
Taking R to its limits: 70+ tips1

Michail Tsagris1 and Manos Papadakis2
2

1University of Crete, Herakleion, Greece3

2University of Crete, Herakleion, Greece4

Corresponding author:5

Michail Tsagris1
6

Email address: mtsagris@yahoo.gr7

ABSTRACT8

R has many capabilities most of which are not known by many users, yet waiting to be discovered. For
this reason we provide more tips on how to write really efficient code without having to program in C++,
programming advices, and tips to avoid errors and numerical overflows.

9

10

11

INTRODUCTION12

Efficient code is really important in large scale datasets, computations, or simulation studies. R may not13

be a scripting language or computationally efficient when compared to other open source programs, yet it14

has strong capabilities not known however to most of its users.15

We will show a few tips for faster computations. The speed-ups one will in small sample and or low16

dimensions will be small, but in bigger datasets the differences are observable. One might observe a17

time difference of only 5 seconds in the whole process. Differences from 40 seconds to 12 seconds for18

example, or to 22 seconds are still worthy. But not always this kinds of differences will be experienced.19

Some times, one tip gives 1 second and then another tip 1 second and so on until you save 5 seconds. If a20

researcher has to run 1000 simulations, then they can save 5000 seconds. Our moto is that every decrease21

in time or memory matters.22

Some times the speed-ups will appear with large samples only. To put it simply, for someone who23

needs a simple car, a very expensive car or a jeep type might not be of such use, especially if they do not24

go off-road. But for the user who needs a jeep, every computational power, every second they can gain25

matters.26

We have listed 70+ tips that can help the user write more efficient code, use less memory, become27

more familiar with R and its commands. The list is not exhaustive and we are sure there are tips we are28

not aware of. However, this is the first time such a long list is available.29

1 DURATION OF A PROCESSES30

In order to measure the time your process or computation or simulation needs, one can do the following31

in R32

runtime <- proc.time()
put your function here
runtime <- proc.time() - runtime
runtime gives you 3 numbers (all in seconds) like the ones below
user system elapsed
0.18 0.07 3.35

The elapsed is the desired metric. Alternatively the package microbenchmark (Mersmann, 2015)33

which allows for comparison between two or more functions measuring the execution time even in the34

nanoseconds scale.35

2 GENERAL ADVICE36

We begin with a list of of programming advices.37

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

https://cran.r-project.org/web/packages/microbenchmark/index.html

1. Avoid unnecessary calculations. In a discriminant analysis setting for example there is no need38

to calculate constant parts, such as log(2π), every time for each group and every iteration. This39

only adds time and takes memory and does not affect the algorithm or the result. The same for40

the Euclidean or the Hellinger distance. The square root and the multiplication by the same factor41

everywhere makes no difference and if can be avoided, then it should be avoided.42

2. Try to make the mathematics and hence the operations as simple as possible. The partial correlation43

coefficient can be computed with many ways. Two of them are via two regression models, or via44

the simple correlation matrix. The second one is much faster.45

3. If you have a function which uses many regression models, not necessarily from different down-46

loadable R packages, but even from R’s built-in models you should not to create a function for each47

model. This seems like the obvious thing to do, simply because different regression models have48

different signatures and hypothesis test with each of them is different, lm uses F test, glm use F or49

χ2 test and so on.50

The optimal solution is to write one function which includes all regression models and their51

arguments. This way, you have one inclusive function for all models, instead of many. Every time52

you want to add a new regression model you add it in this function and do not have to create a new53

function. This way, you have less files and require less memory.54

4. When writing code, leave space between operations, parentheses, indent the lines inside the for55

loops. Put comments at the end of every loop so as to know to which loop each bracket refers to.56

This is really helpful if your code is long. Make your code more readable and clean. The goal is57

not only to make it readable by someone else, but mainly by yourselves. Clean code is easier to58

understand and edit. A good programmer makes mistakes, but detects them fast. If your code is59

long, has no spaces and no comments, spotting any mistakes can become a difficult task.60

5. Understand how R works and what operations do, what you can or are not allowed to do. The61

command mahalanobis for example uses this line to calculate the distances.62

rowSums(x %*% cov * x)

The first key message is that the function performs one and not two (as one would expect) matrix63

multiplications. Secondly, the user is given the chance to see that he can apply these types of64

operations. Thirdly, he is given the chance to make this function faster.65

6. Do not use object oriented programming (S3,S4 methods) . It is not necessary and makes the hole66

program slow but if it is necessary then try make you own object using environments.67

7. If you have a vector x with integer numbers, it is preferable to have it as.integer(x) than as.numeric(x).68

The former requires less memory than the latter.69

3 SIMPLE FUNCTIONS70

We continue with a list of simple functions which will help you make your code more efficient and faster.71

