot of58

a continuous line of development. Moreover, a complete computation producing a result shown in a59

paper typically requires launching many such programs. The complexity of scientific software stacks60

makes them difficult to document and archive. Moreover, recreating such a software stack identically61

at a later time is made difficult by the fast pace of change in computing technology and by lack of62

tool support. A big part of the efforts of the Reproducible Research movement consists of taking a63

step down on the abstraction ladder. Whereas the individual building blocks of software assemblies,64

as well as the blueprints for putting them together, were treated as an irrelevant technical detail in the65

past, this information is now realized as important for reproducibility. In order to make it accessible and66

exploitable, many support tools for managing software assemblies are currently being developed.67

The problem of scientists losing control over their models and methods, leading to the non-verifiability68

of computations, has a similar root cause as non-reproducibility. Again the fundamental issue is treating69

a computer program as an abstraction, overlooking the large number of models, methods, and approxi-70

mations that it implements, and whose suitability for the specific application context of the computation71

needs to be verified by human experts. To achieve reproducibility, we need to recover control over what72

software we are running precisely. We must describe our software assemblies in a way that allows our73

peers to use them on their own computers but also to inspect how they were built, for example to check74

if a bug detected in a building block affects a given published result or not. To achieve verifiability, we75

need to recover control over which models and methods the software applies. We must describe our76

model and method assemblies in a way that allows our peers to apply them using their own software77

but also to inspect them in order to verify that we made a judicious choice. Reproducibility is about78

the technical decomposition of a computation into software building block. Verifiability is about the79

scientific decomposition of a computation into models and methods. As I will show in section 2.4, these80

two decompositions do not coincide because they are organized according to different criteria.81

In this article, I take the point of view that accidental epistemic opacity should be treated as an issue82

of human-computer interaction in computer-aided research. Since the problem of non-reproducibility83

is relatively well understood by now, even though effective solutions remain to be developed for many84

situations, I will focus on non-verifiability as the major unresolved problem, and in particular on the role85

of digital scientific notations.86

2 BACKGROUND87

2.1 Motivation88

The topics I will cover in this article will probably seem rather abstract and theoretical to most practi-89

tioners of computer-aided research. The two personal anecdotes in this section should provide a more90

down-to-earth motivation for the analysis that follows. Readers who do not need further motivation can91

skip this section.92

In 1997, I wrote an implementation of the popular AMBER force field for biomolecular simulations93

(Cieplak and Kollman, 1996) as part of a Python library that I published later (Hinsen, 2000). A force94

field is a function U(X ,Φ,G) expressing the potential energy of a molecular system in terms of the95

positions of the atoms, X , a set of parameters, Φ, and a labelled graph G that has the atoms as vertices, the96

covalent bonds as edges, and an “atom type” label on each vertex that describes the chemical environment97

of the atom. Force fields are the main ingredients to the models used in biomolecular simulation, and98

the subject of much research activity, leading to frequent updates. The computation of a force field99

2/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

involves non-trivial graph traversal algorithms that are habitually not documented, and in fact hardly even100

mentioned, in the accompanying journal article, which concentrates on describing how the parameter101

set Φ was determined and how well the force field reproduces experimental data. I quickly realized102

that the publication mentioned above plus the publicly available parameter files containing Φ with their103

brief documentation were not sufficient to re-implement the AMBER force field, so I started gathering104

complementary information by doing test calculations with other software implementing AMBER, and105

by asking questions on various mailing lists.106

One of the features of AMBER that I discovered came as a surprise: its potential energy function107

depends on the order in which the atoms were listed in the input file that defines the initial configuration108

of the molecules. This makes no sense at all: interaction energies depend on the nature of the system,109

describe by the graph G and the parameters Φ, and on its instantaneous configuration X , but not on110

how the system is represented in a specific file format. I can only speculate about the cause of this111

design decision, but it is probably the result of simplicity of implementation taking priority over physical112

reasonableness, and the decision might well have been taken by an inexperienced graduate student. A113

reviewer of the paper would surely have objected had the feature been described there. However, the114

feature wasn’t documented anywhere else than in the source code of a piece of software, which was115

never peer reviewed at all.116

Over the years, I have mentioned this feature to many colleagues, who were all as surprised as I was,117

and often believed me only after checking for themselves. To the best of my knowledge, no paper and118

no software documentation mentions this behavior. I can think of only three ways to stumble on it: by119

experimenting with the atom order in input files, by reading the source code of a simulation program, or120

by talking to someone who happens to know. In fact, I am not even sure that all software implementing121

AMBER handles this feature in the same way, given that is in general impossible to obtain identical122

numbers from different software packages for many other reasons.123

Pragmatists might ask how important this effect is. I don’t think anyone can answer this question in124

general. The numerical impact on a single energy evaluation is very small. But Molecular Dynamics125

is chaotic, meaning that small differences can be strongly amplified. There are examples of changes126

assumed to be without effect on the results of MD simulations turning out to be important in the end (e.g.127

Reißer et al. (2017)). The hypothesis that AMBER’s atom order dependence has no practical importance128

would have to be checked for all possible applications of the force field. It would clearly be less effort129

for everybody to simply fix the force field definition.130

Nearly twenty years later, I was working on the gas-phase structure of small peptides. A nice study131

combining experiments and simulation, on peptides similar to those I was interested in, caught my inter-132

est (Jarrold, 2007). I decided to re-do the simulations, using my own software, as a warm-up exercise.133

But I found very different structures. I must have done something differently... so let’s find out what!134

Unfortunately, I didn’t get very far. The details about the simulations that are given in this paper are135

above average for the field, and the simulation software was published. And yet, the available informa-136

tion was completely insufficient for understanding what the author really did. Ten years after publication,137

the precise software version used was no longer available. The description of the force field parameters138

didn’t match the files I could find in a later release. As for the simulation protocol, it didn’t help me139

much to learn that “in some cases ... more sophisticated methods were used”, with no more detail given.140

Readers familiar with the recent efforts to improve computational reproducibility might say that all141

that’s missing is a complete archive of the author’s software and input files. But I doubt that would142

be true. Comparing my calculations with the original author’s work by going through hand-optimized143

source code and machine-specific workflows might be possible in principle, but not in practice. The two144

main ingredients to these computations are (a) a force field and (b) a heuristic search algorithm for a145

global minimum. Extracting either one from optimized source code is as hopeless a task as extracting146

high-level source code from binary executables. Comparing them, and swapping ingredients (e.g. use147

my force field with his minimization algorithm) are not realistic endeavors at this time.148

The long-term goal of the research described in this article is to be able to express complex scientific149

data such as force fields and minimization algorithms in a way that permits their inspection and verifica-150

tion by human readers. Force fields should be published in a form that gives peer reviewers a chance to151

detect unphysical features, and users to perform comparisons with other force fields. Verifiability, like152

reproducibility, should become a requirement for computations in order to ensure the transparency of153

scientific research. But as a first step, it must become a possibility.154

3/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

2.2 Verification and validation in science155

The overall goal of science is to acquire reliable knowledge about the world around us. A major obstacle156

to achieving reliability is the unreliability of the individual scientist. Like all humans, scientists make157

mistakes, and the pursuit of non-scientific goals such as wealth or social status often interferes with the158

quest for knowledge. The scientific community has therefore established an error-correction protocol159

whose main ingredients are peer verification and continuous validation against new observations.160

Peer verification consists of scientists inspecting their colleagues’ work with a critical attitude, watch-161

ing out for mistakes or unjustified conclusions. In today’s practice, the first round of critical inspection162

is peer review of articles submitted to a journal or conference. Peer review tends to be shallow, as few163

reviewers re-do experiments or computations. But peer verification does not stop after publication. If164

a contribution is judged sufficiently important, it will undergo continued critical inspection by other165

scientists interested in building on its results.166

Validation against new observations is a much slower process. It comes down to continuously check-167

ing the coherence of all observations and models in a given domain of science. When contradictions168

appear, additional experimental or theoretical work is required to figure out what went wrong. The out-169

come can be a minor correction such as “observation X turned out to be faulty”, or a major correction170

such as “classical mechanics is insufficient to explain the behavior of matter at the atomic scale”.171

