

1 Ontogeny of a synaptophysin-mediated GABA transmission mechanism from the
2 ciliary band-associated strand to the ciliary band during the development of the sea
3 urchin *Hemicentrotus pulcherrimus*

4

5 Hideki Katow^{1,2*}, Hiromi Yoshida², Tomoko Katow¹, and Masato Kiyomoto³,

6

7 **Short Title:** Synaptophysin in GABA transmission

8

9 **Affiliations:**

10 ¹Division of Developmental Biology, Research Center for Marine Biology, Tohoku
11 University, Aomori, Japan, ²Center of Research Instruments, Institute of Development,
12 Aging and Cancer, Tohoku University, Sendai, Japan, ³ Marine and Coastal Research
13 Center, Ochanomizu University, Chiba, Japan

14 *Corresponding author:

15 Dr. Hideki Katow, Research Center for Marine Biology, Tohoku University, Asamushi,
16 Aomori, Aomori 039-3501, Japan
17 Phone and facsimile: +81-17-741-3194

18

19 E-mail addresses:

20 Hideki Katow: hkatow@m.tohoku.ac.jp
21 Hiromi Yoshida: hiromi.yoshida.a6@tohoku.ac.jp
22 Masato Kiyomoto: kiyomoto.masato@ocha.ac.jp
23 Tomoko Katow: h.tkatow@d6.dion.ne.jp

24

25

26 **Abstract**

27 Swimming activity of the sea urchin larva depends on ciliary beating primarily in the
28 circumoral ciliary band (CB) and is regulated by several neurotransmitters, such as 5HT,
29 dopamine and γ -aminobutyric acid (GABA). Accordingly, the larval swimming activity
30 is severely inhibited by 3-mercaptopropionic acid [a glutamate decarboxylase (GAD)
31 inhibitor]. Although GABA is detected in the CB, GAD is absent. GAD is expressed in
32 the spatially segregated nearby ciliary band-associated strand (CBAS). Thus, it is
33 assumed that GABA transmission extends from the CBAS to the CB. Here, we
34 examined the synaptic transmission mechanism by focusing on the spatiotemporal
35 expression pattern of synaptophysin (Syp), a synaptic vesicle glycoprotein. The sea
36 urchin has a single copy of the Syp gene, which encodes a 266-amino acid protein with
37 possibly 4 transmembrane domains. We generated an anti-Syp antibody (Ab).
38 Immunoblotting (IB) detected Ab binding to a single band at approximately 38 kDa.
39 Whole-mount immunohistochemistry (WMIHC) detected high intensity Ab binding to
40 the CBAS. Syp was initially detected at the mesenchyme blastula stage (mBL) as a
41 single band by IB. Accordingly, WMIHC detected Syp in the cytoplasm of small
42 patches of several ectodermal cells at the mBL stage. Syp has also been detected in the
43 cytoplasm of blastocoelar cells from the prism stage to the 2-arm pluteus stage (2aPL).
44 By the 4aPL stage, Syp was expressed in the CBAS and was moderately expressed
45 among the blastocoelar cells. Distinctive co-localization of GABA and Syp was not
46 detected until the 2aPL stage. Beginning at the 4aPL stage, GABA was detected in the
47 CB and Syp-positive puncta in the CBAS. In the CB, GABA was co-localized with the
48 GABA-A receptor (GABA_AR). Thus, the GABA signal may be transmitted from GAD
49 in the CBAS through a Syp-mediated system to the CB and then, in the CB, to the basal
50 body of the cilia through GABA_AR.

51

52 **Keywords:**

53 Sea urchin, CBAS, GABA, synaptophysin, immunohistochemistry

54

55

56 **Introduction**

57 The larval swimming activity of the sea urchin depends on ciliary beating in the ciliary
58 band (CB) ([Mogami et al., 1991; Strathmann & Grunbaum, 2006](#)). The ciliary beating
59 is regulated by various neurotransmitters, including 5HT ([Soliman 1983; Yaguchi et al.,](#)
60 [2000; Yaguchi & Katow, 2003](#)), dopamine ([Soliman, 1983; Katow et al., 2010](#)), and
61 γ -aminobutyric acid (GABA) ([Soliman, 1983; Katow et al., 2013](#)). GABA is detected in
62 the CB of plutei ([Katow et al., 2013](#)); however, its synthetase glutamate decarboxylase
63 (GAD) is not expressed in the CB. GAD is expressed in a subpopulation of the
64 blastocoelar cells and the ciliary band-associated strand (CBAS) in plutei ([Katow et al.,](#)
65 [2013; 2014; 2016; Katow, 2015](#)). GABA expression in the CB is severely inhibited by
66 3-mercaptopropionic acid (3-MPA), a GAD activity inhibitor ([Katow et al., 2013](#)),
67 suggesting that GABA expressed in the CB is transmitted from the CBAS. Furthermore,
68 our previous report of GABA-A receptor (GABA_AR) expression in the CB ([Katow et al.,](#)
69 [2013](#)) provides mechanistic support for GABA localization in the CB.

70 Our previous ultrastructural analysis of the CBAS by transmission electron
71 microscopy (TEM) detected groups of numerous cytoplasmic vesicles, including
72 synaptic vesicles (SV) in the cytoplasm ([Katow et al., 2016](#)). The major membrane
73 component of these endoplasmic vesicles (EV) is synaptophysin (Syp) ([McMahon et al.,](#)
74 [1996; Sethi et al., 2013](#)). The CBAS contains numerous Syp-immunoreactive puncta
75 ([Katow et al., 2016](#)), suggesting neurosecretory activity of the organ. In addition to the
76 sea urchin, Syp has been reported in vast phylogenetic groups of invertebrates, such as
77 the flatworm (*Schistosoma mansoni*; [Rabelo et al., 1997](#)), *C. elegans* ([Abraham et al.,](#)
78 [2011](#)), insects (*Calábria, et al., 2011; Stevens et al., 2012*), *Aplysia* ([Jin et al., 2011](#))
79 and *Octopus* ([Zhang et al., 2012](#)).

80 In mammalian cells, GABA is packed in secretory vesicles after its synthesis by
81 GAD ([Teng et al., 2013](#)). Thus, the previous observations suggest that GABA
82 transmission from the CBAS to the CB is mediated by the SV. Here, we report a further
83 immunochemical analysis of GABA transmission in the ciliary beating-mediated larval
84 swimming activity and the ontogenetic spatiotemporal expression patterns of Syp in the
85 sea urchin *Hemicentrotus pulcherrimus*.

86 The present study describes (1) the presence of four-transmembrane domains and
87 several *N*-glycosylation sites in sea urchin Syp based on the proteomic analysis of the
88 sea urchin *Strongylocentrotus purpuratus* (Sp-Syp; PU_014316.3a,
89 [www.echinobase.org; Cameron et al., 2009; Kudtarkar & Cameron, 2017](#)), (2)
90 ontogenetic spatiotemporal expression patterns of Syp by anti-Sp-Syp antibody, (3) an
91 ontogenetic analysis of GABA/Syp co-expression patterns along with, (4) the 3-MPA

92 treatment effect on the GABA/GAD expression patterns using three-dimensional
93 images of the CBAS by reconstructing whole-mount immunohistochemistry
94 (WMIHC) images obtained from confocal laser-scanning microscopy (CLSM).

95

96 Materials and Methods

97 Sea urchins (*H. pulcherrimus*, A. Agassiz) were collected near the Research Center for
98 Marine Biology, Tohoku University, Aomori, Japan and the Marine and Coastal
99 Research Center, Ochanomizu University, Chiba, Japan. Gametes were obtained by
100 intracoelomic injection of 0.5 M KCl. Eggs were inseminated and incubated in filtered
101 seawater (FSW) on a gyratory shaker or stirred gently with a propeller in an incubator at
102 15°C or 18°C until the appropriate developmental stages were reached. Larvae were fed
103 *Chaetoceros calcitrans* (Nissin Marine Tech. Ltd, Yokohama, Japan) beginning at the
104 4-arm pluteus stage (4aPL) and continuing until various stages (described below) and
105 were incubated according to published methods (Kiyomoto *et al.*, 2014).

106 *Antibody production*

107 Anti-Sp-GAD Ab was raised in rabbit using a synthetic peptide of Sp-GAD annotated
108 in the Genome Project of the sea urchin *S. purpuratus* (SPU_014316.3a),
109 (www.echinobase.org; Cameron *et al.*, 2009; Kudtarkar & Cameron, 2017) which is a
110 sister species of *H. pulcherrimus*. The antigen peptide (⁵⁹⁸FMLDEIERLGKPL⁶¹⁰) was
111 located near the C-terminal of the protein and was conjugated to a carrier protein
112 keyhole limpet hemocyanin (KLH) at the C-terminus of the protein ⁵⁹⁸Phe via Cys
113 (Eurofin Genomics K.K. Tokyo). According to a homology search of the peptide
114 sequence by the NCBI Blast/Protein Sequence program
115 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins>), no other sea urchin proteins
116 were included in the list of the search engine (Altschul *et al.*, 1997;
117 <https://blast.ncbi.nlm.nih.gov/Blast.cgi>). Thus, the sequence was regarded to be
118 Sp-GAD-specific in sea urchin proteins.

119 Anti-Syp Ab was raised in rabbit using a synthetic peptide of Syp annotated in the
120 Genome Project of the sea urchin *S. purpuratus* (SPU_014316.3a)
121 (www.echinobase.org). The antigen peptide (²⁴¹KETTWFKQRME²⁵¹) was predicted to
122 be located near the C-terminus of the Syp protein on the interior surface of the EV
123 membrane (Fig. 1) and was conjugated to a carrier protein KLH at the C-terminus

124 ²⁴¹Lys via Cys (Sigma-Aldrich Japan, Tokyo). According to a homology search of the
125 peptide sequence by the NCBI Blast/Protein Sequence program
126 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins>), no other sea urchin proteins
127 were included in the list of the search engine (Altschul *et al.*, 1997;
128 <https://blast.ncbi.nlm.nih.gov/Blast.cgi>). Thus, the sequence was regarded to be
129 Sp-Syp-specific in sea urchin proteins.
130

131 *Immunoblotting*

132 Swimming (sBL) and mesenchyme blastulae (mBL), gastrulation half-completed
133 gastrulae (1/2G), and prism larvae, 2aPL and 4aPL were dissolved in lysis buffer [10
134 mM Tris-HCl (pH 7.5) with 6 M urea and 1 % Nonidet P-40 (v/v)], lyophilized and
135 stored at -20°C until use (Katow *et al.*, 2016). These lyophilized samples were dissolved
136 in 0.1 M Tris-SDS β-ME sample treatment buffer (Cosmo Bio Co., Ltd, Tokyo,
137 135-0016, Japan), loaded in gels (3 µg/lane) and separated on 2-15 % gradient sodium
138 dodecyl sulfate-polyacrylamide gel [Multigel II Mini 2/15 (13W); Cosmo Bio., Ltd]
139 electrophoresis with 3-color Prestained XL-Ladder molecular weight marker (APRO
140 Life Science Inst. Inc., Naruto, Tokushima 771-0360, Japan). Gels were blotted to
141 polyvinylidene difluoride membranes (Bio-Rad Laboratories, Inc. Hercules, CA 94547,
142 USA), blocked with 5 % (w/v) skim milk diluted in Tris-buffered saline with 1 %
143 Tween-20 (v/v) (TBST; Takara Bio Inc., Otsu, Shiga, 520-2193, Japan), and incubated
144 with the anti-Syp Ab diluted at 1:1,000 for 2 h at ambient temperature (AmT). The
145 primary Ab was detected by incubation with alkaline phosphatase (AP)-tagged goat
146 anti-rabbit IgG Ab (AnaSpec, Inc. Fremont, CA 94555, USA) diluted 1:30,000 in TBST
147 for 1 h at AmT, and visualized with the chromogenic reagents nitro-blue tetrazolium
148 and 5-bromo-4-chloro-3'-indolylphosphate [BCIP/NBT Color Development Substrate,
149 (Promega Co, Madison, WI 53711-5399, USA)] diluted in AP buffer (pH 9.5)
150 according to the manufacturer's instructions.