1. Do not expect that all packages or R itself have fast implementations. The function mean is slower72

than sum(x)/length(x). If you type sum you will see it is a .Primitive function whereas crossprodfor73

example is an .Internal function. Another example of a more advanced function is to perform many74

univariate logistic regressions and each time calculate the deviance of the model. Create your own75

functions, you will be surprised to see that you may do faster than R’s built-in functions (it doesn’t76

always work that way).77

2. The commands cor and cov are two very fast functions which can be used to calculate the correla-78

tions or covariances between a vector and a matrix very efficiently. Many simple regression models79

can be calculated using these two commands.80

3. Search for functions that take less time. For example, the command lm.fit(x,y) is a wrapper for81

lm(y x), which means that the former is used by the latter. If you need only the coefficients, for82

example, then use the first one. The syntax is a bit different, x must be the design matrix, and the83

speed is also very different, especially in the big cases. The command .lm.fit(x,y) is even faster.84

2/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

4. It’s your algorithm. In a recent paper, Tsagris (2017) showed that conditional G2 tests of indepen-85

dence can become 3-4 faster if they are run using Poisson log-linear models and not by constructing86

the appropriate tables using for loops. There are may ways to perform your computations. Choose87

or implement the most appropriate and most efficient. For example, in order to generate vectors88

from the multivariate normal distribution you can either use spectral or Cholesky decomposition.89

The latter is faster. In general, try to find the optimal mathematical method or way for your problem.90

5. Suppose you want to center some data. You can try with apply91

cent <- function(x) x - mean(x)
a1 <- apply(data, 2, cent)

or use one of these92

a2 <- scale(data, center = TRUE, scale = FALSE)
m <- colMeans(data)
a3 <- sweep(data, 2L, m)
a4 <- t(t(data) - m) ## this is from the previous tip
dm <- dim(data)
n <- dm[1]
p <- dm[2]
a5 <- data - rep(m, rep(n, p)) ## looks faster

6. If you want to extract the mean vector of each group you can use a loop (for function) or93

a1 <- aggregate(x, by = list(ina), mean)

where ina is a numerical variable indicating the group. A faster alternative is the built-in command94

rowsum95

a2 <- rowsum(x, ina) / as.vector(table(ina))
a bit faster option is a3 below
a3 <- rowsum(x, ina, reorder = FALSE) / as.vector(table(ina))

7. Use which.min(x) and which.max(x) instead of which(x == min(x)) which(x == max(x)) to find96

the position of the minimum and maximum number respectively.97

x <- array(dim = c(1000,10,10))
for (i in 1:10) x[, , i] = matrix(rnorm(1000* 10), ncol = 10)
a1 <- apply(x, 1:2, mean)
a2 <- t(colMeans(aperm(x)))

8. Incremental calculations. An example of this is the first order partial correlations, which can be98

computed from the simple correlations with fewer calculations. In general, if your function can99

perform calculations incrementally, the boost in the speed can be very high.100

9. If you have a vector x and want to put it in a matrix with say 10 columns, do not write as.matrix(x,101

ncol = 10), but matrix(x, ncol = 10). The first method creates a matrix and puts the vector in. The102

second method, simply changes the dimension of x, instead of 1 column, it will now have 10. Again,103

about 2 times faster.104

10. When it comes to calculating probabilities or p-values more specifically, do not do 1− pchisq(stat,do f),105

but do pchisq(stat,do f , lower.tail = FALSE) as is a bit faster. In the tens of thousands of rep-106

etitions (simulation studies for example or an algorithm that requires p-values repeatedly), the107

differences become seconds.108

11. When calculating operations such as sum(a * x), where x is a vector or a matrix and a is a109

scalar (number) do a * sum(x). In the first case, the scalar is multiplied with all elements of the110

vector (many multiplications), whereas in the second case, the sum is calculated first and then a111

multiplication between two numbers take place.112

3/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

12. Suppose you want to calculate the factorial of some integers and most (or all) of those integers113

appear more than once (Poisson, beta binomial, beta geometric, negative binomial distribution for114

example). Instead of doing the operation for each element, do it for the unique ones and simply115

calculate its result by its frequency. See the example below. Note however, that this trick does not116

always work. It will work in the case where you have many integers and a for or a while loop and117

hence you have to calculate factorials all the time.118

x <- rpois(10000, 5)
sum(lgamma(x + 1))
y <- sort(unique(x))
ny <- as.vector(table(x))
sum(lgamma(y + 1) * ny)

13. If you use the glm or lm commands multiple times, then you should do119

glm(y ˜ x, family = ..., y = FALSE, model = FALSE)
lm(y ˜ x, y = FALSE, model = FALSE)

The two extra arguments y = FALSE ,model = FALSE reduce the memory requirements of the glm120

object.121

14. When calculating log(1+ x) use log1p(x) and not log(1+x) as the first one is faster.122

15. A very useful command is tabulate.123

table(iris[, 5])
tabulate(iris[, 5])

