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ABSTRACT16

Being able to quantify the similarity between two protein complexes is essential for numerous applications.
Prominent examples are database searches for known complexes with a given query complex, comparison
of the output of different protein complex prediction algorithms, or summarizing and clustering protein
complexes, e.g., for visualization. While the corresponding problems have received much attention on
single proteins and protein families, the question about how to model and compute similarity between
protein complexes has not yet been systematically studied. Because protein complexes can be naturally
modeled as graphs, in principle general graph similarity measures may be used, but these are often
computationally hard to obtain and do not take typical properties of protein complexes into account.
Here we propose a parametric family of similarity measures based on Weisfeiler-Lehman labeling. We
evaluate it on simulated complexes of the extended human integrin adhesome network. Because the
connectivity (graph topology) of real complexes is often unknown and hard to obtain experimentally, we
use both known protein-protein interaction networks and known interdependencies (constraints) between
interactions to simulate more realistic complexes than from interaction networks alone. We empirically
show that the defined family of similarity measures is in good agreement with edit similarity, a similarity
measure derived from graph edit distance, but can be much more efficiently computed. It can therefore
be used in large-scale studies and simulations and serve as a basis for further refinements of modeling
protein complex similarity.
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INTRODUCTION34

Proteins fulfill manifold tasks in living cells, but they rarely act alone. Indeed, most cellular functions35

are enabled only when proteins physically interact with other proteins, forming protein complexes. DNA36

transcription is a typical example, where RNA polymerase II, general transcription factors, cell type37

specific transcription regulators and mediator proteins interact.38

Understanding protein complex formation and function is one of the big challenges of cell biology,39

approached by both experimental techniques and computational modeling. While the constituent protein40

sequences can be obtained from the genome (even that can be challenging), the computational prediction of41

real protein complexes from protein interaction networks appears to be much more difficult as evidenced by42

the recent literature on the topic; see Bhowmick and Seah (2016) for a survey, or Srihari et al. (2017) for a43

textbook introduction. Fortunately, new experimental technologies are about to enhance our understanding44

of complexes significantly in the near future, e.g. high-resolution protein-protein docking (Park et al.,45

2015; Vakser, 2014; Kozakov et al., 2017; Wass et al., 2011). Large scale generation of libraries of cell46
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lines having two or more endogenously tagged fluorescent proteins (Boutros et al., 2015) and recent47

high-throughput and multiplexed implementations of fluorescence correlation spectroscopy allow us to48

systematically measure endogenous concentrations, binding constants and high-order complexes in such49

libraries of cell lines (Hwang et al., 2006; Wobma et al., 2012; Grecco et al., 2016; Wachsmuth et al.,50

2015).51

When studying biological entities such as protein sequences or protein complexes, a fundamental52

task is to define a measure of similarity between two such entities. For protein sequences, there is a53

well-established theory based on scoring matrices and alignment scores (Pearson, 2013). For protein54

complexes, it appears that no systematic effort to quantify similarity has been made yet. The purpose of55

the present article is therefore to discuss the different options to define a similarity measure on protein56

complexes and to propose a reasonable and computationally tractable definition of protein complex57

similarity.58

Establishing a similarity measure is not only important fundamentally, but there are many immediate59

applications, of which we mention the following three examples.60

Database search: In the database search problem we are given a query complex and a large collection61

(database) of complexes, and the task is to find the complexes in the database that are most similar62

to the query. Obviously, a meaningfully defined similarity measure is essential for this task.63

Comparing predictions: Several complex prediction methods predict putative complexes by locating64

dense regions in a protein interaction network (Drew et al., 2017; Hernandez et al., 2017; Ma and65

Gao, 2012; Pellegrini et al., 2016), and for comparing complexes predicted by different algorithms,66

it is of interest to compute a maximum-weight matching between the output of two algorithms,67

where the weighting is given by a similarity function.68

Summarizing and clustering: When stochastically simulating complex formation based on available69

knowledge such as possible interactions and interaction constraints, it is helpful to aggregate the70

simulation output to focus on frequently seen or typical complexes, ignoring small differences.71