151
152 *Whole-mount immunohistochemistry (WMIHC)*

153 Embryos and larvae were fixed in 4 % paraformaldehyde dissolved in filtered sea water
154 (FSW) for 15 to 20 min at AmT. They were dehydrated through increasing
155 concentrations of ethanol from 30 % to 70 % (v/v) and stored in 70 % ethanol at 4°C
156 until use. Before onset of immunohistochemistry, the samples were hydrated in 0.1 M

157 phosphate buffered saline with 0.05 % Tween-20 (PBST; Medicago AB, Uppsala,
158 Sweden).

159 Rabbit anti-GABA Ab (GeneTex Inc., Irvine, CA 92606, USA) was diluted at 1:150
160 in PBST and conjugated with the Zenon Alexa Fluor 488 rabbit IgG labeling kit
161 (Thermo Fisher Scientific K.K., Yokohama, Japan) according to the manufacturer's
162 protocol. Mouse anti-GABA Ab (Enzo Life Sciences, Inc., Farmingdale, NY 11735,
163 USA) was diluted at 1:300 in PBST. Anti-Syp Ab was diluted at 1:1,000 in PBST.
164 Anti-GABA_AR Ab was raised in mouse (*Katow et al., 2013*) and diluted 1:500 in PBST.
165 Anti-GAD Ab was diluted 1: 500 in PBST. These primary Abs were visualized by
166 Alexa Fluor 488- or Alexa Fluor 594-tagged anti-mouse or rabbit IgG (diluted 1:500–
167 750 in PBST; Invitrogen, Eugene, OR, USA) as described previously (*Katow et al.,*
168 *2016*). The nuclei of the samples were further counterstained with 4',
169 6-diamidino-2-phenylindole (Sigma-Aldrich Co., St. Louis, MO 63103, USA) diluted at
170 0.1–0.5 µg/mL in PBST for 5 min at AmT. The specimens were examined under a Leica
171 TCS SP8 CLSM (Leica Microsystems, Wetzlar, Germany). Images were analyzed with
172 ImageJ 1.49v (NIH, Bethesda, MD, USA), and some of the images were rotated with
173 Adobe Photoshop CSS Extended 12.0 X64 (Adobe Systems Inc., San Jose, CA, USA)
174 for figure plates preparation.

175 *3D reconstruction of CLSM optical cross sections of the CBAS*

176 Forty-two 1 µm-thick optical sections of CLSM images from triple-stained 8aPL tissue
177 sections of the CBAS were reconstructed in 3D using Amira 3D image processing
178 software (FEI Visualization Sciences Group, Burlington, MA, USA) as described
179 previously (*Katow et al., 2016*). The resultant optical Z-axis image was
180 artificially and excessively elongated; thus, the 3D images did not correctly
181 represent the original CLSM image. Therefore, the CBAS computer images were
182 manually adjusted to 1/3 of the computed image size according to original
183 images obtained by TEM (*Katow et al., 2016*). The 3D image was optically
184 cross-sectioned at a 0.46 µm thickness perpendicular to the long axis of the CBAS to
185 examine potential co-localization of the positive signals of GAD and GABA as
186 described in the “Results”.

187 *3-MPA treatment*

188 To examine the involvement of GAD in the CBAS in the process of GABA expression
189 in the CB, GAD function was suppressed using 3-MPA (*Van der Heyden & Korf, 1978*).

190 Eight-arm plutei were incubated with 0.5 μ M 3-MPA in FSW for 4 h at AmT to inhibit
191 larval swimming activity (Katow *et al.*, 2013). Control larvae were incubated without
192 3-MPA. After visual confirmation of inhibited swimming activity, the 3-MPA-treated
193 larvae were fixed with 4 % paraformaldehyde diluted in FSW. The larvae were stained
194 with mouse anti-GABA Ab and rabbit anti-Syp Ab and were examined under a CLSM
195 as described above.

196

197 **Results**

198 *Validation of anti-Sp-GAD Ab by Enzyme-Linked Immuno Sorbent Assay (ELISA) and*
199 *WMIHC*

200 The presently produced anti-Sp-GAD Ab binding to the antigen peptide was steadily
201 detected up to 1:16,000 dilution, while preimmune serum barely detected the binding
202 (Fig. 2A), indicating the peptide specificity of the Ab.

203 Using WMIHC, the Ab detected the CBAS of 6aPL (Fig. 2B). The binding pattern
204 was consistent with our previous reports (Katow *et al.*, 2013; 2016), which was
205 conducted with a commercial anti-rat GAD (GAD_{65/67}) Ab. Contrarily, preimmune
206 serum binding to the CBAS or any other larval feature was not detected (Fig. 2C),
207 indicating the antigen specificity of the Ab.

208 *Molecular property of Sp-Syp protein*

209 Intercellular transmission of GABA involves SV that consists of synaptogyrin and Syp
210 as a major membrane protein that is abundantly expressed in GABAergic neurons
211 (Abraham *et al.*, 2011). According to the Echinobase
212 (<http://www.echinobase.org/Echinobase/> Cameron *et al.*, 2009; Kudtarkar & Cameron,
213 2017), the sea urchin Syp (Sp-Syp; SPU_014316.3a) is comprised of 266 amino acids
214 and is regarded as a likely ortholog of Syp
215 (http://www.echinobase.org/Echinobase/Search/SpSearch/viewAnnoGeneInfo.php?spu_id=SPU_014316). According to *N*-glycosylation site analysis by the online database
217 NetNGlyc 1.0 Server (Technical University of Denmark;
218 <http://www.cbs.dtu.dk/services/NetNGlyc/>), four *N*-glycosylation sites at ¹⁰³NSTT¹⁰⁶,
219 ¹¹³NPSG¹¹⁶, ¹⁹³NPTV¹⁹⁶ and ²¹⁹NFSV²²² were predicted (Fig. 1). However, NetNGlyc
220 1.0 Server predicted a low threshold potential for glycosylation at ¹¹³NPSG¹¹⁶
221 (0.4502<0.5). Thus, *N*-glycosylation possibly occurs at the other three sites. Their
222 potentials were above the threshold at 0.5850 (¹⁰³NSTT¹⁰⁶), 0.7291 (¹⁹³NPTV¹⁹⁶), and

223 0.6807 (²¹⁹NFSV²²²). The NetNGlyc 1.0 Server also predicted the absence of signal
224 peptide in Sp-Syp.

225 Using the open database TMHMM Server v. 2.0
226 (<http://www.cbs.dtu.dk/services/TMHMM/>) for prediction of transmembrane helices in
227 proteins, an analysis of Sp-Syp predicted the presence of the MARVEL domain
228 (<https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrvc.cgi?ascbin=8&maxaln=10&seltype=2&uid=322712>), which is functionally involved in vesicular trafficking and membrane
229 apposition (Arthur and Stowell, 2007). The domain is comprised of four transmembrane
230 subdomains, which include ⁴⁷Gly-Thr⁶⁹, ¹²⁰Phe-Val¹⁴², ¹⁵⁵Cys-Gly¹⁷⁷ and ²¹⁸Leu-Ala²⁴⁰
231 (Fig. 3).

233 *Validation of anti-Sp-Syp Ab by immunoblotting (IB) and WMIHC*

234 In the GABAergic nervous system, GABA is encapsulated into EVs, including the
235 endoplasmic reticulum and SV, before secretion to the adjacent target cells (Aihara et
236 al., 2001; Teng et al., 2013). Syp is one of the major molecular markers of the SV (Jahn
237 et al., 1985; Wiedenmann et al., 1986). To evaluate the potential involvement of Syp in
238 GABA transmission in the GABAergic nervous system of the sea urchin larva that
239 plays a major role in larval swimming activity (Katow et al., 2013; 2016), we analyzed
240 GABA transmission and Syp involvement using immunochemical techniques.

241 The anti-Syp Ab bound to a single band at approximately 38 kDa in the prism larval
242 lysate (Fig. 4A, lane 1), whereas preimmune rabbit serum did not (Fig. 4A, lane 2). The
243 relative molecular mass (M_r) of the Ab-bound region was slightly larger than the
244 theoretical value of 28.8 kDa that was calculated based on its amino acid sequence with
245 Compute pI/Mw (ExPASy Compute pI/Mw tool, https://web.expasy.org/compute_pi/).
246 This suggested the occurrence of post-translational modification, including
247 glycosylation as described above.

248 Using WMIHC, anti-Syp Ab was detected on the 4aPL larval arms with a strand
249 pattern of the CBAS (Fig. 4B), whereas preimmune serum did not bind to the pluteus
250 (Fig. 4C). The IB and WMIHC data verified the immunospecificity of the anti-Syp Ab.
251 A detailed examination of the WMIHC showed that the anti-Syp Ab bound to a strand
252 of puncta (Fig. 4D, arrowheads) along the larval arm with several perikarya (Fig. 4D,
253 arrows), which was consistent with our previous report on the CBAS (Katow et al.,
254 2016).

255
256 *Disturbed GABA expression by 3-MPA in larvae*

257 Next, to examine the involvement of the GABA transmission mechanism in GABA
258 expression in the CB, we analyzed the effect of 3-MPA on GABA expression and GAD
259 distribution in the CB.

260 The triple-stained WMIHC of 8aPL with Abs against GABA, GAD, and nuclei
261 detected the co-localization of GABA and GAD in the CBAS (Fig. 5A-1, -3), but
262 GABA alone in the CB and the stomach (Fig. 5A-2, -3). Furthermore, the intensity of
263 the GABA-positive signal in puncta of the CBAS at the anterior epaulet, which derives
264 from the CB during the late pluteus stages (Zamani, 2012), was stronger than that in the
265 CB (Fig. 5A-2, insets).

266 The punctate pattern in the CBAS that co-expressed GAD and GABA (Figs. 5G-3,
267 H-3, Hh-3-1, Hh-3-2) or GAD and Syp (Katow *et al.*, 2016) suggested the presence of
268 GABA-enriched clumps of EVs in the CBAS. To ensure this possibility further, optical
269 cross sections of the double-stained CBAS were reconstructed using Amira imaging
270 software to produce 3D images as stated in the Methods. A 0.46 μ m thick optical cross
271 section of the CBAS was produced from the 3D image at the region indicated by a
272 vertical dotted line (Fig. 5B). The optical cross section was produced from GAD/nuclei
273 double-stained images (Fig. 5Bb-1) and GABA/nuclei double-stained images (Fig.
274 5Bb-2). These two images were then merged to examine the positional relationship
275 between the GAD-positive and GABA-positive regions in the CBAS (Fig. 5Bb-3). The
276 merged images suggested that GAD and GABA are co-localized at the puncta.