Two differences between these two are that table gives you a name with the values, but tabulate124

gives your only the frequencies. Hence, tabulate(x) = as.vector(table(x)). In addition, if you use125

tabulate, you can do so with factor variables as well. But, if you have numbers, a numerical vector,126

make sure the numbers are consecutive, and strictly positive, i.e. no zero is included.127

x <- rep(0:5, each = 4)
table(x)
tabulate(x) ## 0 is missing
x <- rep(c(1, 3, 4), each = 5)
table(x)
tabulate(x) ## there is a 0 appearing indicating the absence of 2

The command tabulate is many times faster than table. For discriminant analysis algorithms,128

tabulate might be more useful, because of speed, when counting frequencies, it could be more129

useful as well, as it will return a 0 value if a number has a zero frequency. The drawback arises130

when you have negative numerical data, data with a zero or positive numbers but not consecutive.131

If you want speed, formulate your data to match the requirements of tabulate.132

16. Vectorization can save tremendous amount of time even in the small datasets. Try to avoid for loops133

by using matrix multiplications. For example, instead of134

for (i in 1:n) y[i] <- x[i]ˆ2

you can use135

y <- xˆ2

Of course, this is a very easy example, but our point is made. This one requires a lot of thinking136

and is not always applicable. But, if it can be done, things can be substantially faster.137

17. Make use of the command outer. An example is where you have two vectors x and y and you want138

to add each element of y in x. The final item would be a matrix.139

z <- matrix(0, nrow = length(x), ncol = length(y))
for (i in 1:dim(z)[1]) z[i,] <- x[i] + y

4/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

The above task can take place a lot faster by typing
outer(x, y, "+")

18. The command sort has an extra feature, by specifying index.return = TRUE, the outcome is a list140

with the sorted numbers, along with their ordered indexes. That is, you call sort(x, index.return =141

TRUE) and the command sorts the numbers and returns their order as if you used order separately.142

19. You can partially sort a vector. In the k-NN algorithm for example you want the k smallest distances.143

There is no need to sort all the distances, only the k smallest. Hence, sort(x, partial=1:k).144

20. When using sort select type sort(x, method=quick) in order to make it even faster, in most cases.145

21. Many functions call internal function inside. sort for example calls sort.int, sample calls sample.int146

etc.147

22. You are given many matrices in a list, ”A”, and wish to unlist all of them and create a new matrix,148

where the matrixc of each element is added one under the other. The command to do this efficiently149

is150

do.call(rbind, A)

4 CALCULATIONS INVOLVING MATRICES151

R is not designed to handle large scale datasets, yet there are many ways to efficiently handle matrices152

and we present to you some tricks below.153

1. Use colMeans and rowMeans instead of apply(x, 1, mean) and apply(x, 2, mean) as they are154

extremely fast. In addition, many really fast functions can be produced using these two commands.155

2. Avoid using apply or aggregate whenever possible. For example, use colMeans or colSums instead156

of apply(x, 2, mean) to get the mean vector of a sample because it’s faster. For the median though,157

you have to use apply(x, 2, median) instead of a for going to every column of the matrix. The for158

loop is not slower, but the apply is knitter.159

3. If you have to use a for loop going through the rows of a matrix, consider transposing the matrix160

and then go through its columns.161

4. If you are given a matrix and by using a for loop you would like to extract some specific162

columns/rows of the matrix each time. Instead of that, you can store the indices of the columns/rows163

inside the for loop and outside simply extract the columns/rows and perform any operations you164

want.165

5. If you want to extract the number of rows or columns of a matrix X, do not use nrow(X) or ncol(X),166

but dim(X)[1] or dim(X)[2] as they are almost 2 times faster.167

6. Suppose you have a matrix X and you want the position of the maximum for each row. The obvious168

solution is apply(X, 1, which.max). The efficient solution is max.col(X).169

7. If you want to subtract a vector from a matrix in a row-wise fashion, you should be aware of the fact170

that R does it column-wise. This is because R reads, writes and stores data in a column-wise fashion.171

For example, X is a matrix and y is a vector whose length is equal to the number of columns of X.172

You should type173

t(X) - y

8. If you take your input matrix and transpose it and never use the initial matrix in the subsequent174

steps it is best to delete the initial matrix, or even better store its transpose in the same object. That175

is, if you have a matrix X, you should do the following176

5/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

Y <- t(X) ## not suggested
X <- t(X) ## suggested

We repeat that this in the case when x is not used again in latter steps. The reason for this is memory177

saving. If x is a big and you have a second object as big as the first one, you request your computer178

to use extra memory with no reason.179

9. Use the command prcomp instead of princomp. The first one should be used for principal component180

analysis when you have matrices with more than 100 variables. The more variables the bigger the181

difference (40 times for example) from using eigen(cov(x)).182

10. Create the vectors or matrices from the start. Instead of making a vector longer each time, using c()183

create an empty vector with the required size. The commands rbind and cbind are useful, but come184