Descriptions of the scientific method tend to emphasize the role of validation as the main error172

correction technique. It is true that validation alone would in principle be sufficient to detect mistakes.173

However, the error correction process would be extremely inefficient without the much faster verification174

steps. A missing factor 2 in a calculation can be found more rapidly and more reliably by re-doing the175

calculation than by constructing an apparatus to validate the result experimentally. Verification gains in176

importance as science moves on to more complex systems, for which the total set of observations and177

models is much larger and coherence is much more difficult to achieve. As an illustration, consider a bug178

in the implementation of a sequence alignment algorithm in genomics research. Sequence alignment179

is not directly observable, it is merely a first step in processing raw genomics data in order to draw180

conclusions that might then be amenable to validation. The path from raw data to the prediction of181

an observable quantity is so long that finding the cause of a disagreement would be impossible if the182

individual steps could not be verified.183

Verification is possible only if individual scientific contributions are sufficiently complete that a com-184

petent reader can follow the overall reasoning and evaluate the reliability of each piece of evidence that185

is presented. For computer-aided research, this has become a major challenge. A minimal condition186

for verifying computations is that the software is available for inspection, as K.V. Roberts called for as187

early as 1969 in the first issue of the journal Computer Physics Communication (Roberts, 1969). His188

advice was not heeded: most scientific software was not published at all, and sometimes even thrown189

away by its authors at the end of a study. Many widely used software packages were distributed only190

as executable binaries, with the explicit intention of preventing its users from understanding their inner191

workings. This development has by now been widely recognized as a mistake and the Reproducible192

Research movement has been making good progress in establishing best practices to make computations193

in science inspectable (Stodden et al., 2016).194

However, the availability of inspectable source code is only the first step in making verification195

possible. Actually performing this verification is a complicated process in itself, which is often again196

subdivided into a verification and a validation phase. In the context of software, verification is usually197

defined as checking that the software conforms to its specification, whereas validation means checking198

that the specification corresponds to the initial list of requirements. Since the nature of requirements199

and specifications varies considerably between different domains of application, there is no consensus200

about the exact borderline between verification and validation. However, as for the scientific method, the201

general idea is that verification is a faster and more rigorous procedure that focuses on formal aspects,202

with subsequent validation examining how the software fits into its application context.203

Today’s practice concerning verification and validation of scientific software varies considerably204

between scientific disciplines. Well-established models and methods, widely used software packages,205

and direct economic or societal relevance of results are factors that favor the use of verification and206

validation. Independently of these domain-specific factors, the place of a piece of software in the full207

software stack required for a computation determines which verification and validation techniques are208

available and appropriate. The typical four-layer structure of this software stack is shown in Fig. 1. On209

4/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

Hardware

Operating system

Non-scientific infrastructure

Scientific infrastructure

Domain-specific tools

Project-specific code

gcc, Python, ...

GNU/Linux, ...

x86 processor ...

BLAS, HDF5, SciPy, ...

 ..
Scripts, notebooks,
workflows, ...

GROMACS, MMTK, ...
(domain: biomolecular simulation)

Figure 1. A typical software stack in scientific computing consists of fours layers on top of hardware
and systems software. The lower two layers contain widely used infrastructure software that can be
verified using generic techniques from software engineering. The upper two layers are specified by
scientific discourse and must be verified in its context.

a foundation consisting of hardware and systems software, the first layer consists of infrastructure that210

is not specific to scientific research, such as compilers. From the scientist’s point of view, these are211

commodities provided by the outside world. The next layer consists of scientific infrastructure software212

that provides widely used algorithms, e.g. for numerical analysis or data management. This generally213

stable software is developed for research and in contact with scientists, but in terms of verification and214

validation can be handled like non-scientific infrastructure, because the scientific knowledge embedded215

into this software consists only of well-known models and methods and the software has a clear though216

typically informal specification.217

The upper two layers are the most difficult ones to verify because there their specifications are in-218

complete or non-existent. The top layer consists of code written for a specific research project, with the219

goal of computing something that has never been computed before. It is also unlikely to be reused with-220

out modification. This makes it impossible to apply standard testing procedures. Moreover, quite often221

this top layer consists of scripts that launch executables written independently and in distinct program-222

ming languages, making it difficult to exploit language-centric verification approaches such as static type223

checking.224

One level below, there is a more stable layer of domain-specific tools, which are developed by and225

for communities of scientists whose sizes range from one to a hundred research groups. In fundamental226

research, where models and methods evolve rapidly, this domain-specific software is almost as difficult227

to verify as the project-specific layer. Moreover, it is typically developed by scientists with little or no228

training in software engineering. For many years, verification and validation of domain-specific tools was229

very uncommon in fundamental research. Today, widely used community-supported software packages230

use quality assurance techniques such as unit testing and sometimes continuous integration. However,231

the scientific validity of the software is still not systematically evaluated, and it is not even clear how232

that could be achieved. Journals dedicated to the publication of scientific software such as the Journal233

of Open Source Software (Smith et al., 2017) or the Journal of Open Research Software do not even ask234

reviewers to comment on scientific correctness because such a request would be unreasonable given the235

current state of the art.236

The basic difficulty with verifying and validating the top layers of scientific software is the lack of237

clear specifications. The core of such a specification would be made up of the models and methods238

that are applied. They are, however, exactly what researchers modify in the course of their work. As239

a consequence, each computation requires its own ad-hoc specification that combines some established240

models and methods with some more experimental ones into a whole that is usually too complex to241

be written down in a useful way. The closest approximation to an informal specification is the journal242

article that describes the scientific work. An essential part of verification is therefore to check if the243

computation correctly implements the informal description given in the article, or inversely if the journal244

article correctly describes what the software does. To understand the challenges of this step, it is useful245

to take a closer look at the interface between scientific discourse and scientific software.246

5/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

https://joss.theoj.org/
https://joss.theoj.org/
https://joss.theoj.org/
https://openresearchsoftware.metajnl.com/

2.3 Informal and formal reasoning in scientific discourse247

The main purpose of scientific discourse, whose principal elements today are journal articles and con-248

ference presentations, is to communicate new findings in a way that permits peer verification and re-use249

of the findings in later research. Another category of scientific discourse serves pedagogical purposes:250

review articles and monographs summarize the state of the art and textbooks teach established scientific251

knowledge to future generations of scientists. A common aspect of all these writings aimed at experts or252

future experts is an alternation of informal and formal reasoning. More precisely, formal deductions are253

embedded in an informal narrative.254

Before the advent of computers, formal deductions were mainly mathematical derivations and oc-255

casional applications of formal logic. In this context, the formal manipulations are performed by the256

same people who write the informal narratives, with the consequence that the back and forth transitions257

between the two modes of reasoning, informal and formal, is often blurred. This explains why mathemat-258

ical notation is often much less formal and precise than its users believe it to be (Boute, 2005; Sussman259

and Wisdom, 2002). An illustration is provided in Fig. 2, which shows a simple line of reasoning from260

elementary physics. Only a careful study of the text reveals that the parts typeset in blue correspond to261

formal reasoning. One way to identify these parts is to try to replace the textual description as much262

as possible by output from a computer algebra system. The parts typeset in black introduce the context263

(Newtonian physics) and define the formal symbols used in the equations in terms of physical concepts.264

Motion of a mass on a spring

We consider a point-like object of mass m attached to a spring of force constant k whose

mass we assume to be negligible. The other end of the spring is attached to a wall. When the

particle is at position x, the force acting on it is given by

F =−k ·d, (1)

where d = x− l is the displacement of x relative to the spring’s equilibrium length l. Newton’s

equation of motion for the mass takes the form

F = mẍ =−k · (x− l). (2)

This second-order ordinary differential equation, which can be rewritten as

d̈ =−
k

m
d (3)

in terms of the displacement d = x− l, has the solution

d(t) = Acos(ωt +δ), (4)

where ω = k/m is the angular frequency of the oscillatory motion, and the amplitude A and

phase δ are arbitrary real numbers.