277 The WMIHC examination of the 3-MPA-treated larvae indicated that GAD
278 expression was not affected by the inhibitor (Fig. 5C-1), while GABA expression
279 declined significantly both in the CBAS and the CB (Fig. 5C-2, -3). Thus, the decline in
280 GABA expression in the CB is not due to the inhibition of transmission activity but to
281 the inhibition of GABA production, suggesting the involvement of vital GABA
282 transmission process from puncta of the CBAS, suggesting the involvement of vital
283 GABA transmission process from the puncta in the CBAS. In addition to these organs,
284 the inhibitor decreased GABA immunoreactivity in the stomach (Fig. 5C-2).

285

286 *Spatial analysis of GABA_AR and GAD expression in and near the CBAS*

287 The presence of the MARVEL domain in Sp-Syp suggests its involvement in the
288 neurosecretory process (Arthur & Stowell, 2007). However, prior to studying Syp
289 involvement in neurosecretory function in the sea urchin larva, we examined the
290 immunohistochemical localization of the GABAergic system in the larval arms.

291 As above GAD/GABA double-stained WMIHC indicated (Fig. 5), GAD was
292 intensely expressed in the CBAS, while GABA was slightly weakly detected.

293 Conversely, in the CB, GABA was detected almost uniformly, while GAD was not.
294 This suggests the occurrence of a functional differentiation between the GABA
295 producer and its receiver during development in the GABAergic nervous system in sea
296 urchin larvae.

297 GABA binds to its receptor protein, GABA_AR, in the mammalian central nervous
298 system after its synthesis (Simeone *et al.*, 2003), which resembles our previous report
299 that immunohistochemically suggests co-localization of GABA and GABA_AR at the
300 probable CB (Katow *et al.*, 2013). The CBAS was not yet discovered then. The present
301 WMIHC detected GAD in the CBAS but not in the CB (Fig. 6A, C). On the other hand,
302 GABA_AR was expressed in the CB but not in the CBAS (Fig. 6B, C). On the basis of
303 the previous our report (Katow *et al.*, 2013) and the present observations, it could be
304 hypothesized that GABA synthesized by GAD in the CBAS is transmitted to the CB
305 and captured by GABA_AR that is expressed in there.
306

307 *Spatiotemporal expression pattern of Syp during development*

308 According to the IB analysis, Syp was not detected at the sBL stage (Fig. 7A, lane 1)
309 but was distinctively detected beginning with and following the mBL stage until the
310 4aPL stage at a minimum (Fig. 7A, lane 2-6), excluding an interruption at the 1/2G
311 stage (Fig. 7A, lane 3). At this stage, a faint positive signal was detected by increasing
312 the loading amount of lysate from 3 μ g to 4.5 μ g (data not shown), which suggested that
313 although the Syp-positive signal declined considerably, it was not entirely absent. At the
314 later developmental period, the M_r of Syp increased by approximately 5.3 \pm 0.25 % (n=3)
315 (4aPL) from 38.2 \pm 1.76 kDa (2aPL) (Fig. 7A, lane 5 and 6); however, the M_r did not
316 change before or after the 1/2G stage (Fig. 7A, lane 2 to 5).

317 Consistent with the above IB observation, the WMIHC analysis detected no apparent
318 Syp-positive signal in the sBL (Fig. 7B); however, small Syp-positive particles were
319 seen in a small number of ectodermal cells in the mBL (Fig. 7C). At the 1/2G stage, a
320 Syp-positive signal was faintly detected in the ectoderm (Fig. 7D). In contrast to these
321 younger embryos, the prism larvae displayed an increased number of Syp-positive cells
322 in the ectoderm (Fig. 7Ee-1, -2) and the blastocoel (Fig. 7Ff-1, -2). At the 2aPL stage,
323 patches of Syp-positive cells were retained in the ectoderm (Fig. 7Gg-1), while the
324 Syp-positive blastocoelar cells aligned to form fragmental strands on the basal side of
325 the ectoderm (Fig. 7Gg-2). At the 4aPL stage, the Syp-positive strand appeared on the
326 larval surface, particularly at the larval arms (arrows in Fig. 7H and Fig. 7Hh), which
327 indicated that these larval surface strands are the CBAS (Katow *et al.*, 2016). The
328 Syp-positive CBAS was terminated at the left and right side of the upper oral region

329 (Fig. 7Hh, arrowheads in dotted box), indicating that the circumoral CBAS does not
330 form a closed ring but forms an open ring at the periphery of the oral ectoderm. The
331 short strand of the blastocoelar Syp-positive cells was prominent at the upper oral
332 region (Fig. 7Hi, arrowhead). Thus, strand formation by the Syp-positive cells
333 developed considerably beginning with and following the 2aPL stage, both on the larval
334 body surface in the CBAS and in the blastocoel, which was consistent with a strong
335 Syp-positive band detected by IB (Fig. 7A).

336

337 *Comparative spatiotemporal expression pattern between GABA and Syp during*
338 *development*

339 Next, to examine the organization of Syp-expressing cells and the functional acquisition
340 of GABAergic properties by the CBAS, the GABA/Syp expression pattern was
341 analyzed by double-stained WMIHC during development.

342 Syp (Fig. 8A-1) and GABA (Fig. 8A-2) were not detected at the sBL stage (Fig.
343 8A-3). At the mBL stage, Syp-positive particles (Fig. 8B-1) were detected in the
344 cytoplasm of the ectodermal cells in association with a weak GABA signal (Fig. 8B-2).
345 Small cytoplasmic particles of Syp-positive signals were closely associated with
346 GABA-positive signals, and both signals converged moderately well (Fig. 8B-3). At the
347 1/2G stage, a small number of ectodermal cells expressed Syp in the cytoplasm (Fig.
348 8C-1). The intensity of the immunoreaction of the Syp-positive cytoplasmic area was
349 marginally stronger and regionally broader than that in younger embryos. Conversely,
350 the GABA-positive signal was weaker than the Syp-positive signal (Fig. 8C-2).
351 However, both positive signals appeared to converge at a similar cytoplasmic area (Fig.
352 8C-3).

353 In prism larvae, the number of Syp-expressing cells increased distinctively both in
354 the ectoderm and the blastocoel (Fig. 8D-1, inset). GABA expression accompanied the
355 increased Syp-positive signal and was detected more intensely than in the previous
356 developmental stages in the ectoderm (Fig. 8D-2) and the blastocoelar cells (Fig. 8D-2,
357 inset). However, these Syp and GABA signals were seemed not precisely co-localized
358 (Fig. 8D-3, arrow in inset), suggesting that the Syp-positive sites were not completely
359 shared with the GABA-positive sites.

360 At the 2aPL stage, while the body surface positive signals of Syp and GABA were
361 not co-localized (Fig. 8E-1-E-3, arrowheads), both signals appeared to converge in the
362 blastocoelar cells (Fig. 8E, Insets, arrow). At the 4aPL stage, the blastocoelar cells (Fig.
363 8F, small arrow) and the CBAS (Fig. 8F, arrow) appeared to co-express Syp and GABA

364 (Fig. 8F, arrow in insets). At the 6aPL stage, the Syp-positive signal in the CBAS and
365 GABA-positive signal in the CB were intensified (Fig. 8G-2, G-3, arrowhead in Insets).

366 At the 8aPL stage, the Syp-positive signal was further intensified in the CBAS of the
367 epaulets (Fig. 8H-1, Hh-1-1, arrow) and the larval arms (Fig. 8H-1, Hh-1-2, arrows).
368 The GABA-positive signal was also intensified in the CBAS (Fig. 8H-2, Hh-2-1,
369 Hh-2-2, arrows) and the CB of the epaulets (Fig. 8H-2, Hh-2-1, arrowhead) and the
370 CBAS of the larval arms (Fig. 8H-2, Hh-2-2, arrows). However, both signals were not
371 co-localized in the CB of the epaulets (Fig. 8H-3, Hh-3-1), while in the CBAS of
372 larval arm, both signals were co-localized (Fig. 8H-3, Hh-3-2).

373 Thus, GABA and Syp was not co-localized until the prism larva stage. Beginning
374 with the 2aPL stage, the blastocoelar cells acquired co-localization of both signals.
375 However, associated with the CBAS formation beginning with and following the 4aPL
376 stage, the GABA and Syp expression sites converged in the CBAS, while the CB did
377 not express Syp.

378

379 Discussion

380

381 Molecular properties of Sp-Syp

382 The higher apparent M_r of Sp-Syp (38 kDa) obtained by IB (Fig. 3A) compared to the
383 M_r calculated from the number of amino acids (28.8 kDa) may be due to the presence of
384 *N*-glycosylation sites, which affect the apparent M_r of Syp proteins by 12.4-21.4 %
385 (Wiedenmann, 1991). The same context could be applicable for approximately 20%
386 decline of M_r (approximately 30 kDa) at the 6aPL stage (Katow et al., 2016).
387 Glycosylation is reported to be essential for Syp function (Kwon & Chapman, 2011).
388 However, whether the slight increase of the M_r of Syp from the 2aPL stage to the 4aPL
389 stage (Fig. 4A) has any causal relationship to functional modification has not been
390 determined. Despite the prediction that Sp-Syp lacks a signal peptide sequence,
391 *N*-glycosylation of the mammalian Syp has been reported for the tunicamycin
392 digestion-induced decrease of the M_r of a Syp that also lacks a signal peptide
393 (Wiedenmann, 1991). Thus, the predicted absence of the signal peptide sequence may
394 not be important for *N*-glycosylation of Syp in general.

395 The isoelectric point of the Sp-Syp was predicted to be 5.69 (ExPASy Compute
396 pI/Mw tool), which is slightly higher than that of the rat Syp (4.8-4.3; Wiedenmann,
397 1991). The present observation of a slight increase of the relative molecular mass of Syp
398 at the 4aPL stage from the younger larvae (Fig. 4A) possibly involves a developmental
399 stage-dependent glycosylation modification of the protein (Scott & Panin 2014).

400 However, its functional and developmental significance in the ontogeny of the CBAS
401 and sea urchin larva remain to be elucidated.

402 The 194-amino acid MARVEL domain detected from ⁴⁷Gly to Ala²⁴⁰ in Sp-Syp (Fig.
403 1B) is consistent with known mammalian Syp as an archetypal member of the
404 MARVEL-domain family (Arthur & Stowell, 2007), and further implicates Sp-Syp as
405 an integral membrane protein. The domain also implicates Sp-Syp involvement in the
406 SNARE-regulated fusion and recycling of SV (Arthur & Stowell, 2007). In cultured
407 hippocampal neurons of E18 fetal rats, Syp is concentrated in puncta that correspond to
408 presynaptic vesicle-filled varicosities (Fletcher *et al.*, 1991), which are similar to the
409 Syp-positive puncta in the CBAS (Fig. 6B) and suggest a neurosecretory role (Scarfone
410 *et al.*, 1991) of the CBAS in GABA transmission in the sea urchin larva.

411 The apparent co-localization of Syp-positive and GABA-positive signals at the
412 puncta of the CBAS (Figs. 6H3, Hh-3-1, Hh-3-2) implicates the occurrence of
413 GABA-enclosed puncta of SV and/or EV. Furthermore, the decrease of the GABA
414 signal, both in the CBAS and the CB in the 3-MPA-treated larvae (Fig. 6C), strongly
415 suggests GABA neurosecretion from the GAD-expressing CBAS to the CB. GABA in
416 the CB is vital for maintaining larval swimming activity (Katow *et al.*, 2013).