Aggregation or clustering by similarity thereby reduces data size and complexity. Such a task first72

and foremost requires a way to quantify the similarity between two protein complexes.73

When there are many (say, tens of thousands of) different complexes subject to pairwise comparison, a74

similarity measure must be efficiently computable to be of practical interest.75

Models for protein complexes. We first need to discuss models for protein complexes on different76

levels of detail, namely the set, multiset, and graph models.77

While intuition suggests that protein complexes can be naturally described as graphs with proteins78

as vertices and physical interactons as edges, there are in fact different ways to formally describe a79

protein complex. In the following, we briefly mention the most prominent ones with their advantages80

and disadvantages. We start with a given set P of all proteins of an organism, the building blocks of the81

complexes.82

Set: In its most simple form, a protein complex can be defined as a set (in the mathematical sense,83

i.e., without multiplicities) of proteins, i.e., as a subset of P. We use the standard notation84

{p1, p2, . . . , pn} for sets. Sets neither capture the multiplicities nor the nature of the physical85

interactions between the constituent proteins of a complex. However, some experimental techniques86

(e.g. immunoprecipitation with mass spectrometry) only give such set-type information, and several87

existing databases only provide this type of information, e.g. the CORUM database provided by the88

Munich Information center for Protein Sequences MIPS (Ruepp et al., 2010).89

Multiset: Formally, a multiset is a function C : P → N0 that assigns a multiplicity to each protein p ∈ P90

with C(p) = 0 for proteins p that are not part of the complex. We also use the multiset notation91

C = {{p1, p1, p2}} to express that C(p1) = 2, C(p2) = 1 and C(p) = 0 for all other p ∈ P. Defining92

a protein complex as a multiset of proteins gives a more accurate representation of the complex, but93

still does not consider the interaction topology.94

Graph: To add more information, we can define a protein complex as an undirected graph C = (V,E,ℓ)95

with labeled vertices V, such that each vertex v ∈ V represents a protein and hence has a label96
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ℓ(v) ∈ P, each edge e ∈ E ⊆ V ×V represents a physical interaction between the corresponding97

proteins, such that E is symmetric and C is connected. The graph description provides the interaction98

topology. We call this representation a protein complex graph and define its size as |C| := |V |+ |E|.99

(This representation could be further refined by considering the different domains of each protein100

and specifying precisely which domains interact.)101

For the set and multiset models, a similarity measure is readily given by the Jaccard similarity (see102

Methods). For graphs, the graph edit distance has been proposed for pattern recognition tasks more than103

30 years ago (Sanfeliu and Fu, 1983). A graph edit distance between graphs C and C′ measures the total104

costs of the edit operations required to transform C into C′. Defining similarity via graph edit operations105

appears intuitive, but has computational disadvantages, as edit distance computation on graphs is hard in106

general. More specifically, the graph edit distance generalizes the classical maximum common subgraph107

problem (Bunke, 1997), which is NP-complete (Garey and Johnson, 1979) and hard to approximate with108

given guarantees (Kann, 1992). Recently, a binary linear programming formulation for computing the109

graph edit distance has been proposed (Lerouge et al., 2017), which allows to compare graphs of moderate110

size using state-of-the art general purpose solvers. However, when we want to compare many complexes,111

evaluating the edit distance between all pairs becomes infeasible in practice.112

In this article, we therefore propose an efficient alternative: We define a family of similarity measures113

on graphs by resorting to the (efficiently computable) Jaccard similarity, while still taking the graph114

structure into account. This is achieved by so-called Weisfeiler-Lehman labeling of the vertices (Weisfeiler115

and Lehman, 1968), propagating vertex labels between neighbors. This approach is different from recent116

work that approximates and bounds the graph edit distance (Riesen et al., 2015) and has the advantage of117

scaling better to large-scale studies.118

The remainder of the article is structured as follows. In the Methods section, we define a parametric119

family of similarity measures based on Weisfeiler-Lehman labeling and the precise definition of graph120

edit similarity we compare against. In the Results section, we describe how we obtain pairs of protein121

complexes, for which we compare Weisfeiler-Lehman similarity and edit similarity. The simulated protein122

complexes take known protein interaction networks and additionally constraints between interactions into123

account, and therefore should represent more realistic complexes than arbitrary connected subgraphs of124

protein interaction networks. Finally, we discuss limitations and possible extensions of this work.125