with a heavy price. They are very expensive when called a lot of times.185

11. For the covariance matrices the command by could be used. The matrices are stored in a list and186

then you need the command simplify2array to convert the list to an array in order to calculate for187

example the determinant of each matrix. The for loop is faster, at least that’s what we have seen in188

our trials.189

12. What if you have an array with matrices and want to calculate the sum or the mean of all the190

matrices? The obvious answer is to use apply(x, 1:2, mean). R works in a column-wise fashion191

and not in a row-wise fashion. Instead of the apply you can try t(colSums(aperm(x))) and t(192

colMeans(aperm(x))) for the sum and mean operations respectively.193

13. If you want to calculate the logarithm of the determinant of a matrix X, instead of log(det(X)), you194

can type determinant(X, logarithm = TRUE) as it is slightly faster for small matrices. In the big195

matrices, say of dimensions 100×100 or more, the differences become negligible though.196

14. If you want the matrix of distances, with the zeros in the diagonal and the upper triangular do not197

use the command as.matrix(dist(x)) but use dist(x, diag = TRUE, upper = TRUE).198

15. Suppose you want the Euclidean distance of a single vector from many others (say thousands for199

example). The inefficient way is to calculate the distance matrix of all points and take the row200

which corresponds to your vector. The efficient way is to use the Mahalanobis distance with the201

identity matrix and the covariance matrix.202

x <- rnorm(50)
y <- matrix(rnorm(1000 * 50), ncol = 50))
a1 <- dist(rbind(x, y)) ## inefficient way
Ip <- diag(50)
a2 is a better way
a2 <- mahalanobis(y, center = x, cov = Ip, inverted = TRUE)

Another way is the following203

z <- y - x
a <- sqrt(colSums(zˆ2))

16. Calculating XT Y in R as t(X)%∗%Y instead of crossprod(X, Y) causes X to be transposed twice;204

once in the calculation of t(X) and a second time in the inner loop of the matrix product. The205

crossprod function does not do any transposition of matrices.206

17. If you want to calculate the product of an n× p matrix XT X for example. The command crossprod(X)207

will do the job faster than the matrix multiplication.208

t(X) %*% Y ## classical
crossprod(X, Y) ## more efficient
X %*% t(Y) ## classical
tcrossprod(X, Y) ## more efficient

6/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

t(X) %*% X ## classical
crossprod(X) ## more efficient

18. Let X and m be a matrix and a vector and want to multiply them. There are two ways to do it.209

sum(m * x)
sum(x %*% m) ## a bit faster

19. When working with arrays it is more efficient to have them transposed. For example, if you have K210

covariance matrices of dimension p× p, you would create an array of dimensions c(p, p,K). Make211

its dimensions c(K, p, p). If you want for example to divide each matrix with a different scalar212

(number) in the first case you will have to use a for loop, whereas in the transposed case you just213

divide the array by the vector of the numbers you have.214

20. If you want to only invert a positive definite matrix (e.g. covariance matrix) then you should use215

chol2inv(chol(X)) as it is faster.216

21. To invert a matrix (not necessarily positive definite) and multiply the result with a vector or another217

matrix, there are two ways to do that218

solve(X) %*% Y ## classical
a much more efficient way is not
to invert the matrix X
solve(X, Y)

22. The trace of the square of a matrix tr
(
X2

)
can be evaluated either via219

sum(diag(crossprod(X)))

or faster via220

sum(X * X) ## or
sum(Xˆ2)

23. If you want to calculate the following trace involving a matrix multiplication tr
(
XT Y

)
you can do221

either222

sum(diag(crossprod(X, Y))) ## just like before

or faster223

sum(X * Y) ## faster, like before

24. Moving in the same spirit, suppose you want the diagonal of the crossproduct of two matrices, then224

do225

diag(tcrossprod(X, Y)) ## for example
rowSums(X * Y) ## this is faster

25. Suppose you have two matrices A, B and a vector x and want to find ABx (the dimensions must226

match of course).227

A %*% B %*% x ## inefficient way
A %*% (B %*% x) ## efficient way

The explanation for this one is that in the first case you have a matrix by matrix by vector calculations.228

In the second case you have a matrix by vector which is a vector and then a matrix by a vector. You229

do less calculations. The final tip is to avoid unnecessary and/or extra calculations and try to avoid230

doing calculations more than once.231

26. As for the eigen-value decomposition, there are two ways to do the multiplication232

7/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

s <- matrix(rnorm(100 * 100), ncol = 100)
s <- crossprod(s)
eig <- eigen(s)
vec <- eig$vectors
lam <- eig$values
a1 <- vec %*% diag(lam) %*%t(vec)
a2 <- vec %*% (t(vec) * lam) ## faster way

