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ABSTRACT 

Knowledge of protein-protein interaction sites provides an important base for deciphering novel 

drug targets and applications of enzyme-based studies. But on account of biological complexity 

and transient forms, determination of these sites is a challenge in biology. Various computational 

approaches are being explored for relevant prediction based on available protein sequence-

structure information. Here we propose a novel method SPRINGS (Sequence-based predictor of 

PRotein- protein interactING Sites) for identification of interaction sites based on sequences. It 

uses protein evolutionary information, averaged cumulative hydropathy and predicted relative 

solvent accessibility from amino acid chains in artificial neural network architecture with a 

promising performance for protein-protein interactions sites based research and applications. 
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INTRODUCTION 

Proteins are key players in biological systems orchestrating various mechanisms of life 

sustenance and growth. They perform such vital functions by concerting interactions with each 

other forming a network of interplaying agents in regulating as well as facilitating various 

metabolic functions within and outside of the organisms [1]. Thus, knowledge of protein-protein 

interactions can provide us with insights into the innate metabolic machinery of living 

organisms. Further, with newer annotations of protein sequences and structures, mapping protein 

interaction network has become a coveted aspect of advancing towards its potential applications 

in proteomics and related fields also [2]. Since protein-protein interaction information allows the 

function of a protein to be defined by its position in a complex web of interacting proteins, 

access to such information is believed to have ample role in boosting biological research and 

drug discovery [3]. These insights can be utilized to develop novel agents for intervening and 

manipulating the flow of biological information in case of disorders and irregularities [4, 5]. 

 

The identification of these protein-protein interactions was previously limited to labor-intensive 

experimental techniques such as co-immunoprecipitation or affinity chromatography. 

Sophisticated high-throughput experimental techniques such as yeast two-hybrid and mass 

spectrometry have now also become available for large-scale detection of protein interactions. 

But these methods, may not be generally applicable to all proteins in all organisms, and may also 

be susceptible to systematic error [2].  

 

In addition to various conventional experimental methods, a number of complementary 

computational approaches have been developed for the large-scale prediction of protein–protein 
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interactions based on protein sequence, structure and evolutionary relationships in complete 

genomes. Computational prediction of protein–protein interactions consists of two main areas (i) 

the mapping of protein–protein interactions, i.e., determining whether two proteins are likely to 

interact and (ii) the understanding of the mechanism of protein–protein interactions and the 

identification of residues in proteins which are involved in those interactions. 

 

Initially the computational prediction of protein–protein interactions was strictly limited to 

proteins whose three-dimensional structures had been determined [6]. These methods predicted 

protein–protein interaction based on the structural context of proteins. Recent advances in 

complete genome sequencing have however provided a wealth of genomic information, opening 

possibilities for establishing the genomic context of a given gene in a complete genome [2]. A 

gene is no longer thought of as a single protein-coding entity but as part of a coordinated 

network of interacting proteins. The potential for two proteins to interact is not only specified by 

the physical and structural properties of their structures, but is also encoded at a genomic level.  

 

Machine learning approaches such as the Naïve Bayes Classifier [7], Neural Networks [8, 9], 

Support Vector Machines [9] and Random-forest classifier [10] have also been explored for 

prediction of protein-protein interaction sites. However, a broad-range predictor incorporating a 

combination of all crucial properties for identification of biologically significant protein-protein 

interaction sites remained to be explored, besides, an updated insight on newly annotated 

proteins. 
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In this study, we have incorporated protein sequence properties such as evolutionary 

conservation, hydropathy and predicted structural information in an artificial neural network to 

predict protein-protein interaction sites. Our findings may help boost crucial target-specific drug 

development and other potential applications of protein interaction biology.  

 

 

MATERIALS AND METHODS 

Datasets 

In this study, we have incorporated datasets comprising of heterodimeric non-transmembrane 

protein chains in complex, listed in Protein Data Bank (PDB) [11], with structures solved using 

X-ray Crystallography (resolution  3.0 Å). The interacting residue in the protein chains was 

defined as a residue that lost absolute solvent accessibility of <1.0 Å
2
 on complex formation. For 

training the neural network architecture, training dataset Dset186 was used and for testing the 

performance of the trained neural network, independent test dataset Dtestset72 containing non-

overlapping sequences with Dset186 (sequence identity <25%) was used. Dset186 and 

Dtestset72 have been previously created and used during the development of PSIVER [7].  