Figure 2. Mixing informal and formal reasoning in scientific discourse. The blue parts describe formal
reasoning. The black parts establish the context and define the interpretation of the formal equations.

Computers have vastly broadened the possibilities of formal reasoning through automation. More-265

over, the fact that computation enforces a clear distinction of formal and informal reasoning makes it a266

useful intellectual tool in itself (Knuth, 1974; Sussman and Wisdom, 2002). However, computing has267

led to a complete separation of automated formal reasoning from the informal narratives of scientific dis-268

course. Even in the ideal case of a publication applying today’s best practices for reproducible research,269

the reader has to figure out how text and mathematical formulas in the paper relate to the contents of the270

various files making up the executable computation.271

This separation creates an important obstacle to verification. In the human-only scenario, both in-272

formal and formal reasoning are verified by a single person who, like the author, would not particularly273

care about the distinction. In the computer-assisted scenario, the narrative on its own cannot be verified274

because it is incomplete: the formal parts of the reasoning are missing. The computation on its own can275

be partially checked using software engineering techniques such as testing or static type checking, but in276

the absence of a specification, verification must remain incomplete. No amount of testing and verifying277

6/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

on the software side can verify that the computation actually does what it is expected to do. In terms of278

the illustration of Fig. 2, no verification restricted to the blue parts can establish that Eq. (2) is the cor-279

rect equation to solve, and no human examination of the black parts can establish that the computation280

correctly solves Eq. (2).281

To the best of my knowledge, the causes of mistakes in computer-aided research have never been282

analyzed systematically in a scientific study. However, my personal experience from 30 years of research283

in computational physics and chemistry suggests that roughly half of the mistakes that persist in spite284

of careful checks at all levels, in other words the mistakes that are detected after rather than before285

the publication of the results, can be described as “the computation was perfectly reasonable but did286

not correspond to the scientific problem as described in the paper”. One typical manifestation of this287

problem is a mistake in a numerical constant in software source code, which includes the frequent case288

of a wrong sign. This was the cause for a widely publicized series of retractions of published protein289

structures, following the discovery of a sign error in data processing software (Miller, 2006). Another290

variant is papers describing the computation only incompletely and in such a way that readers assume the291

computation to be different from what it actually was. A well-known example is the paper by Harvard292

economists Reinhart and Rogoff that supported austerity politics (Reinhart and Rogoff, 2010). It was293

based on an initially unpublished Excel spreadsheet whose later inspection by independent researchers294

revealed assumptions not mentioned in the paper, and mistakes in the implementation of some formulas295

(Herndon et al., 2014). A third variant, perhaps even the most frequent one, is scientists using software296

without knowing what it does exactly, leaving them unable to judge the well-foundedness of the methods297

that they are applying. A high-impact example concerning the analysis of fMRI brain scans was recently298

described (Eklund et al., 2016).299

It is useful to look at this problem as a case of Human-Computer Interaction (HCI), the human part300

being the informal scientific discourse and the computer part being the computation. This point of view301

makes it clear that no improvement can be expected from focusing exclusively on scientific discourse or302

on software. In order to prevent the kinds of mistakes that I have described, scientists must have precise303

control over what software does when writing it, and a precise understanding of what software does304

when they take the user’s or the verifier’s role.305

The popularity of computational notebooks, introduced in 1988 with the computer algebra system306

Mathematica (Wolfram Research Inc, 1988) and later implemented for a wide range of programming307

languages by the Jupyter project (Kluyver et al., 2016), shows that the re-unification of informal and308

formal reasoning into a single document corresponds to a real need in the scientific community. The309

computational notebook is a variant of the earlier idea of literal programming (Knuth, 1984), which310

differs in that the formal element embedded into the narrative is not a piece of software but a computation311

with specific inputs and outputs. Its popularity is even more remarkable in view of the restrictions312

that today’s implementations impose: a notebook contains a single linear computation, allowing neither313

re-usable elements nor an adaptation of the order of presentation to the structure of the surrounding314

narrative. Both restrictions are a consequence of the underlying computational semantics: the code cells315

in a notebook are sent, one by one, as input to a command-line interpreter. Non-linear control flow can316

only happen inside a cell, and there is no way to refer to another cell, or sequence of cells, in order to317

re-use its contents. Notebooks can therefore capture only the top layer of the software stack shown in318

Fig. 1, and even that only for relatively simple cases.319

Another example for the re-unification of informal and automated formal reasoning is given by text-320

books that include short computer programs to explain scientific concepts. Most of them deal specifically321

with computational science and use the code as examples, e.g. Langtangen (2012), but some aim at con-322

veying more fundamental scientific concepts using executable code for preciseness of notation (Sussman323

et al., 2013; Sussman and Wisdom, 2014). Unfortunately, the code in such textbooks is in general not324

directly executable because they were prepared using traditional editing technology in view of being325

printed on paper. On the other hand, today’s computational notebooks are not flexible enough to handle326

such more complex computational documents, which illustrates that the combination of narratives with327

computational content is still in its infancy.328

2.4 Human-computer interaction in computer-aided research329

Computer programs are predominantly viewed as tools, not unlike physical devices such as cars or mi-330

croscopes. Humans interacting with tools can take on different roles. For software, the main roles are331

7/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

“developer” and “user”, whereas for physical devices the number of roles tends to be larger: “designer”,332

“producer”, “maintenance provider”, and “user”. Software developers interact with software at the source333

code level using software development tools. Software users interact with the same software via a user334

interface designed by its developers. Some software provides several levels of user interfaces, for exam-335

ple by providing a scripting or extension programming language for an intermediate category of “power336

users”. Each role in interacting with software is associated with a different mental model of how the337

software works. The basic user’s mental model is restricted to what the software does. A power user338

knows how the software accomplishes its tasks, i.e. what the basic algorithms and data structures are.339

Developers also need to be aware of the software’s architecture and of many implementation details.340

In the development of scientific software, these different roles and the associated mental models341

have so far hardly been taken into account. In fact, in many scientific disciplines there are no clearly342

defined roles yet that people could adopt. More generally, human-computer interaction in computer-343

aided research has been shaped by historical accidents rather than by design. In particular, most software344

user interfaces are the result of a policy giving highest priority to rapid development and thus ease of345

implementation.346

The analysis of verification that I have given in sections 2.2 and 2.3 suggests that the users’ minimal347

mental model of scientific software must include everything that may affect the results of a computation.348

This is a condition for scientists being able to verify the interface between informal and formal reasoning,349

i.e. to judge if a computation provides an answer to the scientific question being asked. Technical350

details can then be safely left to specialists. An important kind of specialist knowledge in many fields351

of scientific computing concerns performance characteristics such as the use of CPU time and memory.352

Performance experts would choose the best hardware and software for a given task, and work with353

developers on fine-tuning software. The extreme agility requirements in scientific research may well354

require many people to adopt multiple roles, such as user and performance expert, or performance expert355

and developer. However, verifying and working with the results should never require more than user-356

level knowledge.357

In the rest of this article, I will concentrate on human-computer interaction at the user level, focusing358

on the interplay between informal and computer-assisted formal reasoning in scientific discourse. The359

overall goal is to explore how computations can be defined in such a way that human scientists can most360

easily understand and verify them.361

Case study: simulating the predator-prey equations362

A simple example will help to illustrate the interface between informal and formal reasoning and between363

humans and computers. The predator-prey equations, also known as the Lotka-Volterra equations, de-364

scribe the dynamics of the populations of two interacting species in an ecosystem in terms of non-linear365

differential equations. They take the form366

dx

dt
= αx−βxy (5)

dy

dt
= −γy+δxy, (6)

where x is the number of prey, y the number of predators, and the positive constants α , β , γ , and δ367

describe the events that change these numbers: α is the birth rate of prey, β the rate at which prey are368

eaten by predators, γ the death rate of predators, and δ the food-dependent birth rate of predators. These369

equations are based on a number of assumptions that a textbook or journal article –informal reasoning –370

would discuss for each potential application.371

For given parameters α , β , γ , δ , and given initial values x(t0),y(t0), the predator-prey equations fully
define x(t) and y(t) for all t > t0, i.e. they are a complete specification for their solution. However, the
equations do not provide an algorithm for actually finding a solution. To this day, no closed-form solution
is known. Numerical solutions can be obtained after an approximation step that consists of discretization.
For simplicity of presentation, I will use the simple Euler discretization scheme, even though it is not a
good choice in practice. This scheme approximates a first-order differential equation of the form

dz

dt
= f (t,z(t)) (7)