27. The exponential term in the multivariate normal can be either calculated using matrices or simply233

with the command mahalanobis. If you have many observations and many dimensions and or many234

groups, this can save you a lot of time.235

x <- matrix(rnorm(1000 * 20), ncol = 20)
m <- colMeans(x)
n <- nrow(x)
p <- ncol(x)
s <- cov(x)
a1 <- diag((x - rep(m, rep(n, p))) %*% solve(s)
%*% t(x - rep(m, rep(n, p))))
a2 <- diag(t(t(x)- m) %*% solve(s) %*% t(x)- m)
a3 <- mahalanobis(x, m, s) ## much faster

5 NUMERICAL OPTIMIZATION236

1. The command nlm is much faster than optim for optimization purposes but optim is more reliable237

and robust. Try in your examples or cases, if they give the same results and choose. Or, use nlm238

followed by optim.239

2. If you have a function for which some parameters have to be positive, do not use constrained240

optimization, but instead put an exponential inside the function. The parameter can take any values241

in the whole of R but inside the function its exponentiated form is used. In the end, simply take the242

exponential of the returned value. As for its variance use the δ -method (Casella and Berger, 2002).243

The trick is to use a link function, similarly to generalised linear models.244

3. There are two ways to estimate the parameters of a distribution, Dirichlet for example. Either with245

the use nlm or via the Newton-Raphson algorithm. We performed some simulations and saw that246

the Newton-Raphson can be at least 10 times faster. The same is true for the circular regression247

(Presnell et al., 1998) when comparing nlm with the E-M algorithm as described by Presnell et al.248

(1998). Switching to E-M or the Newton-Raphson and not relying on nlm can save you a lot of249

time. If you want to write code and you have the description of the E-M or the Newton-Raphson250

algorithm available, then do it. Among these two, Newton-Raphson is faster.251

4. If you have an iterative algorithm, such as Newton-Raphson, E-M or fixed points and you stop252

when the vector of parameters does not change any further, do not use rbind, cbind or c(). Store253

only two values, vec.old and vec.new. What we mean is, do not do for example254

u[i,] <- u[i - 1,] + W%*%B ## not efficient
u.new <- u.old + W%*%B ## efficient

So, every time keep two vectors only, not the whole sequence of vectors. The same is true for the255

log-likelihood or the criterion of interest. Unless you want to keep track of how things change our256

advice is to keep two values only, the current and the previous one. Otherwise, apart from being257

faster, it also helps the computer run faster since less memory is used.258

6 NUMERICAL OVERFLOWS259

Numerical instabilities occur frequently when using real, not simulated, data. The reason why we mention260

these tricks is because one should not sacrifice numerical issues for the shake of speed. When trying to261

8/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

speed-up code, we experienced numerical instabilities and overflows and we would like to share some of262

the issues we faced.263

1. The fitted values in a logistic regression model make use of the inverse of the logit function ex

1+ex . If264

x is a really high number, the numerator becomes infinity (Inf). If however you write this formula265

in its equivalent form 1
1+e−x , then the result is 1 as it should be.266

2. The same is true for the Poisson regression or other regression which use the log as their link267

function. In those cases one uses ex. Try using e−x instead.268

3. Kernel functions are of the form e
f (X)

h , where h is a scalar and X is a matrix. In order to speed up269

the calculations one could pre-calculate e f (X) and then raise the result to the power of the different270

values of h. This can easily result in overflow and Inf values. Speed-up can lead to overflow, hence271

caution must be taken.272

4. By Taylor series we know that log(1+ ex)' x, but when x≥ 13 the two terms are equal log(1+ ex)=273

x. Even the command log1p will not avoid the Inf result.274

5. The product ∏
n
i=1 xi, where 0 < xi ≤ 1, becomes 0 very fast. In order to avoid this, you should use275

e∑
n
i=1 logxi .276

6. Use the logarithm of the p-values and not the p-values. This can be very beneficial when your277

algorithm calculates and compares p-values. When the p-value is smaller than the 2.220446e-16278

(.Machine$double.eps) are rounded to zero. R cannot sort, correctly, p-values less than that number279

because they are all considered equal to zero. If you have requested the logarithm of the p-values280

though, those negative numbers can be sorted correctly.281

7 PARALLEL COMPUTING IN R282

If you have a machine that has more than 1 cores, then you can put them all to work simultaneously and283

speed up the process a lot. If you have tricks to speed up your code that is also beneficiary. We have284

started taking into account tricks to speed up my code as we have mentioned before.285

The idea behind is to use a library that allows parallel computing. We make use of the doParallel286

package (which uses the foreach package). Below are some instructions on how to use the package in287

order to perform parallel computing. In addition, we have included the parallel computing as an option in288

some functions and in some others we have created another function for this purpose. So, if you do not289

understand the notes below, you can always see the functions in R packages that use this package.290

requires(doParallel)
Create a set of copies of R running in parallel and communicating
over sockets.
cl <- makePSOCKcluster(nc) ## nc is the number of cluster you
want to use
registerDoParallel(cl) ## register the parallel backend with the
foreach package.
Now suppose you want to run R simulations, could be
R <- 1000 for example
Divide the number of simulations to smaller equally
divided chunks.
Each chunk for a core.
ba <- round(rep(R/nc, nc))
Then each core will receive a chunk of simulations
ww <- foreach(j = 1:nc,.combine = rbind) %dopar% {
see the .combine = rbind. This will put the results in a matrix.
Every results will be saved in a row.
So if you have matrices, make them vectors. If you have lists
you want to return,
you have to think about it.