417 Although GABA is predominantly synaptic (Vizi *et al.*, 2010), non-synaptic GABA
418 secretion, as in crustaceans (Pérez-Polanco *et al.*, 2011), may also occur in the CBAS.
419 That possibility can be unraveled by Syp-knockdown or knockout studies. However,
420 such studies proved to be unsuccessful due to redundant mechanisms of SV-associated
421 neurosecretion, namely, compensation by synaptogyrin, which is an equally rich
422 membrane protein in the SV (Abraham *et al.*, 2011). Thus, an analysis using
423 Syp/synaptogyrin double-knockout mice indicated a defect in SV endocytosis
424 (Spiwoks-Becker *et al.*, 2001), and such a study would likely be very informative for
425 understanding GABA transmission mechanism in the sea urchin CBAS. However, no
426 synaptogyrin gene has been identified in the *S. purpuratus* gene expression database
427 (<https://urchin.nidcr.nih.gov/blast/exp.html>) to date; therefore, Syp/synaptogyrin double
428 knockdown or knockout experiments may be inappropriate at present.

429

430 *Spatiotemporal expression pattern of Syp during development*

431 According to microarray analyses of Sp-Syp mRNA transcription activity, Sp-Syp
432 mRNA transcription is initiated at 2 h post-fertilization (2-hpf, during the first cleavage
433 period); however, that initiation period is followed by a period of low transcription
434 activity that encompasses the blastula stages and the 1/2G stage. Nevertheless, at
435 approximately 48-hpf (the late gastrula stage to the early prism stage), transcription

436 becomes high (*S. purpuratus* Genome Search, *S. purpuratus* Gene Expression;
437 [SPU_014316](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=SPU_014316) Expression; <https://www.ncbi.nlm.nih.gov/blast/exp.html>). Although the
438 mRNA and protein fluctuations are not well-correlated, due to the many factors
439 involved in both processes, such as the degradation and transcription rates of mRNA
440 compared to protein translation (Vogel & Marcotte, 2012), correlation between mRNA
441 and protein levels has been proposed when the protein measurements are revised
442 relative to the delay (Gedeon & Bokes, 2012). Accordingly, the apparently correlated
443 temporal Syp mRNA and protein expression patterns closely resemble those seen in the
444 Syp expression pattern of the rat spinal cord (Bergmann et al., 1991). Thus, the
445 fluctuating immunohistochemical Syp protein expression pattern detected by IB at the 1/2G
446 stage (Fig. 5A) may indicate correlation with Syp mRNA transcription, as shown by the
447 microarray expression pattern described above. It also could be related to the
448 maternal-to-zygotic transition (Lee et al., 2014) as has been reported RNA
449 sedimentation pattern change from the pre-gastrula stages to the post-gastrulation stages
450 during sea urchin development (Nemer, 1963). Further studies are yet to come.

451 Syp-expressing puncta formation has been reported in the boutons of GABAergic
452 neurons in the cat thalamus (Kultas-Ilinsky et al., 1985) and the axons of vertebrates,
453 including zebrafish (Meyer & Smith, 2006), rat (Fletcher et al., 1991), and mouse
454 (Harwell et al., 2016), and invertebrates, such as *Octopus* (Zhang et al., 2012) and
455 *Aplysia* (Jin et al. 2011). In the sea urchin embryos, the initial Syp-expressing cells are
456 not morphologically differentiated nervous cells in terms of axonal projection formation
457 and GABA expression (Fig. 5B-3). Rather, they are either patches of morphologically
458 unspecified small numbers of ectodermal cells or similarly unspecified sparsely isolated
459 blastocoelar cells. The number of Syp-expressing blastocoelar cells of the embryo is
460 considerably smaller than those that do not express the protein (Fig. 7F). Thus, Syp
461 expression may occur in a small subgroup of relatively unspecified ectodermal cells at
462 the blastula stage and then ingress into the blastocoel to constitute a small subgroup of
463 Syp-positive blastocoelar cells. The present WMIHC detected GABA expression in
464 some of the blastocoelar cells beginning with and following the prism stage (Fig. 5D).
465 This is apparently consistent with GAD-expressing cell formation before the CBAS
466 forms during the later developmental stages (Katow et al., 2014; Katow, 2015) and
467 suggests that Syp is expressed before the acquisition of neuronal morphological
468 properties in these cells. This also seems to be consistent with the previous report on the
469 ontogeny of Syp-expressing cell appearance in the central brain of *Drosophila* before
470 the actual appearance of morphological neuronal cells (Pech et al., 2015) and that in the

471 neuroepithelium of the rat spinal cord (*Bergmann et al., 1991*). In this regard, the
472 fundamental mechanism of Syp-expressing cell differentiation in the sea urchin may be
473 shared with vertebrates and invertebrates. However, a further detailed cell lineage
474 analysis remains to be conducted.

475 The resultant spatial segregation of GABA and Syp expression sites between the CB
476 and the CBAS at the late pluteus stage appeared to be involved in the
477 development-associated acquisition of the highly organized swimming regulation
478 mechanism of larvae (*Mogami et al., 1991; Katow et al., 2013*).

479

480 *Possible GABA signaling pathway from the CBAS to cilia in the CB*
481 The GAD-expressing GABA synthetic site in the CBAS and the
482 GABA_AR-expressing site in the CB are spatially segregated. The former also contains
483 Syp/GABA-positive puncta and the latter expresses GABA accompanied by a
484 GABA_AR-positive signal and GABA receptor-associated protein (GABARAP)-positive
485 signal (*Katow et al., 2013*). Furthermore, GABA is detected near the basal
486 body-specific γ -tubulin-expressing site (*Katow et al., 2013*). The localization of GABA
487 near the basal body has been confirmed by immunoelectron microscopy in the rat
488 oviduct (*Erdö et al., 1986*). In short, GABA, GABA_AR, and GABARAP are apparently
489 co-localized at the basal body of the cilia in the CB, which implies that GABA is
490 synthesized by GAD in the CBAS, packed into the Syp-expressing EV and transmitted
491 to the CB cells. In these CB cells, GABA that was transmitted into the cytoplasm may
492 bind to GABA_AR that transfers the signal first to GABARAP, which is a
493 microtubule-associated protein (MAP), and then to the basal body of the cilia (*Wang &*
494 *Olsen, 2000*). Since GABARAP binds to tubulin at its N-terminus, the MAP is thought
495 to connect GABA_AR with the cytoskeleton (*Wang & Olsen, 2000*) in the GABA signal
496 transmission pathway that promotes ciliary beating in the sea urchin larva. The
497 proposed GABA signaling pathway is summarized in Figure 9.

498

499 CONCLUSIONS

500 Syp is expressed from the mBL stage until the onset of the metamorphosis. The period
501 was interrupted around the 1/2G stage by declined Syp immunoreaction. At and after
502 the pluteus stage, Syp was distinctively expressed at the GAD/GABA-positive puncta.
503 In the CB, while GAD is not expressed, GABA_AR and GABARAP are expressed
504 closely to GABA-positive signal near the basal body of cilia. This suggests that Syp is

505 involved in GABA-enclosed EV formation in the CBAS, and that releases GABA to the
506 CB.

507

508 **Acknowledgements**

509 This study was supported by the Aomori Foundation for Research, Art and Culture
510 Promotion (No.147) to HK. This study was also partly supported by the Cooperative
511 Research Project Program of the Joint Usage/ Research Center at the Institute of
512 Development, Aging and Cancer, Tohoku University (No.34) to MK and HK.

513

514 **Additional Information:**

515 **Competing Interests**

516 The authors declare there are no competing interests.

517

518 **Author Contributions**

519 Hideki Katow conceived and designed the experiments, performed the experiments,
520 analyzed the data, wrote paper, prepared figures.

521 Hiromi Yoshida performed 3D image reconstruction.

522 Masato Kiyomoto raised larvae for the experiments.

523 Tomoko Katow performed experiments, reviewed draft of the paper.

524

525 **References**

526

527 **Abraham C, Bai L, Leube RE. 2011.** Synaptogyrin-dependent modulation of synaptic
528 neurotransmission in *Caenorhabditis elegans*. *Neuroscience* **190**: 75-88. DOI:
529 [10.1016/j.neuroscience.2011.05.069](https://doi.org/10.1016/j.neuroscience.2011.05.069).

530

531 **Aihara Y, Inoue T, Tashiro T, Okamoto K, Komiya Y, Mikoshiba K. 2001.**

532 Movement of endoplasmic reticulum in the living axon is distinct from other
533 membranous vesicles in its rate, form, and sensitivity to microtubule inhibitors.

534 *Journal of Neuroscience Research* **65**: 236-246.

535

536 **Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.**
537 **1997.** Gapped BLAST and PSI-BLAST: a new generation of protein database search
538 programs. *Nucleic Acids Research* **25:** 3389-3402.

539

540 **Arthur CP, Stowell MHB.** **2007.** Structure of synaptophysin: A hexameric
541 MARVEL-domain channel protein. *Structure* **15:** 707-714.

542

543 **Bergmann M, Lahr G, Mayerhofer A, Gratzl M.** **1991.** Expression of synaptophysin
544 during the prenatal development of the rat spinal cord: Correlation with basic
545 differentiation processes of neurons. *Neuroscience* **42:** 569-582.

546 **Calábria LK, Peixoto PMV, Lima ABP, Peixoto LG, de Moraes VRA, Teixeira RR,**
547 **dos Santos CT, e Silva LO, da Silva MFR, dos Santos AAD, Garcia-Cairasco N,**
548 **Martins AR, Espreafico EM, Espindola F.S.** **2011.** Myosins and DYNLL1/LC8 in
549 the honey bee (*Apis mellifera* L.) brain. *Journal of Insect Physiology* **57:** 1300-1311.

550

551 **Cameron RA, Samanta M, Yuan A, He D, Davidson E.** **2009.** SpBase: the sea urchin
552 genome database and web site. *Nucleic Acids Research* **37:** D750-D754.

553 [DOI:10.1093/nar/gkn887](https://doi.org/10.1093/nar/gkn887)

554 **Erdö SL, Somogyi J, Hámori J, Amenta F.** **1986.** Light- and electron-microscopic
555 visualization of gamma-aminobutyric acid and GABA-transaminase in the oviduct of
556 rats. Predominant occurrence in epithelium. *-Cell and Tissue Research* **244:** 621-662.

557

558 **Fletcher TL, Cameron P, De Camilli P, Banker G.** **1991.** The distribution of synapsin
559 I and synaptophysin in hippocampal neurons developing in culture. *The Journal of*
560 *Neuroscience* **11:** 1617-1626.

561

562 **Gedeon T, Bokes P.** **2012.** Delayed protein synthesis reduces the correlation between
563 mRNA and protein fluctuations. *Biophysical Journal* **103:** 377-385

564

565 **Harwell CS, Coleman MP.** **2016.** Synaptophysin depletion and intraneuronal A β in
566 organotypic hippocampal slice cultures from huAPP transgenic mice. *Molecular*
567 *Neurodegeneration* **11:** 44 [DOI: 10.1186/s13024-016-0110-7](https://doi.org/10.1186/s13024-016-0110-7)

568 **Jahn R, Schiebler W, Ouimet C, Greengard P. 1985.** A 38,000-dalton membrane
569 protein (p38) present in synaptic vesicles. *Proceedings of the National Academy of*
570 *Sciences of the United States of America* **82**:4131-4141.

571 **Jin I, Udo H, Hawkins RD. 2011.** Rapid increase in clusters of synaptophysin at onset
572 of homosynaptic potentiation in Aplysia. *Proceedings of the National Academy of*
573 *Sciences of the United States of America* **108**: 1656–1166.

574

575 **Katow H, Suyemitsu T, Ooka S, Yaguchi J, Jin-nai T, Kuwahara I, Katow T,**
576 **Yaguchi S, Abe H. 2010.** Development of a dopaminergic system in sea urchin
577 embryos and larvae. *Journal of Experimental Biology* **213**: 2808-2819.