8/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

by the discretized equation

z(t +h) = z(t)+h f (t,z(t)), (8)

which can be iterated, starting from t = t0, to obtain z(t) for a discrete set of time values t + nh for any372

natural number n. For the predator-prey equations, z(t) is replaced by the two components x(t),y(t),373

which does not entail any fundamental change to the Euler method.374

The discretized equation can be solved exactly using rational arithmetic. However, for performance375

reasons, rational arithmetic is usually approximated by inexact floating-point arithmetic. This approxi-376

mation involves two steps:377

1. The choice of a floating-point representation with associated rules of arithemtic. The most popular378

choices are the single- and double-precision binary representations of IEEE standard 754-2008.379

2. The choice of the order of the floating-point arithmetic operations, which due to rounding errors380

do not respect the usual associativity rules for exact arithmetic.381

The scientific decomposition of this computation thus consists of five parts, each of which requires a382

justification or discussion in an informal narrative:383

(A) The description of the scientific question by the predator-prey equations.384

(B) The values of the constant parameters.385

(C) The values of the initial values x(t0) and y(t0).386

(D) The discretization using the Euler method and the choice of h.387

(E) The choices concerning the floating-point approximation: precision, rounding mode, order of arith-388

metic operations.389

The technical decomposition of a typical implementation of this computation looks very different:390

1. A program that implements an algorithm derived from the predator-prey equations, using partially391

specified floating-point arithmetic. This program also reads numerical parameters from a file, and392

calls a function from an ODE solver library.393

2. An ODE solver library implementing the Euler method in partially specified floating-point arith-394

metic.395

3. An input file for the program that provides the numerical values of the parameters, the initial values396

x(t0) and y(t0), and the step size h.397

4. A compiler defining the precise choices for floating-point arithmetic.398

The transitions from A to 1, from B/C/D to 3, and from D/E to 1/2/4 require human verification399

because they represent transitions from informal to formal reasoning. The two approximations that400

require scientific validation are A→D (the Euler method) and D→E (floating-point approximation). In401

this validation, formal reasoning (running the code) is an important tool. The first validation is in practice402

done empirically, by varying the step size h and checking for convergence. The many subtleties of this403

procedure are the subject of numerical analysis. The validity of the floating-point approximation would404

be straightforward to check if the computation could be done in exact rational arithmetic for comparison.405

This is unfortunately not possible using the languages and libraries commonly used for numerical work,406

which either provide no exact rational arithmetic at all or require the implementation 1/2 to be modified,407

introducing another opportunity for mistakes.408

9/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

2.5 Digital Scientific Notations409

A digital scientific notation is a formal language that is part of the user interface of scientific software.410

This definition includes, but is not limited to, formal languages embedded into informal scientific dis-411

course, as in the case of computational notebooks. Another important category contains the file formats412

used to store scientific datasets of all kinds. As I have explained in section 2.4, the scientific information413

to be expressed in terms of digital scientific notations includes everything that is relevant at the user414

level, i.e. everything that has an impact on the results of a computation. This includes in particular415

scientific models and computational methods, but also more traditional datasets containing, for example,416

experimental observations, simulation results, or fitted parameters.417

Digital scientific notations differ in two major ways from traditional mathematical notation:418

1. They must be able to express algorithms, which take an ever more important role in scientific419

models and methods.420

2. They must be adapted to the much larger size and much more complex structure of scientific421

models and data that can be processed with the help of computers.422

The first criterion has led to the adoption of general-purpose programming languages as digital sci-423

entific notations. Most published computational notebooks, for example, use either Python or R for the424

computational parts. The main advantage of using popular programming languages in computational425

documents is good support in terms of tools and libraries. On the other hand, since these are program-426

ming rather than specification languages, they force users to worry about many technical details that are427

irrelevant to scientific knowledge. For example, the Python language has three distinct data types for428

sequences: lists, tuples, and arrays. There are good technical reasons for having these separate types, but429

for scientific communication, the distinction between them and the conversions that become necessary430

are only a burden. Another disadvantage is that the source code of a programming language reduces431

all scientific knowledge to algorithms for computing specific results. This process implies a loss of in-432

formation. For example, the predator-prey equations from Eq. 5 contain information that is lost in a433

floating-point implementation of its discrete approximation because the latter can no longer be used to434

deduce general properties of exact solutions.435

Domain-specific languages (DSLs) are another increasingly popular choice for representing scien-436

tific knowledge. In contrast to general-purpose programming languages, DSLs are specifically designed437

as digital scientific notations, and usually avoid the two main disadvantages of programming languages438

mentioned above. Most scientific DSLs are embedded in a general-purpose programming language. A439

few almost arbitrarily selected examples are Liszt, a DSL for mesh definitions in finite-element computa-440

tion, embedded in Scala (DeVito et al., 2011), Kendrick, a DSL for ODE-based models in epidemiology,441

embedded in Smalltalk (Bui et al., 2016), and an unnamed DSL for micromagnetics, embedded in Python442

(Beg et al., 2017). The choice for an embedded DSL is typically motivated by simpler implementation443

and integration into an existing ecosystem of development tools and libraries. On the other hand, embed-444

ded DSLs are almost impossible to re-implement in a different programming language with reasonable445

effort, which creates a barrier to re-using the scientific knowledge encoded using them. A stand-alone446

DSL is independent of any programming language, as is illustrated by Modelica (Fritzson and Engelson,447

1998), a general modeling language for the natural and engineering sciences for which multiple imple-448

mentations in different languages exist. However, each of these implementations is a rather complex449

piece of software.450

Looking at how scientific DSLs are used in practice, it turns out that both embedded and stand-451

alone DSLs end up being a user interface for a single software package, or at best a very small number of452

packages. Adopting an existing DSL for a new piece of software is very difficult. One obstacle is that the453

existing DSLs can be too restrictive, having been designed for a narrowly defined domain. For embedded454

DSLs, interfacing the embedding language with the implementation language of the new software can455

turn out to be a major obstacle. Finally, the complexity of a DSL can be prohibitive, as in the case of456

Modelica. In all these scenarios, the net result is a balkanization of digital scientific knowledge because457

for each new piece of software, designing a new DSL is often the choice of least effort.458

These considerations lead to two important criteria for good digital scientific notations that existing459

ones do not satisfy at the same time:460

• Generality. While it is unrealistic to expect that a single formal language could be adequate for461

10/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

computer-aided research in all scientific disciplines, it should be usable across narrowly defined462

domains of research, and be extendable to treat newly discovered scenarios.463

• Simplicity. The implementation of user interfaces based on a digital scientific notation should not464

require a disproportionate effort compared to the implementation of the scientific functionality of465

a piece of software.466

In the next section, I will describe an experimental digital scientific notation that was designed with467

these criteria in mind, and report on first experiences with simple toy applications. While it is too early468

to judge if this particular notation will turn out to be suitable for real-life applications, it illustrates that469

better digital scientific notations can be designed if their role at the human-computer interface is fully470

taken into account.471

3 LEIBNIZ, A DIGITAL SCIENTIFIC NOTATION FOR CONTINUOUS MATH-472

EMATICS473

An important foundation of many scientific theories is the mathematics of smoothly varying objects such474

as the real numbers. This foundation includes in particular geometry, analysis, and linear algebra. In475

some scientific disciplines, such as physics and chemistry, this is the dominant mathematical foundation.476

In other disciplines, such as biology, it is one important foundation among others, notably discrete math-477

ematics. The digital scientific notation Leibniz, named after 17th-century polymath Gottfried Wilhelm478