METHODS126

Our goal is to define a similarity measure between protein complexes that captures not only the (multisets127

of the) constituent proteins, but also the interaction topology (graph structure). Similarities derived from128

graph edit distance offer this property, but as mentioned above, they are hard to compute. Therefore,129

we introduce a parameterized family of similarity measures on protein complexes, which are based on130

multiset comparisons of vertex labels in the complex graph and take the local neighborhood of each131

protein into account by using Weisfeiler-Lehman labels.132

Jaccard similarity of sets and multisets133

To compare sets or multisets, Jaccard similarity coefficients are an established measure.134

Let M ⊆U and M′ ⊆U be two subsets of a common universe U . Then the Jaccard similarity between
M and M′ is defined as

Jset(M,M′) :=
|M∩M′|

|M∪M′|
∈ [0,1] . (1)

This definition is extended to multisets as follows. Recall that multisets M and M′ are functions U → N0,
assigning multiplicities M(o) and M′(o) to each object o ∈ U . (The set definition can be seen as the
special case where the value set is only {0,1} instead of N0.) Then the Jaccard similarity between M and
M′ is defined as

Jmultiset(M,M′) :=
∑o∈U min{M(o),M′(o)}

∑o∈U max{M(o),M′(o)}
∈ [0,1] . (2)
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A parametric family of protein complex similarity measures135

Instead of comparing the protein complexes directly by their graph topology and labeling, we extract and136

compare multisets of features of the protein complexes. Weisfeiler and Lehman (1968) developed an137

iterative label refinement procedure to derive a canonical graph representation for graph isomorphism138

testing. The same procedure is often used to define graph similarities or graph kernels (Shervashidze et al.,139

2011). For the latter purpose, the vertex labels of each Weisfeiler-Lehman iteration are used as features of140

the graphs. Initially, the feature multiset of a graph consists of the union of all vertex labels. After the141

initialization, the vertex labels are iteratively augmented by the labels of the neighboring vertices from the142

previous iteration, thereby encoding the (local) graph structure in the vertex labels. Let us now formally143

define the process.144

Definition 1 (Weisfeiler-Lehman labeling of iteration i for a protein complex graph). Let C = (V,E,ℓ0) be
a protein complex graph with label function ℓ0 : V → L0 := P. Furthermore, let N(v) := {u | {v,u} ∈ E}
denote the neighbors of vertex v ∈V . Then, the Weisfeiler-Lehman labeling of iteration i is defined as a
re-labeling of the protein complex graph: It replaces the labeling function ℓ0 : V → L0 with a labeling
function ℓi : V → Li. The value of ℓi for a vertex v ∈V is recursively defined as

ℓi(v) := (ℓi−1(v), {{ℓi−1(u) | u ∈ N(v)}}). (3)

Note that the second component of the new label is a multiset.145

To avoid that the length of labels increases in each iteration, label compression is performed after each146

step in practice. This is achieved by a one-to-one mapping of the labels {ℓi(v) | v ∈V} to integer labels.147

Given the Weisfeiler-Lehman labeling function of a protein complex graph for some iteration i, we148

can now define the multiset of Weisfeiler-Lehman features for iteration i.149

Definition 2 (Weisfeiler-Lehman feature set of iteration i for a protein complex graph). Let C = (V,E,ℓ0)150

be a protein complex graph with label function ℓ0 : V → L0 = P. Then, the Weisfeiler-Lehman features of151

iteration i are defined as multiset WLi(C) = {{li(v) | v ∈V}}. Note that WL0(C) corresponds to the initial152

multiset of protein names.153

To compare two complexes C and C′, we compare the iteration sequences of Weisfeiler-Lehman
features (WLi(C))i≥0 and (WLi(C′))i≥0, by computing a convex combination of the Jaccard similarities
for each iteration. Let w = (wi)i≥0 be a weight sequence with wi ≥ 0 for all i ≥ 0 and ∑i≥0 wi = 1. For w