578 **Katow H, Abe K, Katow T, Zamani A, Abe H. 2013.** Development of the
579 GABA-ergic signaling system and its role in larval swimming in the sea urchin.
580 *Journal of Experimental Biology* **216**: 1704-1716. DOI:10.1242/jeb.074856

581

582 **Katow H, Katow T, Abe K, Ooka S, Kiyomoto M, Hamanaka G. 2014.**
583 Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme
584 cells of sea urchin larvae. *Biology Open* **3**: 94-102.

585

586 **Katow H. 2015.** Evolution and adaptation of tissue barriers: The quest for new models
587 and mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos.
588 *Tissue Barriers* **3**: 4, e1059004-1-23. DOI:10.1080/21688370.2015.1059004

589

590 **Katow H, Katow T, Yoshida H, Kiyomoto M, Uemura I. 2016.**
591 Immunohistochemical and ultrastructural properties of the ciliary band-associated
592 strand (CBAS) in sea urchin *Hemicentrotus pulcherrimus* larva. *Frontiers in Zoology*
593 **13**: 27 DOI: 10.1186/s12983-016-0159-8

594

595 **Kiyomoto M, Hamanaka G, Hirose M, Yamaguchi M. 2014.** Preserved echinoderm
596 gametes as a useful and ready-to-use bioassay material. *Marine Environmental*
597 *Research* **93**: 102-105. DOI: 10.1016/j.marenvres.2013.08.014.

598

599 **Kudtarkar P, Cameron RA. 2017.** Echinobase: an expanding resource for echinoderm
600 genomic information. *Database (Oxford)* **1**: 2017 DOI: 10.1093/database/bax074

601 **Kultas-Ilinsky K, Ribak CE, Peterson GM, Oertel WH. 1985.** A Description of the
602 GABAergic neurons and axon terminals in the motor nuclei of the cat thalamus.
603 *Journal of Neuroscience* **5**: 1346-1369.

604

605 **Kwon SE, Chapman ER. 2011.** Synaptophysin regulates the kinetics of synaptic
606 vesicle endocytosis in central neurons. *Neuron* **9**: 847-854. DOI:
607 [10.1016/j.neuron.2011.04.001](https://doi.org/10.1016/j.neuron.2011.04.001).

608

609 **Lee MT, Bonneau AR, Giraldez AJ., 2014.** Zygotic genome activation during the
610 maternal-to-zygotic transition. *Annual Review of Cell and Developmental Biology* **30**:
611 581–613. DOI:[10.1146/annurev-cellbio-100913-013027](https://doi.org/10.1146/annurev-cellbio-100913-013027).

612 **McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, Südhof
613 TC.1996.** Synaptophysin, a major synaptic vesicle protein, is not essential for
614 neurotransmitter release. *Proceedings of the National Academy of Sciences of the
615 United States of America* **93**: 4760–4764.

616 **Nemer M. 1963.** Old and new RNA in the embryogenesis of the purple sea urchin.
617 *Proceedings of the National Academy of Sciences of the United States of America* **50**:
618 230-235.

619 **Meyer MP, Smith SJ. 2006.** Evidence from *In Vivo* Imaging That Synaptogenesis
620 Guides the Growth and Branching of Axonal Arbors by Two Distinct Mechanisms.
621 *Journal of Neuroscience* **26**: 3604 –3614.

622 **Mogami Y, Fujima K, Baba SA. 1991.** Five different states of ciliary activity in the
623 epaulette of echinoplutei. *Journal of Experimental Biology* **155**: 65-75.

624

625 **Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A. 2015.** Optical dissection of
626 experience-dependent pre- and postsynaptic plasticity in the *Drosophila* brain. *Cell
627 Reports* **10**: 2083–2095.

628

629 **Pérez-Polanco P, Garduño J, Cebada J, Zarco N, Segovia J, Lamas M, García U.
630 2011.** GABA and GAD expression in the X-organ sinus gland system of the
631 *Procambarus clarkii* crayfish: inhibition mediated by GABA between X-organ
632 neurons. *Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and
633 Behavioral Physiology* **197**: 923-938. DOI: [10.1007/s00359-011-0653-6](https://doi.org/10.1007/s00359-011-0653-6).

634

635 **Rabelo ÉML, Franco GR, Azevedo VCA, Pena HB, Santos TM, Meira WSF,**
636 **Rodrigues NA, Ortega JM, Pena ADJ.** 1997. Update of the gene discovery program
637 in *Schistosoma mansoni* with the expressed sequence Tag approach. *The Memórias do*
638 *Instituto Oswaldo Cruz* **92**: 625-629.

639

640 **Scarfone E, Demêmes D, Sans A.** 1991. Synapsin I and Synaptophysin Expression
641 during Ontogenesis of the. Mouse Peripheral Vestibular System. *Journal of*
642 *Neuroscience* **11**: 1173-1181.

643 **Scott, H., and Panin, V. M.** 2014. N-glycosylation in Regulation of the Nervous
644 System. *The Advances in Neurobiology* **9**: 367–394.
645 DOI:[10.1007/978-1-4939-1154-7_17](https://doi.org/10.1007/978-1-4939-1154-7_17).

646 **Sethi M, Mishra S, Kaul JM, Vasudeva N.** 2013. Morphogenesis and maturation of
647 synapses in developing human cochlear ganglion. *Journal of Morphological Science*
648 **30**: 289-298.

649

650 **Simeone TA, Donevan SD, Rho JM.** 2003. Molecular Biology and Ontogeny of
651 γ -Aminobutyric Acid (GABA) Receptors in the Mammalian Central Nervous System.
652 *Journal of Child Neurology* **18**: 39 DOI:[10.1177/08830738030180012101](https://doi.org/10.1177/08830738030180012101)

653 **Soliman S.** 1983. Pharmacological control of ciliary activity in the young sea urchin
654 larva. Effects of monoaminergic agents. *Comparative Biochemistry and Physiology -*
655 *Part C: Toxicology & Pharmacology* **767**: 181-191.

656 **Spiwoks-Becker I, Vollrath L, Seeliger MW, Jaissle G, Eshkind LG, Leube RE.**
657 **2001.** Synaptic vesicle alterations in rod photo- receptors of synaptophysin-deficient
658 mice. *Neuroscience* **107**: 127– 142.

659 **Stevens RJ, Akbergenova Y, Jorquer RA, Littleton JT.** 2012. Abnormal Synaptic
660 Vesicle Biogenesis in *Drosophila Synaptogyrin* Mutants. *Journal of Neuroscience* **32**:
661 18054–18067. DOI:[10.1523/JNEUROSCI.2668-12.2012](https://doi.org/10.1523/JNEUROSCI.2668-12.2012).

662

663 **Strathman RR, Grünbaum D.** 2006. Good eaters, poor swimmers: compromises in
664 larval form. *Integrative and Comparative Biology* **46**: 312-322. DOI:
665 DOI:[10.1093/icb/icj031](https://doi.org/10.1093/icb/icj031).

666

667 **Teng L, Tang Y-B, Sun F, An S-M, Zhang C, Yang X-J, Lv H-Y, Lu Q, Cui Y-Y, Hu J-J, Zhu L, Chen H-Z.** 2013. Non-Neuronal Release of Gamma-Aminobutyric

668 Acid by Embryonic Pluripotent Stem Cells. *Stem Cells and Development* **22**:

669 2944-2953. DOI: [10.1089/scd.2013.0243](https://doi.org/10.1089/scd.2013.0243)

670

671 **Van der Heyden JAM, Korf J.** 1978. Regional levels of GABA in the brain: rapid

672 semiautomated assay and prevention of postmortem increase by 3-mercaptop-

673 propionic acid. *Journal of Neurochemistry* **31**: 197-203.

674

675 **Vizi ES, Fekete A, Karoly R, Mike A.** 2010. Non-synaptic receptors and transporters

676 involved in brain functions and targets of drug treatment. *British Journal of*

677 *Pharmacology* **160**: 785-809. DOI: [10.1111/j.1476-5381.2009.00624.x](https://doi.org/10.1111/j.1476-5381.2009.00624.x)

678

679 **Vogel C, Marcotte EM.** 2012. Insights into the regulation of protein abundance from

680 proteomic and transcriptomic analyses. *Nature Review Genetics* **13**: 227–232.

681 DOI: [10.1038/nrg3185](https://doi.org/10.1038/nrg3185).

682

683 **Wang H, Olsen RW.** 2000. Binding of the GABA(A) receptor-associated protein

684 (GABARAP) to microtubules and microfilaments suggests involvement of the

685 cytoskeleton in GABARAP-GABA_A receptor interaction. *Journal of Neurochemistry*

686 **275**: 644-655.

687

688 **Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE.** 1986. Synaptophysin: a

689 marker protein for neuroendocrine cells and neoplasms. *Proceedings of the National*

690 *Academy of Sciences of the United States of America* **83**: 3500-3504.

691

692 **Wiedenmann B.** 1991. Synaptophysin: A widespread constituent of small

693 neuroendocrine vesicles and a new tool in tumor diagnosis. *Acta Oncologica* **30**:

694 435-440. DOI: [10.3109/02841869109092398](https://doi.org/10.3109/02841869109092398)

695

696 **Yaguchi S, Kanoh K, Amemiya S, Katow H.** 2000. Initial analysis of

697 immunochemical cell surface properties, location and formation of the serotonergic

698 apical ganglion in sea urchin embryos. *Development Growth & Differentiation* **42**:

699 479-488.

698 **Yaguchi S, Katow H. 2003.** Expression of Tryptophan 5-Hydroxylase Gene during Sea
699 Urchin Neurogenesis and Role of Serotonergic Nervous System in Larval Behavior.
700 *Journal of Comparative Neurology* **466**: 219-229.

701 **Zamani A. 2012.** Role of cytokinetic factors in the formation of epaulets, a set of
702 ciliary bands in the trunk region, during late pluteus stages in sea urchin. Master of
703 Life Sciences Thesis, Tohoku University. B1BM2601.

704

705 **Zhang X, Mao Y, Huang Z, Qu M, Chen J, Ding S, Hong J, Sun T. 2012.**
706 Transcriptome analysis of the *Octopus vulgaris* central nervous system. *PLoS ONE*
707 7: e40320. DOI:10.1371/journal.pone.0040320
708

709 **Figure Legends**

710

711 **Fig. 1.** Primary structure of Sp-Syp protein and *N*-glycosylation sites (red letters). Blue
712 letters; lower possibility of *N*-glycosylation. Blue box; antigen peptide region, Red
713 letter; *N*-glycosylation sites.

714

715 **Fig. 2. Anti-Sp-GAD antibody (Ab) validation.** (A) ELISA assay. The antibody titer
716 is predicted to be sufficient until 1:16,000 dilution. Preimmune serum binding to the
717 peptide is negligible throughout the all dilution ratios tested. (B) Whole-mount
718 immunohistochemistry shows anti-Sp-GAD Ab binding at the ciliary band-associated
719 strand (green) of 6-arm pluteus larva. (C) WMIHC of preimmune serum shows no
720 positive signal throughout the larval body of 6-arm pluteus. Scale bars, 100 μ m.

721

722 **Fig. 3. Secondary structures of Sp-Syp protein.** Predicted four-transmembrane
723 domain helices (TM, red bars). Blue box near the C-terminus; antigen peptide location.
724 Inside, Inside the endoplasmic vesicle. Outside, Cytoplasmic region.