Leibniz, focuses on continuous mathematics and its application. Like many computer algebra systems,479

but unlike common programming languages, it can express functions of real numbers and equations480

involving such functions, in addition to the discrete approximations using rational or floating-point num-481

bers that are used in numerical work.482

The design priorities for Leibniz are:483

• Embedding in narratives such as journal articles, textbooks, or software documentation, in order484

to act as an effective human-computer interface. The code structure is subordinate to the structure485

of the narrative.486

• Generality and simplicity, as discussed in section 2.5.487

Before discussing how Leibniz achieves these goals, I will present the language through a few illus-488

trative examples.489

Figs. 3, 4, and 5 show three views of a Leibniz document introducing the predator-prey equations490

from section 2.4. This and other examples are also available on-line in the Leibniz example collection.491

Fig. 3 shows the author view. Leibniz is implemented as an extension to the document language Scribble492

(Flatt et al., 2009), which is part of the Racket ecosystem (Felleisen et al., 2015). Scribble source493

code is a mixture of plain text and commands, much like the better known document language LATEX494

(Lamport, 1994). Commands start with an @ character. Leibniz adds several commands such as @op and495

@equation, which define elements of Leibniz code. The Leibniz processing tool generates the two496

other views from the author’s input document. Fig. 4 shows the reader view, a rendered HTML page, in497

which the Leibniz code is typeset on a blue background. This makes the transition between informal and498

formal reasoning visible at a glance. The machine-readable view, shown in Fig. 5, is an XML file that499

represents the code in a very rigid format to facilitate processing by scientific software.500

In terms of semantics, Leibniz’ main source of inspiration has been the OBJ family of algebraic spec-501

ification languages (Goguen et al., 2000), and in particular its most recent incarnation, Maude (Clavel502

et al., 2002). In fact, the semantics of the current version of Leibniz are a subset of Maude’s functional503

modules, the main missing features being conditional sort membership and the possibility to declare504

operators as commutative and/or associative. As I will discuss later, this minimalist language is not suffi-505

cient for dealing with the complex scientific models used in real research. Various features will be added506

in the future as the need becomes evident in practical applications.507

As the reference to the OBJ family suggests, Leibniz is based on term rewriting. The code units in508

Leibniz are called contexts (corresponding essentially to Maude’s functional modules) and consist of (1)509

the definition of an order-sorted term algebra, (2) a list of rewrite rules, and (3) any number of assets,510

which are arbitrary values (terms or equations) identified by unique labels. A Leibniz document, such as511

11/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

https://github.com/khinsen/leibniz
http://khinsen.net/leibniz-examples/

#lang leibniz

@title{The predator-prey equations}
@author{Konrad Hinsen}

@import["functions" "functions.xml"]

@context["predator-prey" #:use "functions/derivatives-ℝ→ℝ"]{

The predator-prey equations, also known as the Lotka-Volterra
equations, describe the dynamics of two interacting species in an
ecosystem in terms of non-linear differential equations.

The two interacting time-dependent observables are the number of prey,
@op{prey : ℝ→ℝ}, and the number of predators, @op{predators : ℝ→ℝ}.
Although the number of individuals of a species is really an integer,
it is taken to be a real number for the benefit of using differential
equations. The two coupled equations for @term{prey} and
@term{predators} are
@inset{
 @equation[pp1]{!(prey) =
 (prey-growth-rate × prey)
 - (predation-rate × predators × prey)}
 @equation[pp2]{!(predators) =
 (predator-growth-rate × predators × prey)
 - (predator-loss-rate × predators)}}

These equations are based on a few assumptions:
@itemlist[
 @item{In the absence of predators, the prey exihibits exponential
 growth described by @op{prey-growth-rate : ℝp}.}
 @item{The number of prey decreases by predation, which is
 @op{predation-rate : ℝp} times the number of encounters
 between individuals of each species. The latter is taken to
 be proportional to both @term{prey} and @term{predators}.}
 @item{In the absence of prey, the number of predators decreases by
 starvation, described by @op{predator-loss-rate : ℝp}.}
 @item{The number of predators grows with the availability of food,
 which, like predation, is proportional to both @term{prey} and
 @term{predators} with the proportionality constant
 @op{predator-growth-rate : ℝp}.}]
}

Figure 3. The author view of a Leibniz document shows Leibniz code embedded in a narrative. Most
of the commands (starting with @) are inherited from the Scribble document language, only
@context, @op, @term, and @equation are added by Leibniz. This example defines a single
context called predator-prey that uses another context called derivatives-R→R that is
defined in an imported Leibniz document functions.

the one shown in Figs. 3, 4, and 5, is a sequence of such contexts, each of which is identified by a unique512

name. A context can use another context, inheriting its term algebra and its rewrite rules, or extend it, in513

which case it also inherits its variables and assets. In a typical Leibniz document, each context extends514

the preceding one, adding or specializing scientific concepts. This corresponds to a frequent pattern of515

informal reasoning in scientific discourse that starts with general concepts and assumptions and then516

moves on to more specific ones. The “use” relation typically serves for references to contexts imported517

from other documents that treat a more fundamental theory or methodology. In the example, the context518

predator-prey uses a context from another document (shown partially in Fig. 6 and available online)519

called functions that defines real functions of a single real variable having derivatives. When using520

or extending contexts, it is possible to specify transformations, in particular renaming to avoid name521

clashes. A small number of builtin contexts defines booleans and a hierarchy of number types with522

associated arithmetic operations.523

Like in the OBJ family, a term algebra is defined by operator declarations, which in turn refer to524

sorts defined by sort declarations. All these declarations can be inserted in arbitrary order into the nar-525

rative contained in the body of a @context declaration, and can also be repeated. The predator-prey526

example contains no sort or subsort declarations of its own, but it adds six nullary operators, represent-527

12/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

http://khinsen.net/leibniz-examples/examples/functions.html

The predator-prey equations

The predator-prey equations, also known as the Lotka-Volterra equations, describe the
dynamics of two interacting species in an ecosystem in terms of non-linear differential
equations.

The two interacting time-dependent observables are the number of prey, prey : ℝ→ℝ,
and the number of predators, predators : ℝ→ℝ. Although the number of individuals of
a species is really an integer, it is taken to be a real number for the benefit of using
differential equations. The two coupled equations for prey and predators are

pp1: (prey) = (prey-growth-rate × prey) - (predation-rate × predators ×
prey)

 pp2: (predators) = (predator-growth-rate × predators × prey) - (predator-
loss-rate × predators)

These equations are based on a few assumptions:

In the absence of predators, the prey exihibits exponential growth described by
prey-growth-rate : ℝp.

The number of prey decreases by predation, which is predation-rate : ℝp times
the number of encounters between individuals of each species. The latter is
taken to be proportional to both prey and predators.

In the absence of prey, the number of predators decreases by starvation,
described by predator-loss-rate : ℝp.

The number of predators grows with the availability of food, which, like
predation, is proportional to both prey and predators with the proportionality
constant predator-growth-rate : ℝp.