as just defined, let

Sw(C,C′) := ∑
i≥0

wi · Jmultiset(WLi(C),WLi(C
′)), (4)

where Jmultiset is given by Eq. (2). This defines a family of similarity measures between complexes with154

values in [0,1], parameterized by a convex combination w = (w0,w1, . . .).155

It is easy to see that, as long as w0 > 0, we have Sw(C,C′) = 0 if and only if the protein sets of C and C′
156

are disjoint. If Sw(C,C′) < 1, the protein complex graphs are not isomorphic. However, Sw(C,C′) = 1157

does not necessarily imply that C and C′ are isomorphic even if wi > 0 for all i: There exist examples158

of non-isomorphic graphs G,G′ with WLi(G) = WLi(G′) for all i ≥ 0. (As a simple example, take G159

to be a cycle of six vertices, and G′ to be two cycles of three vertices, all with the same label.) On the160

other hand, there exist classes of graphs, such as the so-called CR-graphs, for which the implication161

“Sw(C,C′) = 1 ⇒C,C′ are isomorphic” is true if wi > 0 for all i (Arvind et al., 2015).162

In practice, we may assume that most protein complexes are non-adversarial graphs with sufficiently163

simple structure such that their Weisfeiler-Lehman features are appropriate to characterize their similarity.164

In fact, we put forward the hypothesis that using a single iteration is frequently sufficient for practical165

purposes, and we set wi := 0 for i ≥ 2 in our computational experiments (see Results) and only have166

a single free parameter w0 ∈ [0,1] that defines w1 := 1−w0. In the following, we write ω for w0. In167

this case, Sω is efficiently computable: A proof of the following lemma can be found in the work of168

Shervashidze et al. (2011).169

Lemma 3. For ω ∈ [0,1], each of the one-parameter similarity measures

Sω(C,C′) := ω · Jmultiset(WL0(C),WL0(C
′))+(1−ω) · Jmultiset(WL1(C),WL1(C

′))

can be computed in O(|C|+ |C′|) time, where |C|= |V |+ |E|.170

4/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26612v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018



A similarity measure based on the graph edit distance171

To compare the family of Weisfeiler-Lehman multiset-based similarity measures defined above with172

graph edit distance, we start with a formal definition of the edit-based similarity. We allow the following173

elementary operations to edit a graph: vertex deletion, vertex insertion, vertex relabeling, edge deletion,174

and edge insertion. A sequence (o1, . . . ,ok) of such edit operations that transforms a graph G into another175

graph H is called an edit path from G to H. Each operation o is assigned a cost c(o), which is zero for176

substituting vertices and edges with the same label. We use a cost of 1 for all operations except vertex177

relabeling which has a cost of 2, corresponding to one deletion and one insertion (leaving the edges in178

place). Note that deleting or inserting a vertex of degree k otherwise has cost k+1 for deleting k edges179

and the vertex itself. We denote the set of all possible edit paths from G to H by ϒ(G,H).180

Definition 4. Let G and H be labeled graphs. The graph edit distance from G to H is defined by

d(G,H) = min

{

k

∑
i=1

c(oi)

∣

∣

∣

∣

∣

(o1, . . . ,ok) ∈ ϒ(G,H)

}

. (5)

Intuitively, the graph edit distance preserves a subgraph G′ of G that is also contained in H using
zero-cost substitutions, deletes the vertices and edges in G that are not in G′ and then inserts vertices and
edges to obtain an isomorphic copy of H. Therefore all non-zero costs can be attributed to the elements
which are in one of the graphs, but not in their common subgraph. In this sense the graph edit distance
is similar to the symmetric difference of two sets. This observation motivates the following normalized
similarity measure derived from the graph edit distance. We define the graph edit similarity as