 

Besides these two (training and independent test) datasets, we prepared an additional dataset – 

PDBtestset164, using newly annotated proteins from June 2010 to November 2013. The filters 

used on PSIVER datasets as mentioned above, i.e., Dset186 and Dtestset72, were applied for 

creating PDBtestset164 as follows: Proteins with X-ray Crystallography (resolution  3.0 Å) 

heterodimeric structures were included using the advanced search option available at 
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http://www.rcsb.org; and fragments (sequence length <50 amino acids) were excluded. Those 

protein chains listed in the REMARK 350 as dimers were considered. By means of 

UniProtKB[12] accession numbers only heterodimers among the considered proteins were 

selected and used.  Protein complexes whose chains had the missing ratio (= the number of 

missing residues of a chain listed in REMARK465/the total number of residues of the chain × 

100) ≥ 30% were removed.  Also protein complexes with interface area of <500Å
2
 or ≥ 2500Å

2 

as mentioned in PDBsum [13] and transmembrane proteins listed in PDBTM [14] were removed. 

Some of the retained structures, determined as dimeric, that may be part of larger oligomeric 

complexes found in other PDB entries were also removed using PDBsum [13]. These structures 

would have additional interaction sites that could affect the prediction performance of the 

method. To ensure non-redundant sequences among the filtered chains, we performed their pair-

wise clustering using BLASTClust [15]. Then all the sequences with ≥ 25% sequence identity 

over 90% overlap were removed from within the dataset. Non redundancy of these sequences 

with Dset186 and Dtestset72 was also ensured. Overall 164 protein chains were obtained in 

PDBtestset164. Software PSAIA [16] (Protein Structure and Interaction Analyzer) was used to 

identify protein-protein interaction sites in PDBtestset164. The following PDB IDs along with 

the mentioned interacting chains were included:  

3PH0 (A,C), 3VIQ (A,B), 4DFC (A,B), 3P8B (A,B), 4EQA (A,C), 3Q9N (A,C), 4JOI (A,D), 

4CDG (A,C), 4HOP (A,B), 2YAJ (A,B), 2WUS (A,R), 3ZEU (D,E), 3AQB (A,B), 3OCD (A,B), 

3S97 (A,C), 4HLU (A,D), 4FOU (A,C), 4KT6 (A,B), 3UVJ (A,B), 4FQ0 (B,C), 2YC2 (A,D), 

4H3K (A,B), 2Y9W (A,C), 3MDB (A,C), 3O3M (A,B), 3ZHE (A,B), 4E6N (A,B), 3W0L (A,B), 

4BH6 (D,L), 3TGX (A,B), 2XQR (A,B), 3OUR (A,B), 3MMY (A,B), 3VPJ (A,E), 3ZR4 (A,B), 

3B08 (A,B), 3TU3 (A,B), 3W2W (A,B), 3MP7 (A,B), 3ZYI (A,B), 2YCL (A,B), 4EMJ (A,B), 4KBM 
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(A,B), 4F6U (A,B), 4ETP (A,B), 3VRD (A,B), 3ZKQ (A,D), 3NYB (A,B), 4M69 (A,B), 3AXJ 

(A,B), 3R07 (A,C), 4E4W (A,B), 3MJ7 (A,B), 4GED (A,B), 4AWX (A,B), 3PV6 (A,B), 3VU9 

(A,B), 4JE3 (A,B), 4IU2 (A,B), 4APX (A,B), 3NW0 (A,B), 2WD5 (A,B), 3OG6 (A,B), 3SHG (A,B), 

3AYH (A,B), 3ANW (A,B), 3VDO (A,B), 4KT3 (A,B), 3M7F (A,B), 4HFF (A,B), 3Q87 (A,B), 

3ONA (A,B), 4BI8 (A,B), 4A5U (A,B), 4EUK (A,B), 4G7X (A,B), 4GN4 (A,B), 4G6T (A,B), 4M70 

(B,H), 4BJJ (A,B), 3VZ9 (B,D), 3MCB (A,B) 