• The predator-prey
equations

The predator-prey equations

by Konrad Hinsen

Context predator-prey
 uses

functions/derivatives-
ℝ→ℝ

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

Figure 4. The reader view of a Leibniz document. All code is shown on a blue background.

ing the predator and prey populations and the four rate constants, to the term algebra it inherits from528

functions/derivatives-R→R. The sort R stands for the real numbers, the sort Rp for the pos-529

itive real number, and the sort R→R for real functions of one real variable. Other than these nullary530

operators, the context predator-prey only defines two assets, the two differential equations for the531

predator and prey populations, identified by the labels pp1 and pp2. An example for binary infix op-532

erators with rewrite rules can be found in the context functions/derivatives-R→R partially533

shown in Fig. 6. It defines rules for the sum, difference, and product of real functions. Contrary to sort534

and operator declarations, the order of rewrite rules is important because when multiple rules are eligible535

for rewriting a term, the textually first one is selected.536

The context functions/derivatives-R→R also illustrates one of the few special operators in537

Leibniz, the bracket operator, which is merely syntactic sugar, the term a[b] being treated like [](a,538

b), except that [] is not legal operator syntax. The two other special operators are superscript and539

subscript: ab is equivalent to (a, b) and ab becomes (̂a, b). In addition to these three special540

operators, contexts can define arbitrary prefix operators of the form op(a, b), with any number of541

arguments, and arbitrary binary infix operators of the form a op b. There are no precedence rules542

for infix operators in Leibniz, the use of round brackets is obligatory to resolve ambiguities. The sole543

exception is a chain of identical binary operators at the same level of the expression. For example, a +544

b + c is allowed and equivalent to (a + b) + c. This rule has been inspired by the Pyret language545

(Pro, 2018) and is a compromise between the familiarity of the precedence rules in mathematics and the546

ease of not having to remember precedence values for a potentially large number of infix operators. The547

current Leibniz examples also make extensive use of mathematical Unicode symbols in order to define548

familiar-looking operators. This is, however, a question of style rather than a language feature.549

Another online example illustrates how Leibniz can help to document and validate approximations.550

The example implements Heron’s algorithm for computing square roots, which is a special case of the551

Newton-Raphson method for finding the roots of a function. The algorithm is first developed for real552

numbers, with test computations using exact rational number arithmetic. A conversion tool that is part of553

the Leibniz implementation then derives a floating-point version of the algorithm using the 64-bit binary554

representation of IEEE standard 754-2008, keeping the order of arithmetic operations from the original555

13/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

http://khinsen.net/leibniz-examples/examples/heron.html

76c0fc9

94 lines (94 sloc) 2.31 KB

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

<leibniz-document>
 <context id="predator-prey">
 <includes>
 <use>functions/derivatives-ℝ→ℝ</use>
 </includes>
 <sorts>
 <sort id="ℝp" />
 <sort id="ℝ→ℝ" />
 </sorts>
 <subsorts />
 <vars />
 <ops>
 <op id="predator-loss-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="predators">
 <arity />
 <sort id="ℝ→ℝ" />
 </op>
 <op id="predation-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="prey-growth-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="prey">
 <arity />
 <sort id="ℝ→ℝ" />
 </op>
 <op id="predator-growth-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 </ops>
 <rules />
 <assets>
 <asset id="pp2">
 <equation>
 <vars />
 <left>
 <term op=" ">
 <term-or-var name="predators" />
 </term>
 </left>
 <condition />
 <right>
 <term op="_-">
 <term op="_×">
 <term op="_×">
 <term-or-var name="predator-growth-rate" />
 <term-or-var name="predators" />
 </term>
 <term-or-var name="prey" />
 </term>
 <term op="_×">
 <term-or-var name="predator-loss-rate" />
 <term-or-var name="predators" />
 </term>
 </term>
 </right>
 </equation>
 </asset>
 <asset id="pp1">
 <equation>
 <vars />
 <left>
 <term op=" ">
 <term-or-var name="prey" />
 </term>
 </left>
 <condition />
 <right>
 <term op="_-">
 <term op="_×">
 <term-or-var name="prey-growth-rate" />
 <term-or-var name="prey" />
 </term>
 <term op="_×">
 <term op="_×">
 <term-or-var name="predation-rate" />
 <term-or-var name="predators" />
 </term>
 <term-or-var name="prey" />
 </term>
 </term>
 </right>
 </equation>
 </asset>
 </assets>
 </context>
</leibniz-document>

76c0fc9

94 lines (94 sloc) 2.31 KB

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

<leibniz-document>
 <context id="predator-prey">
 <includes>
 <use>functions/derivatives-ℝ→ℝ</use>
 </includes>
 <sorts>
 <sort id="ℝp" />
 <sort id="ℝ→ℝ" />
 </sorts>
 <subsorts />
 <vars />
 <ops>
 <op id="predator-loss-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="predators">
 <arity />
 <sort id="ℝ→ℝ" />
 </op>
 <op id="predation-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="prey-growth-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="prey">
 <arity />
 <sort id="ℝ→ℝ" />
 </op>
 <op id="predator-growth-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 </ops>
 <rules />
 <assets>
 <asset id="pp2">
 <equation>
 <vars />
 <left>
 <term op=" ">
 <term-or-var name="predators" />
 </term>
 </left>
 <condition />
 <right>
 <term op="_-">
 <term op="_×">
 <term op="_×">
 <term-or-var name="predator-growth-rate" />
 <term-or-var name="predators" />
 </term>
 <term-or-var name="prey" />
 </term>
 <term op="_×">
 <term-or-var name="predator-loss-rate" />
 <term-or-var name="predators" />
 </term>
 </term>
 </right>
 </equation>
 </asset>
 <asset id="pp1">
 <equation>
 <vars />
 <left>
 <term op=" ">
 <term-or-var name="prey" />
 </term>
 </left>
 <condition />
 <right>
 <term op="_-">
 <term op="_×">
 <term-or-var name="prey-growth-rate" />
 <term-or-var name="prey" />
 </term>
 <term op="_×">
 <term op="_×">
 <term-or-var name="predation-rate" />
 <term-or-var name="predators" />
 </term>
 <term-or-var name="prey" />
 </term>
 </term>
 </right>
 </equation>
 </asset>
 </assets>
 </context>
</leibniz-document>

76c0fc9

94 lines (94 sloc) 2.31 KB

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

<leibniz-document>
 <context id="predator-prey">
 <includes>
 <use>functions/derivatives-ℝ→ℝ</use>
 </includes>
 <sorts>
 <sort id="ℝp" />
 <sort id="ℝ→ℝ" />
 </sorts>
 <subsorts />
 <vars />
 <ops>
 <op id="predator-loss-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="predators">
 <arity />
 <sort id="ℝ→ℝ" />
 </op>
 <op id="predation-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="prey-growth-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 <op id="prey">
 <arity />
 <sort id="ℝ→ℝ" />
 </op>
 <op id="predator-growth-rate">
 <arity />
 <sort id="ℝp" />
 </op>
 </ops>
 <rules />
 <assets>
 <asset id="pp2">
 <equation>
 <vars />
 <left>
 <term op=" ">
 <term-or-var name="predators" />
 </term>
 </left>
 <condition />
 <right>
 <term op="_-">
 <term op="_×">
 <term op="_×">
 <term-or-var name="predator-growth-rate" />
 <term-or-var name="predators" />
 </term>
 <term-or-var name="prey" />
 </term>
 <term op="_×">
 <term-or-var name="predator-loss-rate" />
 <term-or-var name="predators" />
 </term>
 </term>
 </right>
 </equation>
 </asset>
 <asset id="pp1">
 <equation>
 <vars />
 <left>
 <term op=" ">
 <term-or-var name="prey" />
 </term>
 </left>
 <condition />
 <right>
 <term op="_-">
 <term op="_×">
 <term-or-var name="prey-growth-rate" />
 <term-or-var name="prey" />
 </term>
 <term op="_×">
 <term op="_×">
 <term-or-var name="predation-rate" />
 <term-or-var name="predators" />
 </term>
 <term-or-var name="prey" />
 </term>
 </term>
 </right>
 </equation>
 </asset>
 </assets>
 </context>
</leibniz-document>

Figure 5. The machine-readable view of the predator-prey example.