Jgraph(G,H) :=
|G|+ |H|−d(G,H)

|G|+ |H|+d(G,H)
∈ [0,1] , (6)

where |G| := |V (G)|+ |E(G)|. Note that the graph edit distance between G and H is at most |G|+ |H|,181

which is achieved by deleting all vertices and edges of G and inserting all vertices and edges of H. In182

this case the graph edit similarity is zero. Similarly, Jgraph(G,H) = 1 if and only if d(G,H) = 0. In this183

respect the similarity measure resembles the Jaccard similarity. In fact, we can show a deeper relation to184

the multiset Jaccard similarity.185

Lemma 5. For two protein complexes, let C, D denote their protein multisets and G, H their pro-186

tein complex graphs. For the edge-free graphs G′ = (V (G), /0) and H ′ = (V (H), /0) it holds that187

Jgraph(G′,H ′) = Jmultiset(C,D).188

Proof. An optimal graph edit path is obtained as follows: We substitute the vertices with common labels
free of cost, which are Z =∑p∈P min{C(p),D(p)} in total. We delete the remaining |G′|−Z vertices in G′

and insert |H ′|−Z vertices to obtain an isomorphic copy of H ′ at a total cost of |G′|+ |H ′|−2Z = d(G,H).
Instead we may also substitute up to | |G′|− |H ′| | vertices, each at cost two, which results in the same
total cost. Using the fact that |G′|= ∑p∈P C(p) and |H ′|= ∑p∈P D(p), we obtain the result by calculating

Jgraph(G
′,H ′) =

|G′|+ |H ′|−d(G′,H ′)

|G′|+ |H ′|+d(G′,H ′)
=

Z

|G′|+ |H ′|−Z
=

Z

∑p∈P C(p)+∑p∈P D(p)−Z

=
∑p∈P min{C(p),D(p)}

∑p∈P C(p)+D(p)−min{C(p),D(p)}
=

∑p∈P min{C(p),D(p)}

∑p∈P max{C(p),D(p)}
= Jmultiset(C,D) .

189

Lemma 5 shows that the graph edit similarity can indeed be seen as a natural extension of the multiset190

Jaccard similarity to graph structured data.191

For our computations, we used a recent binary linear programming formulation to compute the graph192

edit distance exactly (Lerouge et al., 2017). The approach was implemented in Java, and all instances193

were solved using an academic license of Gurobi 7.5.2 on Linux x86-64.194

RESULTS195

Hypothesis196

We hypothesize that the Weisfeiler-Lehman based family of similarity measures Sω defined in Eq. (4)197

approximates well the edit distance based similarity defined in Eq. (6) for typical protein complexes. The198

similarity measures Sω have the advantage that they can be efficiently computed (see Lemma 3).199
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Figure 1. Three exemplary pairs of protein complexes: Each labeled node is a protein instance, each
edge represents a protein interaction, and solid black vs. dashed red edges distinguish between the two
complexes. A: Edit similarity 0.714; WL similarity in [0.4,0.75] depending on weight ω . B: Edit
similarity 0.838; WL similarity 1.0 (independent of ω). C: Edit similarity 0.9; WL similarity in
[0.667,0.818] depending on ω .

Data generation200

As mentioned in the Introduction, obtaining real protein complex graphs is difficult at the moment,201

because experimental techniques that resolve the (graph) topology of the complexes are only being202

developed. Therefore we resort to the simulation of complexes, based on two types of knowledge:203

possible protein-protein interactions, formalized by a protein interaction network, and constraints between204

protein interactions.205

Formally, a protein interaction network is an undirected graph N = (P, I), where P is the set of protein206

types of a cell (or an organism), and I ⊂ P×P indicates the pairs of protein types that may potentially207

physically interact. Since N describes the entirety of possible interactions, any protein complex can be208

seen as a connected subgraph of N.209

It is important to realize that protein interactions are not independent of each other, but interdependent.210