725

726 **Fig. 4. Anti-Sp-Syp antibody validation.** (A) Immunoblotting of a 4-arm plutei (4aPL)
727 lysate by anti-Sp-Syp antibody (Ab) detected a band at approximately 38 kDa (lane 1,
728 arrow), whereas preimmune serum was negative (lane 2). (B) Whole-mount
729 immunohistochemistry of a 4aPL by the Ab detected strand features at the larval arms
730 (arrow) and in the blastocoel (arrowheads). (C) Preimmune serum applied to a 6aPL
731 was negative. (D) Higher magnification of the post-oral arms of the antibody applied to
732 a 4aPL indicates anti-Syp Ab-positive puncta at a single strand along the larval arms
733 (arrowheads) with four perikarya (arrows). Scale bars, 75 μ m (B), 100 μ m (C) and 25
734 μ m (D).

735

736 **Fig. 5. Decreased expression of GABA in the ciliary band (CB) and the ciliary**
737 **band-associated strand (CBAS) in a 3-MPA-treated 8-arm pluteus (8aPL)**
738 **triple-stained for GAD (green), GABA (red) and nuclei (blue).** (A) Left side view of
739 a control 8aPL. GAD-positive signal was detected in the CBAS of the larval arms,
740 including the epaulette (dotted box) (A-1). The CBAS is also GABA-positive (A-2,
741 A-3). Insets, higher magnification of the epaulette shown by a dotted box in the main
742 frame. Arrow, the CBAS. Vertical line, the CB region. (B) 3D reconstruction image of
743 the triple-stained epaulette region shown by insets of (A). Vertical line, the CB region.
744 (Bb-1~Bb-3) 0.46 μ m-thick optical cross-section of the 3D reconstructed CBAS at the

745 dotted line (b) in (B). (b-1) GAD/nuclei stained image. (b-2) GABA/nuclei stained
746 image. (b-3) Merged image between (b-1) and (b-2). (C) a 3-MPA-treated 8aPL. (C-1),
747 GAD/nuclei double-stained. (C-2), GABA/nuclei double-stained. (C-3), merged image
748 between (C-1) and (C-2). Insets, higher magnification of the epaulette shown by a
749 dotted box in the main frame. Arrow, CBAS. Arrowhead, CB. Stm, stomach. Scale bars,
750 100 μ m (A-1, C-1), 10 μ m (A, inset, B), 20 μ m (C-1, inset).

751

752 **Fig. 6. Oral view of an 8aPL showing GAD (red)-expressing CBAS and GABA_AR
753 (green)-expressing CB at the epaulette. (A) GAD/nuclei double-stained image. (B)**
754 GABA_AR/nuclei double-stained image of the same area as (A). (C) Merged image
755 between (A) and (B). Bottom row images are a higher magnification of the box in the
756 main frame. Arrows, the CBAS. Arrowheads, the CB. Scale bars, 100 μ m (A) and 25
757 μ m [inset of (A)].

758

759 **Fig. 7. Spatiotemporal Syp expression pattern by immunoblotting (A) and
760 whole-mount immunohistochemistry (B-H). (A) Sequential expression pattern of the**
761 anti-Syp antibody-positive band from the mesenchyme blastula stage (lane 2, mBL),
762 through the prism larval stage (lane 4, Prism), a 2-arm pluteus stage (lane 5, 2aPL), and
763 a 4-arm pluteus stage (lane 6, 4aPL), but not at the swimming blastula stage (lane 1,
764 sBL) and 1/2G stage (lane 3). (B) Swimming blastula. Syp-positive signal was not
765 detected. (C) Mesenchyme blastula. Inset, higher magnification image at the box of the
766 main frame showing small Syp-positive particles near the nuclei. (D) 1/2G. Smeared
767 faint Syp-positive cytoplasmic signal was detected. Inset, higher magnification image of
768 the box in the main frame. (E) Surface view of the left side of a prism larva. Inset (e-1),
769 higher magnification of the box (e-1) in the main frame. Two ectodermal cells indicate
770 weak positive signal near the nuclei. Inset (e-2), higher magnification of the box (e-2) in
771 the main frame. Four ectodermal cells indicate strong positive signal around the nucleus.
772 (F) Optical cross section of the (E) Syp-positive coelomic cells near the archenteron (ar).
773 Inset (f-1, f-2), higher magnification of blastocoelar cells with strong cytoplasmic
774 Syp-positive signal. (G) Oral view of a 2aPL. Inset (g-1), Syp-positive ectodermal cells.
775 Inset (g-2), Syp-positive blastocoelar cells. Insets are higher magnification of the cells
776 shown by the boxes in the main frame. (H) Oral view of a 4aPL. Arrow, the ciliary
777 band-associated strand (CBAS) on the larval arms. Arrowhead, blastocoelar
778 Syp-positive cell strand. mo, larval mouth. Inset (h), higher magnification of the box (h)
779 in the main frame shows the CBAS with perikarya (arrows). Arrowheads, left and right
780 terminals of the CBAS. Inset (i), 24 μ m inside of the blastocoel of the oral lobe shown

781 by a box in (h). Arrowhead, Syp-positive blastocoelar cells. Scale bars, 25 μ m (B, D),
782 50 μ m (E, F, G), 100 μ m (H).

783

784 **Fig. 8. Spatiotemporal expression gap between Syp (green) and GABA (red)**
785 **during development.** (A) Swimming blastula (sBL). Syp and GABA were not detected.
786 (B) Mesenchyme blastula (mBL). Small cytoplasmic Syp-positive particles (B-1) were
787 accompanied by a faint GABA-positive area (B-2, B-3). Insets, higher magnification
788 images of the box in the main frame. (C) Gastrulation half-completed gastrula (1/2G).
789 Syp-positive cytoplasmic signal spread broader than in the mBL (C-1), which was
790 accompanied by smeared GABA-positive area (C-2, C-3). Insets, higher magnification
791 images of the box in the main frame. Arrow in insets, GABA-positive signal near
792 Syp-positive area. (D) Optical cross section of a prism larva showing blastocoelar cells
793 near the blastopore (Bp). Syp-positive signal in an ectodermal cell was evident in the
794 cytoplasm (D-1), which was accompanied by GABA-positive signal (D-2, D-3). Inset,
795 higher magnification of the area shown by the main frame. Arrow in insets,
796 GABA-positive signal was accompanied by Syp-positive signal. (E) Oral view of an
797 early 2-arm pluteus (2aPL). Positive signals of GABA and Syp in an ectodermal cell
798 were not co-localized (arrowheads), while in the fragmental strand of blastocoelar cells
799 these two positive signals were co-localized (arrow in Inset of E-1 for Syp, Insets of E-2
800 for GABA, and E-3 for merged image). Inset, higher magnification image of optical
801 cross section showing blastocoelar cell strands at the area shown by the box in the main
802 frame. (F) Oral view of a 4-arm pluteus (4aPL). Arrow, postoral ciliary band-associated
803 strand (CBAS). Small arrow, blastocoelar cells. Arrowhead, GABA-positive stomach.
804 Insets, higher magnification of the post-oral CBAS shown by the boxes in the main
805 frames. Arrows, CBAS. Arrowheads, ciliary band (CB). (G) Oral view of a 6-arm
806 pluteus (6aPL). Arrows, CBAS. Asterisks, Syp-positive blastocoelar cells. Insets, higher
807 magnification of the epaulet shown by the boxes in the main frame. Arrow, CBAS.
808 Arrowhead, CB. (H) Aboral view of an 8-arm pluteus (8aPL). Inset (h-1-1) to (h-3-2),
809 higher magnification of epaulet (h-1-1, h-2-1, and h-3-1) and posterodorsal arm (h-1-2,
810 h-2-2, and h-3-2) indicated by the boxes in the main frame. Arrows, CBAS.
811 Arrowheads, CB. Stm, stomach. Scale bars, 25 μ m (A-E), 5 μ m (D-1 inset), 100 μ m (F,
812 G), 200 μ m (H).

813

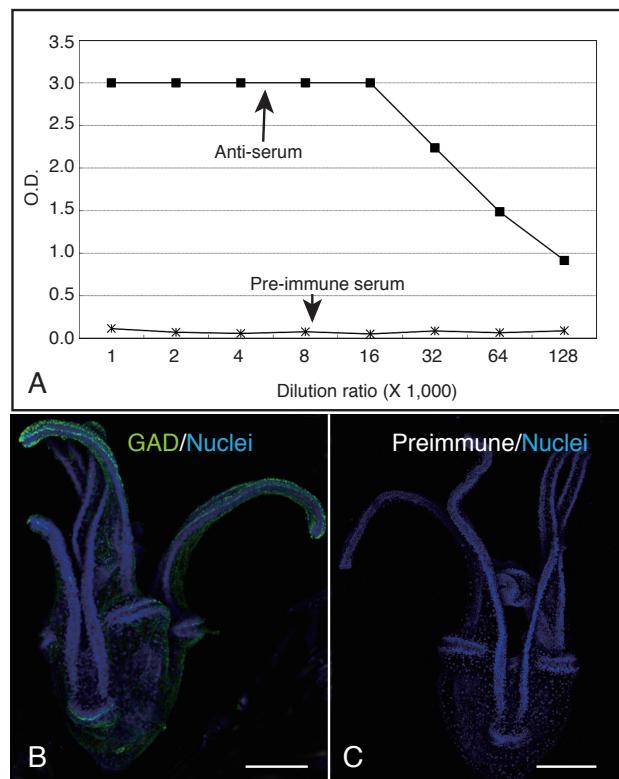
814 **Fig. 9. Summary of predicted GABAergic signal transmission pathway to the**
815 **ciliary band and cilia.** The present and previous studies suggest the contribution of

816 GAD in the ciliary band-associated strand (CBAS) to larval swimming through
817 transmission of GABA via synaptophysin-containing endoplasmic vesicles (EV) to the
818 ciliary band cells. Then, GABA transmitted to the cytoplasm of the CB cells binds to
819 GABA_AR near the basal body, and then, GABA_AR transmits the signal to GABARAP
820 and tubulin in the cilia of the basal body.
821
822

Figure 1(on next page)

Primary structure of Sp-Syp protein and N-glycosylation sites.

Blue letters; lower possibility of N-glycosylation. Blue box; antigen peptide region, Red letter; N-glycosylation sites.


Fig. 1. Katow et al

1 MDPDPALDKASAYPNEPAPMSQGAPPASGAGGTAQEYRLRVLMEPRGFLRAIEFILAVCM 60
61 FATTAGYATSYSFTASCAAG HTYKDVMPFRIESNALPALCNSTTAPVVSSNPSGSAQF 120
121 FVAVGVLAMLYTIGSLLWYVIYEARYPEKEIHVCDLVFTGVFVLLFFISSCAWAAGLND 180
181 VKYWTNFGNLMSNPTVYGGQTCTAPVTCEVTSPKYSSLNFSVVFGFLNTIVWGGNMWFIA 240
A 241 KETTWFKQRMENKAGGAAAGANPNTV 266

Figure 2(on next page)

Anti-Sp-GAD antibody (Ab) validation.

(A) ELISA assay. The antibody titer is predicted to be sufficient until 1:16,000 dilution. Preimmune serum binding to the peptide is negligible throughout the all dilution ratios tested. (B) Whole-mount immunohistochemistry shows anti-Sp-GAD Ab binding at the ciliary band-associated strand (green) of 6-arm pluteus larva. (C) WMIHC of preimmune serum shows no positive signal throughout the larval body of 6-arm pluteus. Scale bars, 100 μ m.