algorithm, which is unambiguous in Leibniz. This example also showcases another user interface feature:556

in the reader view, computationally derived information is typeset on a green background, making it easy557

to distinguish from the human input typeset on a blue background.558

A final feature of Leibniz that deserves discussion is its type system, or rather sort system as it is559

habitually called in the context of formal logic and term algebras. In this system, directly taken over560

from Maude, sort and subsort declarations define a directed acyclic sort graph, which in general consists561

of multiple connected components called kinds. Operator declarations assign a sort to each term and a562

required sort to each argument position of a non-nullary operator. Mismatches at the kind level, i.e. an563

argument sort not being in the same connected component as a required sort, lead to a rejection of a term564

in what resembles static type checking in programming languages. Mismatches inside a kind, however,565

are tolerated. The resulting term is flagged as potentially erroneous but can be processed normally by566

rewriting. If in the course of rewriting the argument gets replaced by a value that is a subsort of the567

required type, the error flag is removed again. The presence of an error flag on a result of a computation568

thus resembles a runtime error in a dynamically typed language. This mixed static-dynamic verification569

system offers many of the benefits of a static type checker, but also allows the formulation of constraints570

on values that cannot be verified statically. Leibniz uses this feature to define fine-grained subsorts on571

the number sorts, e.g. “positive real number” or “non-zero rational number”, which turn out to be very572

useful in many scientific models.573

4 DISCUSSION574

The three main goals in the development of Leibniz are (1) its usability as a digital scientific notation575

embedded in informal narratives, (2) generality in not being restricted to a narrowly defined scientific576

domain, and (3) simplicity of implementation in scientific software. While the current state of Leibniz,577

and in particular the small number of test applications that have been tried, do not permit a final judgment578

on how well these goals were achieved, it is nevertheless instructive to analyze which features of Leibniz579

are favorable to reaching these goals and how Leibniz compares to the earlier digital scientific notations580

reviewed in section 2.5.581

The key feature for embedding is the highly declarative nature of Leibniz. The declarations that582

define a context and the values that build on them (terms and equations) can be inserted in arbitrary order583

into the sentences of a narrative. Verification at the informal-formal borderline is as well supported by584

Leibniz as by traditional mathematical notation. None of the digital scientific notations in use today585

shares this feature. Order matters only for rewrite rules, which has not appeared to be a limitation in the586

experiments conducted so far. Leibniz permits to write rules as assets identified by unique labels, and587

then assemble a list of named assets into a rule set for rewriting, but so far this feature has not found a588

14/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

Functions

1 Real functions of one variable

The sort ℝ→ℝ describes real functions of one real variable. Function application is
defined by ℝ→ℝ[ℝ] : ℝ. Note that this implies that the domain of the function is the
full set of real numbers, which excludes functions with singularities as well as partial
functions.

It is convenient to provide basic arithmetic on functions:

f:ℝ→ℝ + g:ℝ→ℝ : ℝ→ℝ with
 (f + g)[x] ⇒ f[x] + g[x]

 ∀ x : ℝ

f:ℝ→ℝ - g:ℝ→ℝ : ℝ→ℝ with
 (f - g)[x] ⇒ f[x] - g[x]

 ∀ x : ℝ

f:ℝ→ℝ × g:ℝ→ℝ : ℝ→ℝ with
 (f × g)[x] ⇒ f[x] × g[x]

 ∀ x : ℝ

s:ℝ × g:ℝ→ℝ : ℝ→ℝ with
 (s × g)[x] ⇒ s × g[x]

 ∀ x : ℝ

We do not define division as this requires more elaborate definitions to handle the case
of functions with zeros.

Function composition is defined by

f:ℝ→ℝ ○ g:ℝ→ℝ : ℝ→ℝ with
 (f ○ g)[x] ⇒ f[g[x]]

 ∀ x : ℝ

► Functions

Functions
1 Real functions of one

variable
2 Derivatives
3 Finite difference operators

by Konrad Hinsen

Context ℝ→ℝ
 uses builtins/real-

numbers

Context derivatives
Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

Figure 6. The beginning of the document functions referred to by the predator-prey example. The
full version is available online.

good use.589

Visual highlighting of the formal parts of a narrative (the blue and green background colors) allows590

readers to spot easily which parts of a narrative can affect a computation. Moreover, the reader can be591

assured that the internal coherence of all such highlighted information has been verified by the Leibniz592

authoring tool. For example, an equation typeset on a blue background is guaranteed to use only oper-593

ators declared in the context and the sorts of all terms have been checked for conformity. In this way,594

Leibniz actively supports human verification by letting the reader concentrate on the scientific aspects.595

Generality is achieved by Leibniz not containing any scientific information and yet encapsulating596

useful foundations for expressing it. These foundations are term algebras, equational logic, and num-597

bers as built-in terms. This is an important difference in comparison to scientific DSLs. In fact, the598

analogue of a scientific DSL is not Leibniz, but a set of domain-specific Leibniz contexts. The common599

foundation makes it possible to combine contexts from different domains, which is difficult with DSLs600

designed independently. General-purpose programming languages follow the same approach as Leibniz601

in providing domain-neutral semantic foundations for implementing algorithms. These foundations are602

usually lambda calculus, algebraic data types, and a handful of built-in basic data types such as numbers603

and character strings. Leibniz’ main advantage is in this respect is that equational logic is a more useful604

foundation for scientific knowledge than lambda calculus.605

The principle of factoring out application-independent structure and functionality has a practically606

successful precedent in data languages such as XML (Bray et al., 2006). The foundation of XML is a607

versatile data structure: a tree whose nodes can have arbitrary labels and textual content. XML defines608

nothing but the syntax for this data structure, delegating the domain-specific semantics to schemas. The609

combination of data referring to different schemas is made possible by the XML namespace mechanism.610

The machine-facing side of Leibniz can be thought of as a layer in between the pure syntax of XML611

15/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

http://khinsen.net/leibniz-examples/examples/functions.html

and domain-specific scientific knowledge, providing a semantic foundation for scientific models and612

methods.613

The separation of syntax and semantics in XML is reflected by tools that process information stored614

in XML-based formats. Domain-specific tools can delegate parsing and a part of validation to generic615

parsers and schema validators. This same principle is expected to ensure simplicity of implementation for616

Leibniz. Validating and rewriting terms are generic tasks that can be handled by a domain-independent617

Leibniz runtime library. Assuming Leibniz is widely adopted, optimized Leibniz runtimes will become618

as ubiquitous as XML parsers.619

Another aspect of Leibniz that makes is easier to use in scientific software is its separation of a620

machine-oriented syntax based on XML from the representations that human users interact with. In621

contrast, for general-purpose programming languages and stand-alone DSLs, syntax is designed to be622

an important part of the user interface. This makes it difficult to extract and analyze information stored623

in a program, because any tool wishing to process the source code must deal with the non-trivial syntax624

designed for human convenience. Moreover, suitable parsers are rarely available as reusable libraries.625

5 CONCLUSIONS AND FUTURE WORK626

The work reported in this article has focused on the human-computer interaction aspect of digital scien-627

tific notations, and in particular on the embedding of digital scientific notations in scientific discourse628

with the goal of facilitating verification by humans. First experiments with Leibniz have shown that it629

can be embedded in informal discourse much like traditional mathematical notation. It can therefore630

be expected that human verification will work in the same way, at least for code that can be structured631

as a sequence of sufficiently short sections. Only further practice can show if this is possible for more632

complex scientific models.633

The semantics of the initial version of Leibniz were somewhat arbitrarily chosen to be a subset of634

Maude, which looked like a good starting point for first experiments. However, these experiments sug-635

gest that the language is currently too minimalist for productive use in computer-aided research. In636

particular, the lack of predefined collections (lists, sets) makes it cumbersome to use for many applica-637

tions, such as the force fields mentioned as a motivation in section 2.1. Another aspect of the language638

that deserves further attention is the sort system summarized in section 3. Many common value con-639

straints in scientific applications would require value-dependent sorts, in the spirit of dependent types.640

Examples are the compatibility of units of measure, or of the dimensions of matrices.641

Another aspect that will require further work is the definition of the role of digital scientific notations642

such as Leibniz in the ecosystem of scientific software. A theoretically attractive but at this time not643

very feasible approach would have software tools read specifications from Leibniz documents and per-644

form the corresponding computations. In addition to the fundamental issue that we do not have general645

automatic methods for turning specifications into efficient implementations, there is the practical issue646

that today’s scientific computing universe is very tool-centric, with users often adapting their research647

methodology to their tools rather than the inverse. A more realistic short-term scenario sees Leibniz used648

in the documentation of software packages, which could then contain a mixed informal/formal specifica-649

tion of the software’s functionality. This specification could be verified scientifically by human readers,650

and the software could be verified against it using techniques such as testing or formal verification. A sci-651

entific study would be documented in another Leibniz document that uses contexts from the software’s652

specification.653

Leibniz and digital scientific notations similar to it are also promising candidates for unifying sym-654

bolic and numerical computation in science. As the example of the predator-prey equations shows,655