Those interaction dependencies are generated by two major mechanisms. On the one hand there is211

allosteric regulation, in which the capability of a protein to bind other proteins is affected by a conforma-212

tional change upon one interaction (Laskowski et al., 2009). The other key mechanism is steric hindrance213

that prevents proteins from binding simultaneously to too close or identical protein domains leading to214

mutual exclusiveness of interactions (Sánchez Claros and Tramontano, 2012). The dependencies between215

interactions constrain the set of possible protein complexes and their assembly paths. Therefore, for216

understanding the design and function of intracellular protein networks it is important to consider the217

dependencies between protein interactions. One possible model for this are constrained protein interaction218

networks, where the protein interaction network is enhanced by the interaction dependencies (constraints)219

modeled as propositional logic formulas (Stöcker et al., 2017).220

With constrained protein interaction networks, we can stochastically simulate complex formation221

based on the available knowledge and obtain a detailed interaction topology (which proteins physically222

interact) for each complex.223

To evaluate the Weisfeiler-Lehman based similarity (“WL similarity”) against the edit distance based224

similarity (“edit similarity”), we computed both similarity measures on selected pairs of 100 000 simulated225

protein complexes from the extended human adhesome network as presented by Stöcker et al. (2017).226

Since edit similarity computations are computationally costly, we only computed the edit similarity on227

500 000 candidate pairs from these simulated complexes. These candidate pairs were generated for all228

pairs of complexes that have at most 20 proteins (larger complexes are so rare that high similarities229

are unlikely), that have a size difference of protein multisets of at most 10, and that share at least one230

protein. The candidate pairs were sorted descendingly after the number of shared proteins and then231

the edit distance based similarity was computed on the first 500 000 candidate pairs. The resulting edit232

similarity values were classified into bins of width 0.1. Because most pairs of complexes share a small233
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Figure 2. Left: Scatterplot comparison of edit similarity and WL similarity for weight ω = 0.41,
including marginal distributions and least-squares regression line. Right: Pearson correlation between
edit similarity and WL similarity as a function of weight ω . The maximum correlation (0.946) occurs for
ω = 0.41, shown on the left side.

number of proteins, we find many pairs with small edit similiarity (but none in the range [0.0,0.1[ because234

we required one common protein) and comparatively few pairs with edit similarity above 0.5. To achieve235

a uniform distriution among bins for the comparison, we randomly selected 1000 pairs from each bin,236

excluding the bin [0.9,1.0[ which contained a single pair. This yielded 8000 pairs of complexes from237

8 bins.238

Similarity comparison239

We first consider three exemplary pairs (Figure 1 A–C) with edit similarities of approximately 0.7, 0.8240

and 0.9, respectively, the latter being the most similar observed pair.241

In example A, an additional protein (PTPN3) is added to an existing complex, a linear chain of 3242

proteins. The edit similariy is 10/14 = 0.714, the WL similarity is between 0.75 for ω = 1 and and 0.4243

for ω = 0. Because the edit similarity is between the extreme WL similarities, there exists a unique244

weight ω
∗ ≈ 0.898, for which WL and edit similarities agree for this particular complex pair. Example B245

is an noteworthy case, because the WL similarity is 1.0, independent of ω , because the vertex labels are246

identical even after the first Weisfeiler-Lehman iteration. (Further iterations would show a difference.)247

The edit similarity is 20/24 = 0.83, which is obtained by attaching ALB to the other LRP2 protein. In248

example C, one protein is replaced by another one in a fairly large complex. The edit similarity (0.905) is249

relatively high and outside the WL similarity range between 0.667 for ω = 0 and 0.818 for ω = 1.250

Because most protein complexes are small and do not exhibit properties of examples B or C, the251

overall agreement between WL similarity and edit similairty is high: For each of the selected com-252

plex pairs, we computed the exact edit similarity and the WL similarity for each weight ω ∈ W :=253

{0.0,0.01,0.02, . . . ,1.0}. Let e be the vector of edit similarity values and s(ω) the corresponding vector254

of WL similarity values using weight ω . To compare the similarity measures, we calculated both the255

Pearson correlation coefficient and the cosine similarity of e and s(ω) for all ω ∈W . As can be seen from256

Figure 2, the highest values occur for ω between 0.38 and 0.44 and the maximum Pearson correlation257

coefficient is obtained for ω = 0.41. For the cosine similarity, the maximum value is reached for weight258

ω = 0.69, but the function is less peaked, and values above 0.4 lead to high agreement (Figure 3).259

Overall, we find good agreement between edit similarity and WL similarity for sufficiently large260

values of ω , i.e., if the Jaccard similairity of the constituent protein multiset has sufficiently high weight.261
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Figure 3. Left: Scatterplot comparison of edit similarity and WL similarity for weight ω = 0.69,
including marginal distributions and least-squares regression line. Right: Cosine similarity between edit
similarity and WL similarity as a function of weight ω . The maximum cosine similarity (0.983) occurs
for ω = 0.69 shown on the left side.