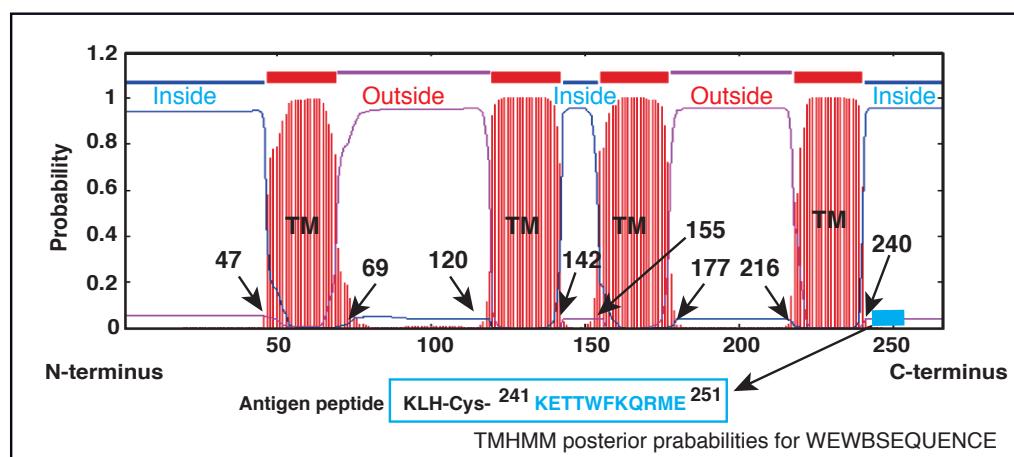


Figure 3(on next page)

Secondary structures of Sp-Syp protein.

Predicted four-transmembrane domain helices (TM, red bars). Blue box near the C-terminus; antigen peptide location. Inside, Inside the endoplasmic vesicle. Outside, Cytoplasmic region.

Fig. 3. Katow et al.

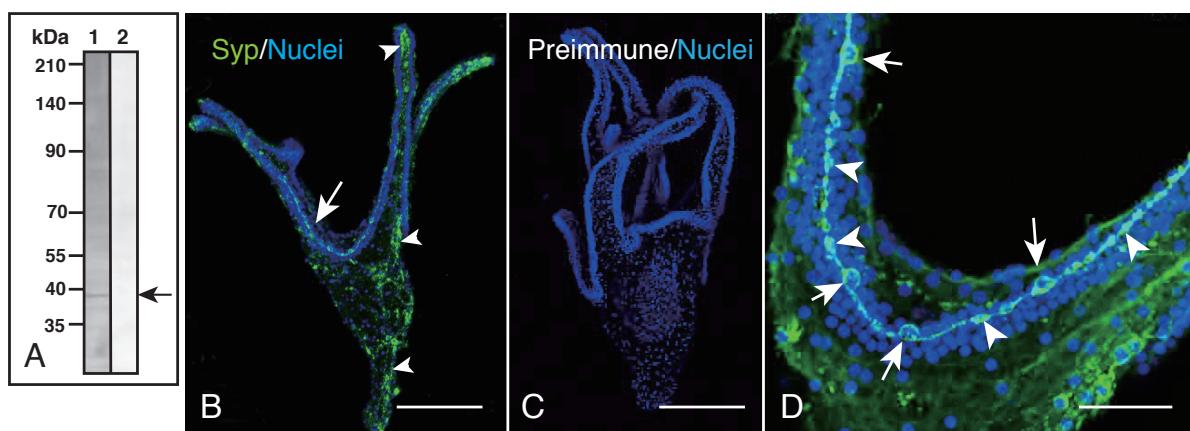


Figure 4(on next page)

Anti-Sp-Syp antibody validation.

(A) Immunoblotting of a 4-arm plutei (4aPL) lysate by anti-Sp-Syp antibody (Ab) detected a band at approximately 38 kDa (lane 1, arrow), whereas preimmune serum was negative (lane 2). (B) Whole-mount immunohistochemistry of a 4aPL by the Ab detected strand features at the larval arms (arrow) and in the blastocoel (arrowheads). (C) Preimmune serum applied to a 6aPL was negative. (D) Higher magnification of the post-oral arms of the antibody applied to a 4aPL indicates anti-Syp Ab-positive puncta at a single strand along the larval arms (arrowheads) with four perikarya (arrows). Scale bars, 75 μ m (B), 100 μ m (C) and 25 μ m (D).

Fig. 4. Katow et al

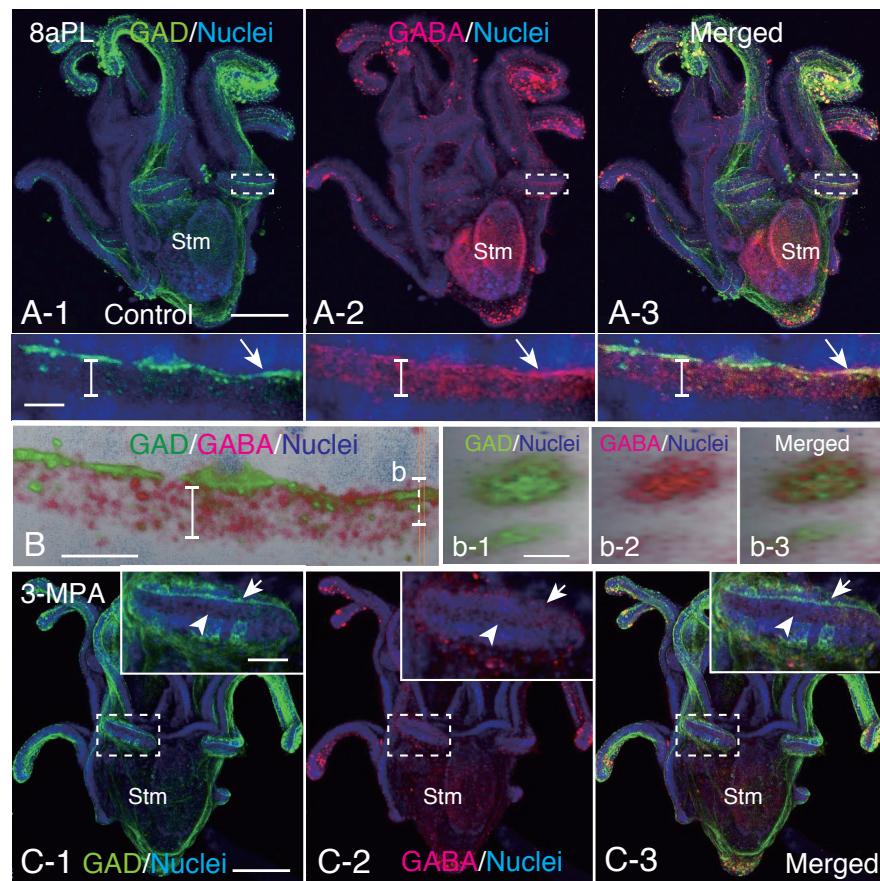


Figure 5(on next page)

Decreased expression of GABA in a 3-MPA-treated 8-arm pluteus.

(A) Left side view of a control 8aPL. GAD-positive signal was detected in the CBAS of the larval arms, including the epaulette (dotted box) (A-1). The CBAS is also GABA-positive (A-2, A-3). Insets, higher magnification of the epaulette shown by a dotted box in the main frame. Arrow, the CBAS. Vertical line, the CB region. (B) 3D reconstruction image of the triple-stained epaulette region shown by insets of (A). Vertical line, the CB region. (Bb-1~Bb-3) 0.46 μ m-thick optical cross-section of the 3D reconstructed CBAS at the dotted line (b) in (B). (b-1) GAD/nuclei stained image. (b-2) GABA/nuclei stained image. (b-3) Merged image between (b-1) and (b-2). (C) a 3-MPA-treated 8aPL. (C-1), GAD/nuclei double-stained. (C-2), GABA/nuclei double-stained. (C-3), merged image between (C-1) and (C-2). Insets, higher magnification of the epaulette shown by a dotted box in the main frame. Arrow, CBAS. Arrowhead, CB. Stm, stomach. Scale bars, 100 μ m (A-1, C-1), 10 μ m (A, inset, B), 20 μ m (C-1, inset).

Fig. 5. Katow et al

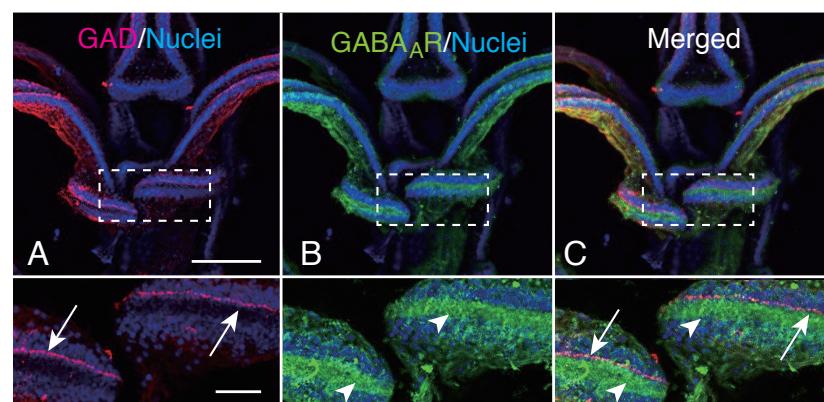


Figure 6(on next page)

An 8aPL showing GAD-expressing CBAS and GABAAR-expressing CB.

(A) GAD/nuclei double-stained image. (B) GABAAR/nuclei double-stained image of the same area as (A). (C) Merged image between (A) and (B). Bottom row images are a higher magnification of the box in the main frame. Arrows, the CBAS. Arrowheads, the CB. Scale bars, 100 μ m (A) and 25 μ m [inset of (A)].

Fig. 6. Katow et al.

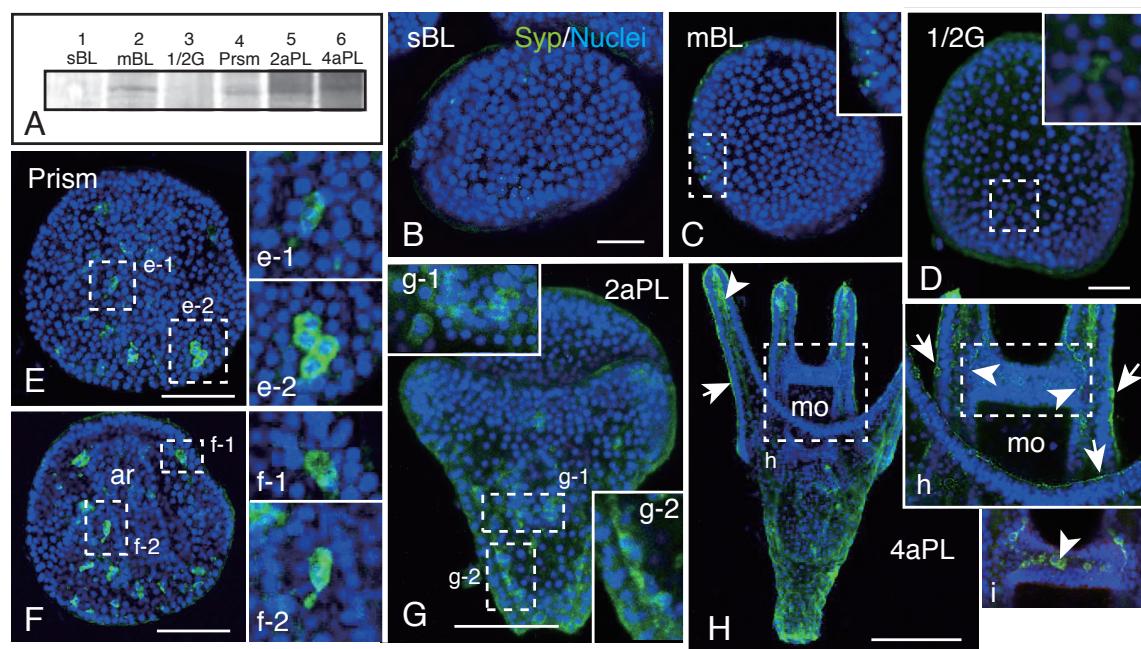


Figure 7(on next page)

Spatiotemporal Syp expression pattern.

