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Abstract 
Recent studies indicate that the gut microbiome is partially heritable, motivating the need to investigate 

microbiome-host genome associations via microbial genome-wide association studies (mGWAS).  Existing 

mGWAS demonstrate that microbiome-host genotypes associations are typically weak and are spread 

across multiple variants, similar to associations often observed in genome-wide association studies 

(GWAS) of complex traits. Here we reconsider mGWAS by viewing them through the lens of GWAS, and 

demonstrate that there are striking similarities between the challenges and pitfalls faced by the two study 

designs. We further advocate the mGWAS community to adopt three key lessons learned over the history 

of GWAS: (a) Adopting uniform data and reporting formats to facilitate replication and meta-analysis 

efforts; (b) enforcing stringent statistical criteria to reduce the number of false positive findings; and (c) 

considering the microbiome and the host genome as distinct entities, rather than studying different taxa 

and single nucleotide polymorphism (SNPs) separately. Finally, we anticipate that mGWAS sample sizes 

will have to increase by orders of magnitude to reproducibly associate the host genome with the gut 

microbiome. 
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Introduction 
In recent years the importance of the gut microbiome in human metabolism and health is increasingly 

gaining recognition [1–12]. Recent studies have associated the microbiome with various health 

parameters including obesity, diabetes mellitus, cancer, and inflammatory, metabolic and 

neurodegenerative disorders [13–17].  

A fundamental question is how strongly the microbiome is genetically inherited as opposed to being 

shaped by the environment. The microbiome evolves during childhood, and then becomes relatively 

stable and robust to perturbations [18–20]. This apparent host-adaptation evokes the classic question of 

‘nature versus nurture’: Does the microbiome adapt to its host due to shared early environmental 

exposure, or are certain microbiome compositions inherently more suitable to specific host genomes? 

The recent advent of 16S rRNA gene sequencing and metagenomic sequencing technologies enable 

carrying out gut microbiome studies with thousands of individuals [21]. Recent studies employing these 

technologies have uncovered evidence for both environmental and host genetic association with the 

microbiome composition [8,11,20,22–37]. However, to date there is no consensus regarding how and to 

what extent does host genetics shapes the gut microbiome, as compared to environmental factors. 

In this article, we first review recent studies of environment and host genome associations with the human 

gut microbiome. We show that existing evidence suggests that the gut microbiome is predominantly 

shaped by environmental factors, and that host genotype-microbiome associations are weak, spread 

across multiple sites across the host genome, and together explain a relatively small fraction of the 

microbiome configuration of individuals. We then draw parallels between existing mGWAS and early 

GWAS, and use these to demonstrate how some of the pitfalls encountered in early GWAS, and their 

respective solutions, could be applied to mGWAS.  

 

The microbiome is predominantly shaped by non-genetic factors 

Recent studies have provided strong evidence that environmental factors play a much greater role than 

host genetics in shaping the gut microbiome. It can be difficult to tease apart environmental from genetic 

inheritance in humans, since children typically live with their parents. However, twin studies can tease 

these factors apart by comparing microbiome similarity among monozygotic (MZ) and dizygotic (DZ) 

twins, under the assumption that significant differences in the degree of similarity are attributed solely to 

genetic effects. Recent twin studies have demonstrated that the level of similarity is almost the same for 

MZ and DZ twins [24], that both MZ and DZ twins have extremely similar gut microbiomes compared with 

non-twin pairs [24], and that this similarity decreases when twins start living apart [32]. These results 

indicate that environment overshadows host genetics in shaping the gut microbiome. 

Recent non-twin studies provide additional support for the dominant role of environment in shaping the 

gut microbiome. First, there is an excessive bacterial similarity among individuals sharing a household, but 

no such similarity was observed across family members without a history of household sharing 

[8,20,22,35]. Second, over 20% of gut microbiome β-diversity variance can be inferred via several 

measured environmental factors, such as answers to food frequency and drug use questionnaires 

[8,33,34], whereas no statistically significant result was obtained when applying a similar methodology to 
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genetic variants [8]. These results further demonstrate that the gut microbiome is predominantly shaped 

by environmental factors. 

 

Twin studies identify significantly heritable gut microbiome taxa 

Despite the strong role of non-genetic factors in shaping the gut microbiome, recent twin studies 

identified 33 significantly heritable bacterial taxa (most notably the family Christensenellaceae [36]). The 

estimated heritability of these taxa was typically 10%-30%, which is substantially lower than several well-

known human complex traits, such as height, body mass index (BMI), and even education attainment [38]. 