Reproducibility262

The performed data analysis is available as a reproducible Snakemake (Köster and Rahmann, 2012)263

workflow1.264

DISCUSSION265

Our motivation to consider protein complex similarity was to reduce the complexity of the simulation266

output of our constrained protein interaction network simulator (Stöcker et al., 2017), and we were267

surprised to see that apparently, no similarity measures have been proposed in the literature. Depending on268

the underlying representation (set, multiset or graph), different alternatives suggest themselves. However,269

most graph-based measures are both theoretically and practically hard to compute for larger complexes or270

for large amounts of complexes. While different tractable graph similarity measures have been proposed,271

e.g. by Conte et al. (2004) or by Vishwanathan et al. (2010), or approximate graph edit distance (Riesen272

et al., 2015), none of these appear to be specifically tailored to the properties of protein complexes (often273

less than ten vertices; sparse). Our proposal to define the similarity as a convex combination of two274

Jaccard coefficients (protein label multiset and Weisfeiler-Lehman label multiset after one iteration) has275

two additonal advantages. First, using Jaccard coefficients allows to efficiently pre-filter for high similarity276

using locality sensitive hashing. Second, for weight ω = 1 of the 0-th WL iteration, our measure reduces277

to the natural similarity measure of the multiset representation. Our framework hence allows for a smooth278

transition between multiset and graph representation. The comparison to an edit-based similarity seems279

to indicate that the protein label multiset plays an important role if one wants to approximate the edit280

similarity.281

From a biological point of view, a high similarity between two complexes should indicate a high282

probability that they share the same function and can substitute each other in a cellular process. If such283

information were available, we could evaluate each similarity measure with regard to how it relates284

to common function. At present, when not even the interaction topology of most complexes has been285

determined, the corresponding data is out of reach, and such an evaluation is not feasible. In this situation,286

we suggest that edit similarity is a measure that corresponds to intuition about similarity and that any287

reasonable similarity measure should be close to edit similarity. The measure we propose has this property288

(for any weight ω ∈ [0,1]) but offers the advantage that it can be quickly computed and scales to millions289

of complex pairs.290

Both WL similarity and edit similarity, as previously defined, have limitations from a biological point291

1https://doi.org/10.5281/zenodo.1178084
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of view in the sense that they do not consider similarities between proteins: Two proteins are either equal292

or distinct. However, if two proteins are closely related, should they be treated as equal or distinct? In293

the former case, we lose resolution. In the latter case, we would benefit from a fine-grained similarity294

function between proteins (e.g. a modification of p is very similar to p, a protein with some common295

domains is somewhat similar to p, but a completely disjoint protein in terms of domains has similarity296

zero). In this sense, the question of how to best measure protein complex similarity is far from settled.297
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Figure 1(on next page)

Three exemplary pairs of protein complexes.

Each labeled node is a protein instance, each edge represents a protein interaction, and solid

black vs. dashed red edges distinguish between the two complexes.
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Figure 2(on next page)

Scatterplot comparison of edit similarity and WL similarity for weight $\omega=0.41$,
including marginal distributions and least-squares regression line.
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Figure 3(on next page)

Pearson correlation between edit similarity and WL similarity as a function of
weight~$\omega$. The maximum correlation ($0.946$) occurs for $\omega=0.41$,
shown on the left side.
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Figure 4(on next page)

Scatterplot comparison of edit similarity and WL similarity for weight $\omega=0.69,
including marginal distributions and least-squares regression line.
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Figure 5(on next page)

Cosine similarity between edit similarity and WL similarity as a function of
weight~$\omega$. The maximum cosine similarity ($0.983$) occurs for $\omega=0.69$
shown on the left side.
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