 

 

Artificial Neural Networks 

In this study, for the identification of protein-protein interaction sites by machine learning we 

used artificial neural networks (ANN). Neural networks are adaptive class of machine learning 

techniques and have been used successfully in various biological problems [17, 18]. Artificial 

neural network originally was inspired from biological neural network, the brain. The most 

important and attractive feature of ANN is its capability of learning (generalizing) from example 

(extracting knowledge from data). ANN can do this without any pre-specified rules that define 

intelligence or represent an expert’s knowledge. We have implemented the neural network 

architecture in our study using GNU Octave (available at 

http://www.gnu.org/software/octave/about.html) to identify protein-protein interaction sites 

based on distinct protein characteristics mentioned below. 

 

Sequence Feature Vectors 

Classification requires crucially informative protein properties as inputs for ANN learning. As 

per earlier reports in prediction of protein-protein interaction sites, characteristics of protein 

sequences such as evolutionary conservation, hydropathy and predicted structural properties 
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offer important contributive influence on the prediction [1, 19, 20].  Therefore, we have used 

these three aspects of target residues to confer towards their identification as interacting or non-

interacting residues.  

 

Prediction also depends on the window size over which residues are chosen during feature 

extraction. In this study, for a residue in a specific protein, a window size of nine was chosen; 

since previous studies [7, 8, 10] emphasized that a nine-residue window size would be optimal 

for protein-protein interaction prediction problems. For this sub-sequence of nine residues, 

encoding was done with a multidimensional vector built on the three attributes: 

Evolutionary information was included using position specific scoring matrix (PSSM) generated 

by PSI-BLAST [21] with an E-value threshold of 0.001, for three iterations against the NCBI 

non-redundant protein sequence database (using BLAST+ [22] options; −num_iterations 3 −db 

nr –inclusion_ethresh 0.001). These values were normalized between 0 to 1 using the sigmoid 

function. The attribute was extracted over a window with size nine and a total of 180 (= 20×9) 

scores were obtained. This was followed by calculation of averaged cumulative hydropathy 

(ACH) characteristics of proteins under consideration. 

 

An average of the cumulative hydrophobicity indices over a window size varying between 1, 3, 

5, 7 and 9 gave the ACH for this study. Hydrophobicity index proposed by Kyte and Doolitle 

[23] was implemented using Python codes for computation and a total of five scores were 

obtained. These values were normalized between 0 to 1 using the sigmoid function. Besides 

hydropathy, another aspect of the protein important for identification of functional sites is 

predicted relative solvent accessibility (PRSA). 
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 Since the surface of a protein is non-trivial to define even when the structure is known, machine 

learning applications and statistical methods are applied to measure relative solvent accessibility 

which denotes how large a part of the van der Waal’s surface of each amino acid residue is 

exposed to the solvent surrounding the protein. In this study we have incorporated information 

on predicted relative solvent accessibility using Sann web server [24]. Sann stands for solvent 

accessibility predicted by nearest neighbor method from sequence profiles. The method is based 

on a k-nearest neighbor method combined with Z-value distance statistics in the feature vector 

space.  It predicts the discrete states (two or three states) as well as continuous value of the 

solvent accessibility (absolute and relative) of a target residue and is available at 

http://lee.kias.re.kr/~newton/sann/. This attribute is independent of the window size, i.e. only one 

PRSA score is extracted. 

 

A 186D (= 20×9 + 5 +1) feature vector was thus created, for each positive (interacting residues) 

and negative (non-interacting residues) example. 