(A) Sequential expression pattern of the anti-Syp antibody-positive band from the mesenchyme blastula stage (lane 2, mBL), through the prism larval stage (lane 4, Prism), a 2-arm pluteus stage (lane 5, 2aPL), and a 4-arm pluteus stage (lane 6, 4aPL), but not at the swimming blastula stage (lane 1, sBL) and 1/2G stage (lane 3). (B) Swimming blastula. Syp-positive signal was not detected. (C) Mesenchyme blastula. Inset, higher magnification image at the box of the main frame showing small Syp-positive particles near the nuclei. (D) 1/2G. Smeared faint Syp-positive cytoplasmic signal was detected. Inset, higher magnification image of the box in the main frame. (E) Surface view of the left side of a prism larva. Inset (e-1), higher magnification of the box (e-1) in the main frame. Two ectodermal cells indicate weak positive signal near the nuclei. Inset (e-2), higher magnification of the box (e-2) in the main frame. Four ectodermal cells indicate strong positive signal around the nucleus. (F) Optical cross section of the (E) Syp-positive coelomic cells near the archenteron (ar). Inset (f-1, f-2), higher magnification of blastocoelar cells with strong cytoplasmic Syp-positive signal. (G) Oral view of a 2aPL. Inset (g-1), Syp-positive ectodermal cells. Inset (g-2), Syp-positive blastocoelar cells. Insets are higher magnification of the cells shown by the boxes in the main frame. (H) Oral view of a 4aPL. Arrow, the ciliary band-associated strand (CBAS) on the larval arms. Arrowhead, blastocoelar Syp-positive cell strand. mo, larval mouth. Inset (h), higher magnification of the box (h) in the main frame shows the CBAS with perikarya (arrows). Arrowheads, left and right terminals of the CBAS. Inset (i), 24 μ m inside of the blastocoel of the oral lobe shown by a box in (h). Arrowhead, Syp-positive blastocoelar cells. Scale bars, 25 μ m (B, D), 50 μ m (E, F, G), 100 μ m (H).

Fig. 7. Katow et al.

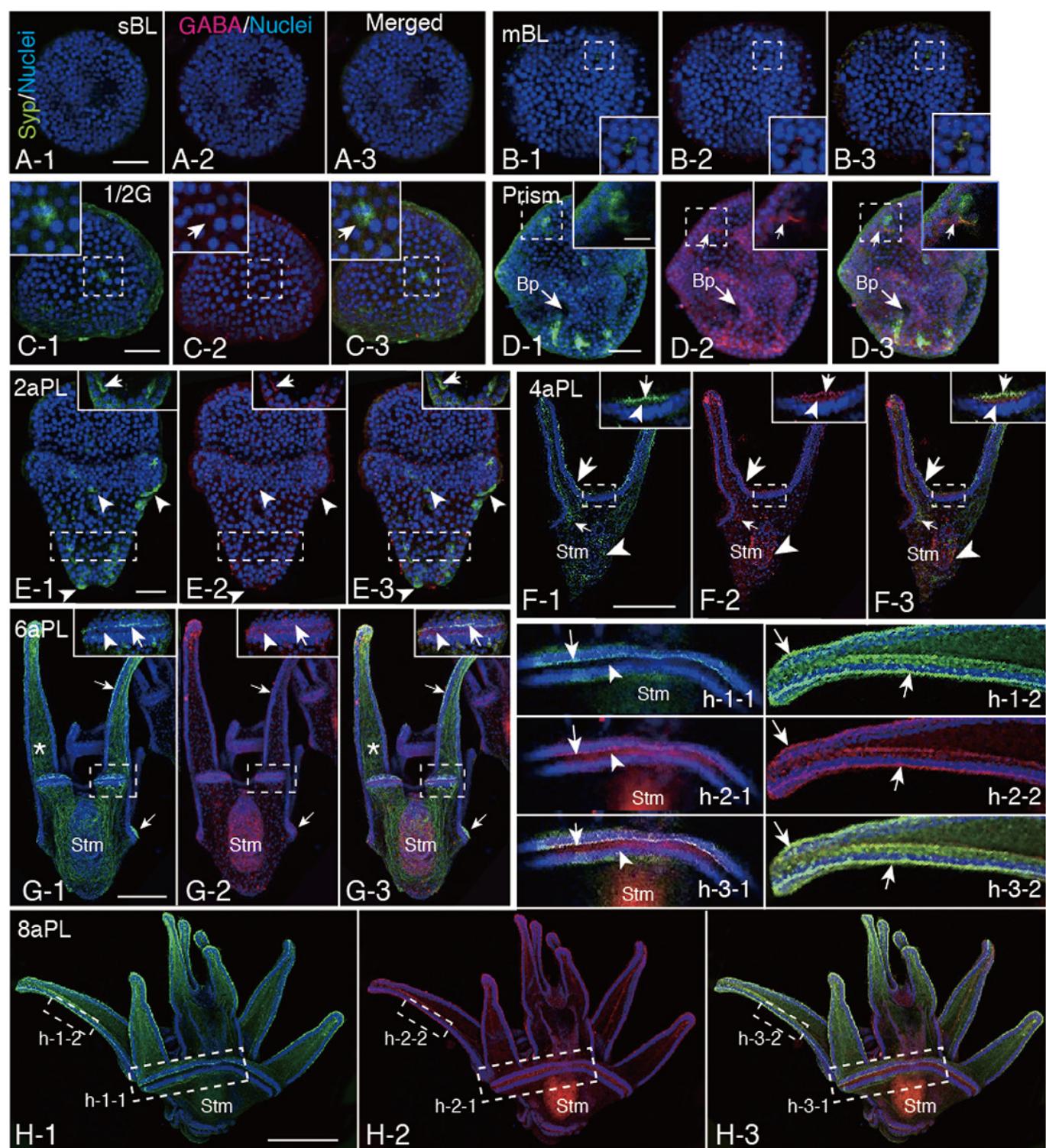


Figure 8

Spatiotemporal expression gap between Syp and GABA.

(A) Swimming blastula (sBL). Syp and GABA were not detected. (B) Mesenchyme blastula (mBL). Small cytoplasmic Syp-positive particles (B-1) were accompanied by a faint GABA-positive area (B-2, B-3). Insets, higher magnification images of the box in the main frame. (C) Gastrulation half-completed gastrula (1/2G). Syp-positive cytoplasmic signal spread broader than in the mBL (C-1), which was accompanied by smeared GABA-positive area (C-2, C-3). Insets, higher magnification images of the box in the main frame. Arrow in insets, GABA-positive signal near Syp-positive area. (D) Optical cross section of a prism larva showing blastocoelar cells near the blastopore (Bp). Syp-positive signal in an ectodermal cell was evident in the cytoplasm (D-1), which was accompanied by GABA-positive signal (D-2, D-3). Inset, higher magnification of the area shown by the main frame. Arrow in insets, GABA-positive signal was accompanied by Syp-positive signal. (E) Oral view of an early 2-arm pluteus (2aPL). Positive signals of GABA and Syp in an ectodermal cell were not co-localized (arrowheads), while in the fragmental strand of blastocoelar cells these two positive signals were co-localized (arrow in Inset of E-1 for Syp, Insets of E-2 for GABA, and E-3 for merged image). Inset, higher magnification image of optical cross section showing blastocoelar cell strands at the area shown by the box in the main frame. (F) Oral view of a 4-arm pluteus (4aPL). Arrow, postoral ciliary band-associated strand (CBAS). Small arrow, blastocoelar cells. Arrowhead, GABA-positive stomach. Insets, higher magnification of the post-oral CBAS shown by the boxes in the main frames. Arrows, CBAS. Arrowheads, ciliary band (CB). (G) Oral view of a 6-arm pluteus (6aPL). Arrows, CBAS. Asterisks, Syp-positive blastocoelar cells. Insets, higher magnification of the epaulet shown by the boxes in the main frame. Arrow, CBAS. Arrowhead, CB. (H) Aboral view of an 8-arm pluteus (8aPL). Inset (h-1-1) to (h-3-2), higher magnification of epaulet (h-1-1, h-2-1, and h-3-1) and posterodorsal arm (h-1-2, h-2-2, and h-3-2) indicated by the boxes in the main frame. Arrows, CBAS. Arrowheads, CB. Stm, stomach.

Scale bars, 25 μm (A-E), 5 μm (D-1 inset), 100 μm (F, G), 200 μm (H).

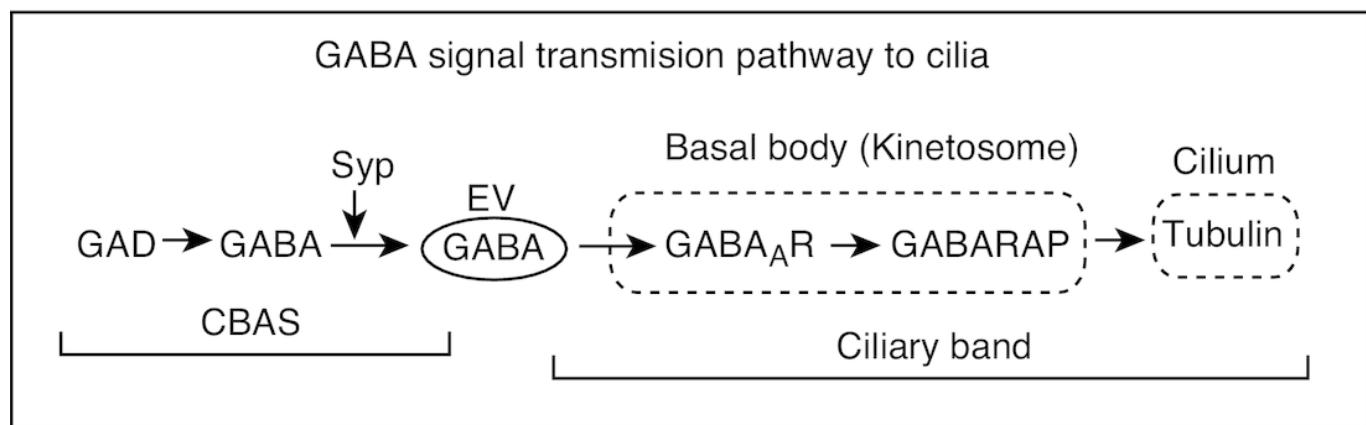


Figure 9

Summary of predicted GABAergic signal transmission pathway.

The present and previous studies suggest the contribution of GAD in the ciliary band-associated strand (CBAS) to larval swimming through transmission of GABA via synaptophysin-containing endoplasmic vesicles (EV) to the ciliary band cells. Then, GABA transmitted to the cytoplasm of the CB cells binds to GABAAR near the basal body, and then, GABAAR transmits the signal to GABARAP and tubulin in the cilia of the basal body.

Fig. 9. Katow et al.