9/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

https://cran.r-project.org/web/packages/doParallel/index.html

a <- test(arguments, R = ba[j], arguments)$results
Instead of running your function "test" with R simulations
you run it with R/nc simulations.
So a stores the result of every chunk of simulations.
return(a)
}

stopCluster(cl) ## stop the cluster of the connections.

To see your outcome all you have to press is ww and you will see something like this291

result.1
result.2
result.3
result.4

The object ww contains the results you want to see in a matrix form. If every time you want a number,292

the ww will be a matrix with 1 column. We will see more cases later on. Note that f you choose to use293

parallel computing for something simple, multicore analysis might take the same or a bit more time than294

single core analysis only because it requires a couple of seconds to set up the cluster of the cores. In295

addition, you might use 4 cores, yet the time is half than when 1 core is used. This could be because not296

all 4 cores work at 100%.297

In this example we have given each chunk of simulations to a core. Alternatively, one can have a for298

loop going through all columns of a matrix, for example. The latter is slower, but the former is not always299

possible.300

8 EFFICIENTLY WRITTEN FUNCTIONS IN R PACKAGES301

The multinomial regression is offered in the package VGAM (Yee, 2010), but it also offered in the package302

nnet (Venables and Ripley, 2002). The implementation in the second package is much faster. The same is303

true for the implementation of the ordinal logistic regression in the VGAM and in the ordinal (Christensen,304

2015). The latter package does it much faster. Also, the package fields (Nychka et al., 2015) has a function305

called rdist which is faster than the built-in dist in R. These are just some examples where functions are306

available in more than one packages, but do not share the same computational cost.307

Regression models, commands calculate distance matrices matrix, statistical tests, utility functions308

and many more can also be found in the package Rfast (Papadakis et al., 2017). This package contains309

many fast or really fast functions, either written in C++ or simply using R functions exploiting fast built-in310

functions. colMedians for example is much faster than apply(x, 2, median). The same is true for the311

colVars. Functions for matrices, distribution fitting, utility functions and many more are there and we312

keep adding functions. We have also implemented regression functions as well, which can handle large313

sample sizes (50,000 or more, for example) efficiently. All codes are accessible in the .R or .cpp source314

files of the package.315

9 MORE ADVANCED PROGRAMMING TIPS316

There are programming languages that offer you extravagant features. We will mention some of those317

who support R, as well as their strengths and benefits.318

1. Operator overloading.319

320

General: The overloading of operators is something incredibly handy and at the same time321

somehow dangerous. It allows you to manage your variables in the specific way that you declare.322

C++ supports overloading operators for a large number of operators, while others forbid it. R323

supports overload for a fairly large total (less than C ++ since it contains fewer operators) of324

operators:325

(a) brackets: [] (see in the special operators)326

(b) double brackets: [[]] (see in the special operators)327

10/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

https://cran.r-project.org/web/packages/VGAM/index.html
https://cran.r-project.org/web/packages/nnet/index.html
https://cran.r-project.org/web/packages/VGAM/index.html
https://cran.r-project.org/web/packages/ordinal/index.html
https://cran.r-project.org/web/packages/Rfast/index.html

(c) binary and unary operators:328

+, -, *, /, |, &, ˆ, %%, == (always 2 arguments)

(d) unary operators: (always 1 argument)329

Be careful: Overloading is not supported for330

&&, ||, =, <-, ->, <<-, ->>.

Although there is a way of overloading some of these operators that can be used together in a331

command, e.g. [] and <- , [[]] and <-.332

The only drawback is that each operator is handled by a different set of arguments. However, there333

are no other drawbacks to R since all the above-mentioned operators (overloaded operators) are334

essential functions in relation to C ++ that if you use overloading then the operators converted into335

functions (where you pay a penny as long as functions are called) while no surplus treatments are336

being handled in a completely different way. The advantage (for both R and C++) are: a) new ways337

of implementation, b) control of variables for error management (as does R in some cases) and c)338

perhaps even higher speed (depends on the algorithm).339

Implementation of overloading operators: The algorithm for the implementation of the over-340

loading is the same for all overloaded operators (with some exceptions).341

(a) Declare a variable (e.g. ”x”).342

(b) Declare a variable with character value which represents anything you want.e.g. new class =343