 

Prediction of Protein-Protein Interaction Sites and Performance Assessment 

Training of the predictor was done via multi-layer feed-forward Neural Network incorporating 

selected protein properties of PSSM, ACH and PRSA information. To find the optimal set of 

neural network parameters, unconstrained nonlinear optimization method was used along with 

the back-propagation algorithm. Training dataset consisting of 186 proteins was used for the 

predictor development and tested on two independent datasets: (i) Dtestset72 which included 

rigid body cases (27 protein complexes), medium cases (6 protein complexes) and difficult cases 
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(3 protein complexes), depending upon the degree of conformational change; and (ii) 

PDBtestset164. The prediction performance was evaluated using the following mathematical 

formulae for recall or sensitivity, precision, specificity, accuracy, Matthew's Correlation 

Coefficient (MCC) and F- measure as follows: 

                                 

 

                     

  

                       

 

                               

 

                                                         

  

                                                  

 

where, TP (true positives): Residues correctly predicted as interacting, FP (false positives): 

Residues incorrectly predicted as interacting, TN (true negatives): Residues correctly predicted 

as non-interacting and FN (false negatives): Residues incorrectly predicted as non-interacting. 

 

RESULTS 

Prediction Using ANN with Sequence Features on Dset186 
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Neural network was trained on Dset186 using PSSM, PRSA input files and ACH properties. 

Based on the learning process, that takes place within the hidden layers trained neural networks 

return a numerical value between 0 and 1 for each residue. This may be transformed to binary 

state and interpreted as interacting or non-interacting residue. In this study, the residues were 

subjected to machine learning with an input layer consisting of 186 units (one unit per feature) 

and one binary output unit (interacting or non-interacting).  After varying the number of hidden 

layers and the number of units in it, it was found that a network of one hidden layer with 15 units 

performed the best. Further, to analyze the learning process outcomes we performed Leave One 

Out Cross Validation (LOOCV), repeating 186 times, a process of considering one of the 186 

protein sequences as test data while remaining being used for training. We obtained the 

following results upon performance evaluation using mathematical parameters. Prediction 

showed an overall MCC value and F-measure of 0.225 and 56.6% respectively. 

 

Performance of SPRINGS on independent test datasets 

The best performing neural network model on Dset186 obtained as above was named as 

SPRINGS (Sequence-based predictor of PRotein- protein interactING Sites). To gain insights 

into the predictability of protein-protein interaction sites using SPRINGS on sequences not 

related to those used in training, we screened previously reported Independent test dataset 

proteins, Dtestset72 (72 sequences excluded from training) as a benchmark of performance 

across existing solutions in this context. SPRINGS achieved an MCC of 0.170 and F-measure 

31.8% as shown in Table 1. MCC gives the correlation between the actual and predicted classes 

of residues, whereas F-measure enumerates the harmonic mean of precision and recall, both 

indicating the overall performance of SPRINGS though not highly promising to be encouraging. 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.266v2 | CC-BY 4.0 Open Access | received: 25 Apr 2014, published: 25 Apr 2014

P
re
P
rin

ts



12 | P a g e  
 

 

After performance assessment on Dtestset72, SPRINGS was tested on PDBtestset164. SPRINGS 

achieved an MCC of 0.108 and F-measure 31.1% as shown in Table 2. PSIVER followed the 

results of SPRINGS with an MCC of 0.078 and F-measure 29.5%. 

 

Exploring Factors Influencing Performance of SPRINGS  

As reported in earlier research work in protein interaction biology and observed in this study, 

predicting interacting sites is indeed challenging. Here we have contemplated few underlying 

aspects of proteins such as sequence length, amino acid type and secondary structure which have 

not been included as sequence feature vectors in the study for their possible contribution in 

interacting site prediction. This influence was explored systematically and the following insights 

were obtained as summarized. Protein 1n2c(ABCD) of a total length = 2000 residues was 

eliminated from our study to avoid extremity bias during trend analysis. 

 

Proteins in the independent test dataset mentioned above showed lengths varying from 44 to 873 

residues. Prediction performance (MCC) and potential length dependency show an overall 

negative correlation (Pearson’s correlation coefficient r = -0.2) as per our study. To gain more 

insights into the specific contribution, we grouped the proteins into short length (< 200 amino 

acid residues; 59.2% in Dtestset72 and 59.8% in PDBtestset164) and long length (≥ 200 amino 

acid residues; 40.8% in Dtestset72 and 40.2% in PDBtestset164) and analyzed their prediction 

performance with respect to the percentage of interacting residues in a given protein. Our 
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findings suggested that short length proteins showed a correlation (r) -0.2 and long length 

proteins showed a correlation (r) 0.4 respectively.  