A recent re-analysis of the largest reported twin study to date (2,252 twins) found that the average 

heritability of gut bacterial taxa likely lies between 1.9% and 8% [8]. Taken together, these results indicate 

that there are several genetically heritable bacterial taxa, but that the overall gut microbiome heritability 

is relatively small. 

Limited evidence for gut microbiome-host genotype associations from non-twins data 

A potential shortcoming of twin studies is the difficulty of assembling large cohorts. Genotyping of 

unrelated individuals with a relatively common environment facilitates the assembly of much larger 

cohorts. These cohorts enable directly associating the gut microbiome with the host genotype, by 

searching for a greater co-presence of bacterial taxa among genetically closer individuals. However, the 

results from such studies have been inconclusive and mostly failed to replicate. 

One of the first studies to employ the above approach identified a significant correlation between the top 

microbiome principal coordinate (PCo) and top host-genome principal component (PC), based on human 

DNA residues extracted from stool samples [27]. An analysis of 127 Hutterites reported several heritable 

taxa [39], but the statistical significance of these results after multiple testing correction has not been 

reported. Additionally, several recent studies have identified a significant heritability of bacterial α-

diversity [28,30,39]. In contrast, a recent analysis of 1,046 Israeli individuals from different ancestral 

origins but a relatively shared environment did not replicate any of the above results, and did not identify 

statistically significant host-genomics associations with either the overall microbiome composition or 

individual taxa [8]. Another recent study identified significant co-occurrence of bacterial taxa among 270 

family members [28], and several other studies identified a significantly different microbiome composition 

between individuals from different populations [20,40], but it is not possible to tease apart the roles of 

genetics and environment in such studies. Overall, these inconclusive results again suggest that the 

heritable component of the gut microbiome is small. 

 

Limited power of microbiome genome wide association studies 

Microbiome association studies attempt to not only identify heritable taxa, but also to pinpoint the host 

genetic variants that underlie this heritability [11,36,37]. The first such studies in humans focused on 

specific genes and pathways, and have identified several significant microbiome-associated variants [41–

45]. However, a potential shortcoming of the above studies is that they require previous knowledge of 

associated genes, and thus cannot discover new associations. Thus, recent studies have performed 
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unbiased microbiome-genome wide association studies (mGWAS) spanning 93-1,812 individuals [8,27–

31]. 

A substantial difficulty of mGWAS is the high number of tested hypotheses, which is equal to the number 

of genetic variants multiplied by the number of tested taxa, genes and pathways. This leads to a severe 

multiple testing correction and to reduced power (Figure 1). Consequently, most mGWAS findings are not 

statistically significant after multiple testing correction.  A recent analysis demonstrated that there is 

almost no overlap between the loci reported in different studies, even when allowing SNPs up to 1Mb 

apart and associations with different bacterial taxa to be considered as overlapping [8]. This lack of 

consistency could originate either from differences in the underlying analysis methods or from lack of 

reproducibility, necessitating further investigation of the reported associations. The only genetic variants 

consistently shown to be microbiome-associated in multiple mGWAS are located in close proximity to the 

LCT gene, which is associated with lactase persistence [8,27,30,31,46]. However, while important, this 

association may be confounded by lactose consumption [46]. 

Several recent studies alleviated the multiple testing burden by testing for association with the entire 

microbiome composition rather than individual taxa, and identified genetic variants located in the vitamin 

D receptor gene and in several genes associated with health disorders  [8,29,30]. A recent study further 

argued that a small number of genetic variants can infer over 10% of the microbiome β-diversity 

composition [29]. However, the results found in one study could not be replicated in others, with the 

exception of LCT related variants [8]. 

Other than the LCT variants, the most consistently reported host-microbiome associations involve 

immunity-related variants, although no two studies reported an association with the same variant (see 

ref. [37] and references therein for a comprehensive review). It has also been observed that many mGWAS 

hits are found near genes associated with complex diseases [24,27–29,31,39,41,47–50], and that multiple 

studies have implicated variants residing in the same genes, though the exact loci differed between 

studies [11,36,41]. 