Leibniz can represent not only computations, but also equations. A computer algebra system could pro-656

cess equations formulated in Leibniz, producing results such as analytical solutions, approximations, or657

numerical solution algorithms, which could all be expressed in Leibniz as well. Corresponding Leibniz658

contexts could be derived automatically from the OpenMath standard (OpenMath society, 2018).659

Finally, there is obviously a lot of room for improvement in the tools used by authors and readers660

for interacting with Leibniz content. Ideally, the author and reader would work with identical or very661

similar views, which should be more interactive than plain text or HTML documents. Much inspiration,662

and probably also implementation techniques, can be adopted from computational notebooks and other663

innovations in scientific publishing that are currently under development.664

16/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

ACKNOWLEDGMENTS665

I am grateful to Prof. Shriram Krishnamurthi for recommending the adoption of the infix operator rules666

from the Pyret language, and for suggesting the predator-prey equations as an example for demonstration.667

REFERENCES668

(2018). Programming in Pyret.669

Beg, M., Pepper, R. A., and Fangohr, H. (2017). User interfaces for computational science: A domain670

specific language for OOMMF embedded in Python. AIP Advances, 7(5):056025.671

Boute, R. (2005). Functional declarative language design and predicate calculus: A practical approach.672

ACM Transactions on Programming Languages and Systems (TOPLAS), 27(5):988–1047.673

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., and Cowan, J. (2006). Extensible674

Markup Language (XML) 1.1 (Second Edition).675

Bui, T. M. A., Ziane, M., Stinckwich, S., Ho, T. V., Roche, B., and Papoulias, N. (2016). Separation of676

concerns in epidemiological modelling. In Companion Proceedings of the 15th International Confer-677

ence on Modularity, pages 196–200. ACM Press.678

Cieplak, P. and Kollman, P. (1996). A second generation force field for the simulation of proteins, nucleic679

acids, and organic molecules (vol 117, pg 5179, 1995). J Am Chem Soc, 118(9):2309–2309.680

Claerbout, J. and Karrenbach, M. (1992). Electronic documents give reproducible research a new mean-681

ing. In SEG Technical Program Expanded Abstracts 1992, SEG Technical Program Expanded Ab-682

stracts, pages 601–604. Society of Exploration Geophysicists.683

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., and Quesada, J. F.684

(2002). Maude: Specification and programming in rewriting logic. Theoretical Computer Science,685

285(2):187–243.686

DeVito, Z., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P., Joubert, N., Palacios, F., Oakley, S., Med-687

ina, M., Barrientos, M., Elsen, E., Ham, F., and Aiken, A. (2011). Liszt: A domain specific language688

for building portable mesh-based PDE solvers. In Proceedings of 2011 International Conference for689

High Performance Computing, Networking, Storage and Analysis, page 1. ACM Press.690

Eklund, A., Nichols, T. E., and Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial691

extent have inflated false-positive rates. PNAS, 113(28):7900–7905.692

Felleisen, M., Findler, R. B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy, J., Tobin-Hochstadt,693

S., and Herbstritt, M. (2015). The Racket Manifesto. Technical report, Schloss Dagstuhl - Leibniz-694

Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany.695

Flatt, M., Barzilay, E., and Findler, R. B. (2009). Scribble: Closing the book on ad hoc documentation696

tools. In ACM Sigplan Notices, volume 44, pages 109–120. ACM.697

Fritzson, P. and Engelson, V. (1998). Modelica — A unified object-oriented language for system mod-698

eling and simulation. In Goos, G., Hartmanis, J., van Leeuwen, J., and Jul, E., editors, ECOOP’98699

— Object-Oriented Programming, volume 1445, pages 67–90. Springer Berlin Heidelberg, Berlin,700

Heidelberg.701

Goguen, J. A., Winkler, T., Meseguer, J., Futatsugi, K., and Jouannaud, J.-P. (2000). Introducing OBJ. In702

Hinchey, M., Goguen, J., and Malcolm, G., editors, Software Engineering with OBJ, volume 2, pages703

3–167. Springer US, Boston, MA.704

Herndon, T., Ash, M., and Pollin, R. (2014). Does high public debt consistently stifle economic growth?705

A critique of Reinhart and Rogoff. Cambridge Journal of Economics, 38(2):257–279.706

Hinsen, K. (2000). The molecular modeling toolkit: A new approach to molecular simulations. J Comput707

Chem, 21(2):79–85.708

Hinsen, K. (2014). Computational science: Shifting the focus from tools to models. F1000Research,709

3:101.710

Imbert, C. (2017). Computer Simulations and Computational Models in Science. In Magnani, L. and711

Bertolotti, T., editors, Springer Handbook of Model-Based Science, pages 735–781. Springer Interna-712

tional Publishing, Cham.713

Jarrold, M. F. (2007). Helices and Sheets in vacuo. Phys Chem Chem Phys, 9(14):1659–1671.714

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick,715

J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., and Willing, C. (2016). Jupyter Notebooks716

– a publishing format for reproducible computational workflows. In Loizides, F. and Schmidt, B.,717

17/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 87–90.718

IOS Press.719

Knuth, D. E. (1974). Computer Science and its Relation to Mathematics. The American Mathematical720

Monthly, 81(4):323–343.721

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2):97–111.722

Lamport, L. (1994). LATEX: A Document Preparation System: User’s Guide and Reference Manual.723

Addison-Wesley Pub. Co, Reading, Mass, 2nd ed edition.724

Langtangen, H. P. (2012). A Primer on Scientific Programming with Python. Number 6 in Texts in725

Computational Science and Engineering. Springer, Heidelberg, third edition edition.726

Merali, Z. (2010). Computational science: ...Error. Nature, 467(7317):775–777.727

Miller, G. (2006). A Scientist’s Nightmare: Software Problem Leads to Five Retractions. Science,728

314(5807):1856–1857.729

OpenMath society (2000-2018). OpenMath. https://openmath.github.io/.730

Reinhart, C. M. and Rogoff, K. S. (2010). Growth in a Time of Debt. American Economic Review,731

100(2):573–578.732

Reißer, S., Poger, D., Stroet, M., and Mark, A. E. (2017). Real Cost of Speed: The Effect of a Time-733

Saving Multiple-Time-Stepping Algorithm on the Accuracy of Molecular Dynamics Simulations. J.734

Chem. Theory Comput., 13(6):2367–2372.735

Roberts, K. V. (1969). The publication of scientific Fortran programs. Computer Physics Communica-736

tions, 1(1):1–9.737

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji, G., Gymrek, M., Huff, K. D., Madan,738

C. R., Mayes, A. C., Moerman, K. M., Prins, P., Ram, K., Rokem, A., Teal, T. K., Guimera, R. V.,739

and Vanderplas, J. T. (2017). Journal of Open Source Software (JOSS): Design and first-year review.740

arXiv:1707.02264 [cs].741

Soergel, D. A. W. (2014). Rampant software errors undermine scientific results. F1000Research, 3:303.742

Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., Heroux, M. A., Ioannidis,743

J. P. A., and Taufer, M. (2016). Enhancing reproducibility for computational methods. Science,744

354(6317):1240–1241.745

Sussman, G. J. and Wisdom, J. (2002). The Role of Programming in the Formulation of Ideas. Technical746

report, MIT Artificial Intelligence Laboratory.747

Sussman, G. J. and Wisdom, J. (2014). Structure and Interpretation of Classical Mechanics. The MIT748

Press, Cambridge, Massachusetts, second edition edition.749

Sussman, G. J., Wisdom, J., and Farr, W. (2013). Functional Differential Geometry. The MIT Press,750

Cambridge, MA.751

Wolfram Research Inc (1988). Mathematica, Version 1.0. Champaign, IL, 1988.752

18/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26633v1 | CC BY 4.0 Open Access | rec: 7 Mar 2018, publ: 7 Mar 2018