”anything”. This is the 1st important step for oveloading operators.344

(c) Change class for the variable from step (a): class(x) <- new class This is the 2nd important345

step for oveloading operators.346

(d) Declare a function for the operator you want to overload. A general way is, let the operator347

be the ”oper” which get values from the overloaded operators that R supports: ”t.new class”348

<- function(whatever arguments the operator want) a) Set class to null for its arguments. b)349

Execute the operator. c) Set class to new class name. Be careful: the function name is very350

important.351

(e) Finished with the creation.352

(f) Press: x + x353

Special operators [] and [[]]: The operators [], [[]] are used for access in some elements of a354

variable. There are 2 ways to use them, to extract an element and to import.355

356

Extract:357

[]: "[.new_class" <- function(x,i,...) {}
[[]]: "[[.new_class" <- function(x,i,...) {}

Import:358

[]<- : "[<-.new_class" <- function(x, i, ..., value) { }
[[]]<- : "[[<-.new_class" <- function(x, i, ..., value) { return(x) }

Be careful: You don’t have to write different functions for operators <-, =, ->. You need only to359

use one of the three and R will understand the rest. Also you have to add one more argument for360

the import function because R uses it for the value to be stored. Finally, always return the argument361

”x”.362

E.g.363

11/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

OK
[]<- : "[<-.new_class" <- function(x, i, ..., v) { return(x) }

will produce error
[]<- : "[<-.new_class" <- function(x, i) { return(x) }

still OK but a bit risky
[]<- : "[<-.new_class" <- function(x, i, ...) { return(x) }

for us, preferred way if you want to access more than one cells
[]<- : "[<-.new_class" <- function(x, ..., v) { return(x) }

Examples: Let’s say we want to overload operator ”+” for our own class.364

(a) Declare a variable: x ¡- rnorm(10).365

(b) Change class: class(x) ¡- ”test add”.366

(c) Create function.367

"+.test_add" <- function(x, y) {
class(x) <- class(y) <- NULL
tmp <- x + y
class(x) <- class(y) <- "test_add"
tmp

}

(d) Create function for extract.368

"[.test_add" <- function(x, ...){
indices <- c(...)
if (any (indices>length(x))) {

stop("Out of bounds in function ’[]’")
}
class(x) <- NULL
tmp <- x[indices]
class(x) <- "test_add"
tmp

}

(e) Create functions for import.369

"[<-.test_add"<-function(x,...,v){
indices <- c(...)
if (any(indices>length(x))) {

stop("Out of bounds in function ’[]<-’")
}
class(x) <- NULL
x[indices] <- v
class(x) <- "test_add"
x ## neccessary step for R itself

}

2. Auto-printing your own class with your own style. In R you can print a variable using the functions370

”print”,”cat” or just type the variables names and press the enter key. But what happened if you371

don’t like the way that R treats the printing? that is the point of auto-printing. R support a general372

way to print your own class using its default function ”print”. The method is very simple but with373

one exception, you must change the class as we do in the 1st programming advise.374

12/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

print.new_class_name(x, other_arguments_that_rs_print_passes) {
cat("auto-printing my variable with class ’new_class_name’
and value: ", x)

}

Example:375

(a) Create a variable: x¡-0376

(b) Change its class: class(x) ¡- ”anything”377

(c) create the function to print the variable:378

print.anything(x, other_arguments_that_rs_print_passes) {
cat("Auto-printing variable of class anything: ", x)

}

(d) Press: print(x)379

(e) That’s it.380

3. Using if-else in one line. Another feature in C++ is the ternary operator (which is not overloaded).381

General is anif-else statement with different syntax,sometimes more fast than if-else and also with382

one more capability, it returns the last command. That means the ternary operator is an if-else383

assign syntax. R support it also in the default if-else syntax. This can reduce the length of the code.384

Example:385

if (is true) {
x <- 1

} else {
x <- 2

}

The above example is very simple but it needs 5 lines to be written. Lets reduce it:386

x <- if (is true) 1 else 2

In a single line we have the same code. Be careful with the syntax and the last returned statement to387

be the one you want to initialize the variable ”x”. For more than one commands use curly brackets.388

This works fine because of the if-else. The if-else in R is like a function which always return the389

last command if you write it with the way that functions uses to return a variable. Not using the390

”return” keyword, but just write the variable. Note: you can do the same exactly thing with if-else-if391

but do not forget to careful with the syntax.392

4. Iterate vector. If you want to iterate a vector and use the variables for something you can do:393

x < -rnorm(10)
for (i in 1:length(x)) {

cat(x[i])
}

This is classic. Another way to iterate through vector is:394

x <- rnorm(10)
for (i in x) {

cat(i)
}

The second way is the same with the first one but instead of using the indices for the vector, then395

you use the vector itself. With the second way you eliminate one more action for each element of396