The above results demonstrate that certain bacterial taxa are clearly heritable, but that the variants 

underpinning this heritability have not been reliably identified. This contradiction suggests that the 

heritability of bacterial taxa arises due to the aggregated effects of multiple genetic variants, each having 

an individually weak effect that cannot be reliably identified with existing sample sizes. This property has 

long been recognized as being common to most complex human traits, and has been extensively studied 

in GWAS, as elaborated below. 

 

Contrasting microbiome and traditional genome-wide association studies 

It is beneficial to reflect on the current state of mGWAS by drawing parallels with the history of GWAS 

[51–53]. The key idea behind GWAS is to associate genetic variants with traits of interest using large 

cohorts of unrelated individuals. Since 2005, over 3,200 GWAS with unique PubMed IDs have been 

reported in the GWAS Catalog [54], compared with 6 published mGWAS [8,27–31]. The initial motivation 

for GWAS arose due to the observation that common traits, such as height or BMI, are associated with a 

large number of genetic variants with small effect sizes, thus requiring large cohorts to be identified 
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reliably [51]. The small effect sizes reported in existing mGWAS suggests that the same pattern holds for 

host genome-microbiome associations. 

The very first GWAS, which became possible thanks to the advent of low cost genotyping arrays, were 

met with high hopes. However, it soon became apparent that most reported associations failed to 

replicate [55]. The GWAS community consequently took actions to encourage reproducibility [56], chief 

among which was the adoption of stringent requirements for reporting associations. The same process 

seems to occur in current mGWAS, which also became possible due to the declining costs of the required 

technologies, and whose reported associations typically fail to replicate. Unfortunately, the number of 

hypotheses tested in a typical mGWAS is orders of magnitude larger than in a typical GWAS, suggesting 

that even more stringent statistical criteria need to be enforced. 

A second important development in the history of GWAS was the adoption of common data formats, data 

processing techniques, analysis workflows and reporting guidelines [57]. These developments helped 

streamline, reduce the technical burden, and facilitate replication efforts in GWAS. Notably, the adoption 

of the common plink format [58] helped method developers to release software that could be used across 

different research groups in a unified manner. Future mGWAS would greatly benefit from such a 

standardization effort, as existing mGWAS were carried out using vastly different statistical methods, 

which hinders replication efforts. Some of the technical mGWAS aspects deserving additional 

investigation include the taxonomic levels of taxa to test, whether to also test for associations with the 

functional composition of the microbiome (e.g. bacterial genes), and statistical modeling of zero-inflation. 

As more and more GWASs were being published, several common threads began to emerge. First, it 

became apparent that virtually all common traits are extremely polygenic, to the degree that most studied 

traits have to date been associated with dozens or hundreds of genetic variants with small effect sizes 

[54]. Second, most associated loci do not reside within coding regions, and there is often an excellent 

correlation between the number of associations on a chromosome and the chromosome length [59], 

suggesting that associated variants are spread uniformly throughout the genome. Third, pleiotropy was 

found to be extremely common, as a great number of loci were independently implicated with multiple 

traits. These observations suggested that the genetic architecture of common traits was far more 

complicated than initially thought, with some researchers hypothesizing that almost all genetic variants 

are associated with every trait [60]. As the gut microbiome is a highly complex organism [61], we believe 

that it is quite likely for the same patterns to emerge in mGWAS. 

In response to the perceived complexity of common traits, GWAS gradually became larger and larger. 

While typical GWAS in 2007 spanned 3,000 individuals, many GWAS today are two orders of magnitude 

larger (Figure 2), with the recently released UK Biobank spanning approximately 500,000 individuals [62], 

and with plans underway to genotype 1,000,000 individuals for the Million Veteran Program [63]. These 

developments suggest that mGWAS sample sizes will similarly have to increase by at least two orders of 

magnitude to uncover the underlying biology behind gut microbiome and host genome interactions. In 

recent years many GWAS began releasing publicly available summary statistics that describe the 

association of each genetic variant to the studied trait, which enable combining results across multiple 

studies without the logistic and legal complications required to access private genetic data [64]. The 

mGWAS community would likely benefit from such data sharing ethics as well. Other potential approaches 

to increase power include oversampling of individuals with extreme microbiome-associated phenotypes, 

such as obesity [65,66], and restricting the analysis to taxa previously established to be heritable. 
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A second response of the GWAS community to the perceived complexity of common traits was phrasing 

of new research questions, which treat the genome in a global manner rather than a local one. Instead of 

trying to find genetic associations with tiny effects, many researchers began investigating the genetic 

architecture of common traits as a distinct entity [67,68]. This line of research arguably began with 

genotype-based heritability estimation [69], and has since opened the door to many new research 

questions, which have provided us with a new understanding of common traits. For example, recent 

developments enable us to study the degree of polygenicity of a given trait [70–72], the genetic similarity 

between pairs of traits [73–75], and the degree to which different traits are affected by various functional 

elements in the genome [76–80]. Such global approaches have arguably provided more insights into the 

underlying biology of common traits than direct genetic associations. We anticipate that similar global 

approaches could be carried over to mGWAS, as elaborated below. 

 

Global versus Local Approaches 

We encourage future mGWAS to adopt a holistic approach towards studying microbiome and host 

genome interactions. Specifically, we distinguish between local approaches, which consider the 

microbiome as a collection of taxa and the host genome as a collection of variants, and global approaches, 

which consider them as distinct entities (Table 1). 

Global approaches are arguably more suitable for microbiome analyses because they can capture complex 

dynamics involving several taxa, in line with the view of the microbiome as a complex organism. In 

addition, global approaches can be substantially more powerful because they involve fewer tested 

hypotheses, leading to a less severe multiple testing correction, and because they aggregate multiple 

effects that may individually be too weak to be noticed. Finally, global approaches can jointly investigate 

the dynamics of the microbiome, the host genome, and additional factors, such as dietary habits. 

Global approaches in statistical genetics are often carried out using linear mixed models [69,81–83], 

whereas in statistical ecology they are typically performed via ordination methods [84], Mantel tests [84] 

or multivariate analysis of variance [85]. To date, relatively little work has been done on combining the 

two frameworks together. One example is the recently proposed microbiome-association index, which 

measures the association of a host phenotype with the entire genomes of the microbiome and of the host 

in a single analysis [8]. We believe that this emerging field is a fertile ground for future developments. 

 

Concluding remarks 

The first mGWAS made many interesting discoveries, but have largely raised interesting questions rather 

than providing conclusive findings. It is our view that mGWAS would greatly benefit from adopting the 

lessons learned by the GWAS community over the several years. We specifically advocate adopting 

stringent statistical criteria, standard data formats, and a holistic approach towards studying microbiome 

and host genome interactions. Such approaches will require the development of new statistical methods, 

that will likely combine state of the art techniques from statistical genetics and statistical ecology. We 

anticipate that the combination of such approaches, along with larger sample sizes and with the 

integration of an increasing number of lifestyle and diet related factors, will lead to exciting new 

discoveries. 
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Table 1: Overview of global and local analyses. Shown are common types of local and global analyses of 

the microbiome and of the host genome. Also shown is the approximate number of tests required for 

every type of analysis, under the assumption that there are one million host genetic variants and several 

hundred taxa. 

 
 

Microbiome 

  Local Global 

Host 
Genome 

Local 

SNP-taxon 
association test: 
Associating a specific 
host SNP with a specific 
bacterial taxon. 
 
Requires hundreds of 
millions of tests 

SNP-microbiome 
association tests: 
Associating a specific 
host SNP with 
microbiome β-diversity. 
 
Requires one million 
tests 
 

Global 

Taxon heritability test: 
Estimating the fraction 
of variance of the 
abundance of a specific 
taxon inferred by the 
host genome 
 
Requires hundreds 
of tests 
 

Microbiome-host 
association tests 
Measuring the 
correspondence 
between host-genome 
similarity and 
microbiome β-diversity 
(e.g. via a Mantel test); 
 
Microbiome-
association index: 
Measuring the fraction 
of variance of a host 
phenotype that can be 
jointly inferred by the 
gut microbiome and 
host genome contents 
 
Requires a single test 
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Figure 1: Plot of the fraction of variance a tested SNP needs to explain in order to be identified with 80% 

power, as a function of the number of tested hypotheses, for various sample sizes (based on standard 

derivations [52]). Increasing the number of hypotheses leads to reduced power to identify variants with 

small effect sizes, due to the severe multiple testing correction. Variants previously implicated in GWAS 

often explain less than 0.1% of the trait variance [52]. 

 

 

 

Figure 2: A bar chart depicting the largest GWAS performed up to every year between 2005-2017, as 

reported in the GWAS catalog [54]. GWAS sizes increased by almost 500-fold over 12 years. 
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