”x” in for loop. This means that the total eliminations is ”length(x)”. So, you can decrease your397

speed, not much but, satisfactorily.398

13/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

5. Efficient implementation of R’s factor using any build-in type. Factor is a clever implementation of399

an integer vector. It has for values integers that are indices to a character vector with values the400

initial that user gives. It uses low memory because a character value needs memory equal to its401

length but loses in speed because you have to convert from the initial type to character. This means402

that if someone wants to extract a value and convert to its real type then it is slow. Fortunately the403

build in ¡as¿ functions are quite fast with one exception, the function ”as.character” needs a lot of404

execution time for convert each number. It is reasonable but imagine a large data set. Also factor is405

a read-only vector (by default in R). Lets see the code:406

(a) We are going to use an environment which is a reference struct so R will never copy it.407

uf <- new.env()
with this step we can apply all the above tricks
class(uf) <- "ufactor"

(b) Create local variables inside ”uf” and a wrapper function:408

ufactor <- function(x) {
un <- sort(unique(x), method = "quick")
uf$values <- match(x, un)
uf$levels <- un
lockBinding("values", uf)
lockBinding("levels", uf)
lockEnvironment(uf)
x

}

(c) Create function extract element extraction:409

"[.ufactor" <- function(uf, i) {
uf$levels[uf$values[i]]

}

Be careful: we don’t need a function for import element because R doens’t support it. We410

want our variable to behave exactly like R’s built-in.411

(d) Create function for auto-printing the variable:412

print.ufactor <- function(x) {
cat("Levels:\n ")
options(digits=15)
cat(uf$levels[uf$values])
cat("Values:\n ")
cat(uf$values)

}

And that’s it. with this 5 steps we have a more general factor supporting the 4 built-in types413

(character, integer, numeric, logical) just like R. R might support more but we care for these mostly.414

So if you want to get the values and levels you don’t need to use as.integers/levels but instead use415

the ”$” to access the local variables. We also use the lock functions to lock environment and local416

variables of our ufactor just to remind the user to do not change them at all. R will produce an error.417

In the end, our variable ”uf” is an environment with class ”ufactor” (for untyped factor) and you418

can use it for anything without losing speed with the copies that R might do or not. Example:419

x <- sample(rnorm(10), 1000, replace = TRUE)
r_factor <- factor(x)
u_factor <- ufactor(x)
all.equal(as.integer(r_factor), u_factor$values) ## TRUE
all.equal(levels(r_factor), as.character(u_factor$levels)) ## TRUE

14/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

print(r_factor)
print(uf_factor)
r_factor[1] == u_factor[1] ## TRUE

10 CONCLUSION420

We have provided a long list of efficient coding tips to help the user make their programs faster. In some421

cases, the user can benefit from having functions that use less memory, which is also another important422

feature, apart from speed. We also provided tips to avoid numerical instabilities and numerical overflows.423

These tips should not go unattended as one can easily face such errors when trying to optimize the424

efficiency of their code.425

ACKNOWLEDGEMENTS426

We would like to acknowledge Stefanos Fafalios, Christina Chatzipantsiou, Marco Maier, Panagiotis427

Tzirakis, Giorgos Athineou, Kleio Lakiotaki, Kurt Hornik, Uwe Ligges and the R Core team.428

REFERENCES429

Casella, G. and Berger, R. L. (2002). Statistical inference. Duxbury Pacific Grove, CA.430

Christensen, R. H. B. (2015). ordinal—Regression Models for Ordinal Data. R package version 2015.6-28.431

Mersmann, O. (2015). microbenchmark: Accurate Timing Functions. R package version 1.4-2.1.432

Nychka, D., Furrer, R., and Sain, S. (2015). fields: Tools for Spatial Data. R package version 8.2-1.433

Papadakis, M., Tsagris, M., Dimitriadis, M., Fafalios, S., Tsamardinos, I., Fasiolo, M., Borboudakis, G.,434

Burkardt, J., Zou, C., and Lakiotaki, K. (2017). Rfast: Fast R Functions. R package version 1.8.6.435

Presnell, B., Morrison, S. P., and Littell, R. C. (1998). Projected multivariate linear models for directional436

data. Journal of the American Statistical Association, 93(443):1068–1077.437

Tsagris, M. (2017). Conditional independence test for categorical data using poisson log-linear model.438

Journal of Data Science, 15(2):345–354.439

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York, fourth440

edition. ISBN 0-387-95457-0.441

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software,442

32(10):1–34.443

15/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26605v1 | CC BY 4.0 Open Access | rec: 3 Mar 2018, publ: 3 Mar 2018

	Duration of a processes
	General advice
	Simple functions
	Calculations involving matrices
	Numerical optimization
	Numerical overflows
	Parallel computing in R
	Efficiently written functions in R packages
	More advanced programming tips
	Conclusion
	References