 

Other than the length, properties of proteins can largely be attributed to their innate amino acid 

residue composition.  We analyzed the prediction performance of our approach in relation with 

the amino acid type as shown in Fig. 1. In Dtestset72 the range of MCC was from 0.079 to 0.228 

(F-measure 16.0% to 32.8%) and in PDBtestset164 the MCC values ranged from 0.012 to 0.174 

(F-measure 18.2% to 35.5%).   Then, to understand if certain groups of amino acids were 

preferred over others in these sites, we grouped these residues under Hydrophobic (Alanine, 

Isoleucine, Leucine, Methionine, Valine and Cysteine), Polar (Asparagine, Glutamine, Serine 

and Threonine), Charged (Histidine, Lysine, Arginine, Aspartate and Glutamate) and Aromatic 

(Phenylalanine, Tryptophan and Tyrosine); and explored their relative prediction performance 

which is shown in Table 3.   

 

Further, as reported in earlier research studies predicted structure information is known to 

enhance prediction of protein interaction sites [9]. Herein, we have explored if the content of 

experimentally observed secondary structures have an influence on the prediction rates. 2Struc 

[25] was used to extract secondary structure elements for analyses according to a reduced three-

state representation: Helix (encompassing H, I, G), Strand (E) and Coil (all remaining elements), 

where H, I, G and E are from their DSSP definitions [26]. Fig. 2 shows specific prediction 

performance for Helix, Strand and Coils.  
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 Comparison of SPRINGS with Previously Reported Approaches 

Development of an effective computational approach requires objective comparison of the newly 

proposed method with previously reported solutions. As already stated in these studies, on 

account of difference in datasets, definitions of problems and approaches, a direct comparison 

with the performance published in the literature is nearly impossible [7]. However, a purposeful 

performance analysis of various predictors for protein-protein interaction sites was done to gain 

insights into the prediction power of our developed method. Since, MCC is considered to be the 

best assessor for the overall performance in machine learning, representing how well predictions 

correlate with observed class labels [27] we assessed SPRINGS, PSIVER, ISIS and SPPIDER 

based on MCC values. 

 

The performance of SPRINGS was compared with the three above mentioned servers, i.e., 

PSIVER, ISIS and SPPIDER on Dtestset72 which was divided into three categories namely the 

rigid body cases, the medium cases and the difficult cases [7]. SPRINGS achieved an MCC of 

0.167 and an F-measure of 31.3% in case of the rigid body cases; an MCC of 0.197 and an F-

measure of 33.7% in case of medium cases; and an MCC score of 0.142 and F-measure of 

32.8%for the difficult cases. The assessment parameters obtained with PSIVER, ISIS and 

SPPIDER are shown in Table 1 for comparative analysis. 

 

Following Dtestset72, comparative analysis of SPRINGS was carried out on PDBtestset164 with 

PSIVER which outperformed other methods ISIS and SPPIDER (Table 2). The MCC score and 

F-measure obtained by SPRINGS was 0.108 and 31.1% whereas for PSIVER the values were 

0.078 and 29.5% respectively. 
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DISCUSSION 

This article presents a novel computational approach (SPRINGS) using artificial neural networks 

for predicting protein-protein interaction sites based on evolutionary conservation, averaged 

cumulative hydropathy and predicted relative solvent accessibility of protein sequences. Training 

of the neural networks was done on Dset186 containing filtered protein chains from PDB. 

Performance assessment of the trained neural network was done using LOOCV and then testing 

was performed on independent test datasets Dtestset72 and PDBtestset164. Summary of 

prediction results indicated that the performance of SPRINGS was encouraging with an overall 

MCC of 0.170, outperforming existing approaches such as PSIVER, SPPIDER and ISIS. 

PSIVER among them showed comparable prediction performance. Further, among the categories 

of rigid body, medium cases and difficult cases, the overall performance of SPRINGS was 

observed to be better than others. Since a few residues in protein-protein interfaces are isolated, 

one can filter the raw predictions by simply omitting isolated predictions [7, 8]. It must be noted 

here that Dtestset72 and PDBtestset164 were created on the assumption that any residue not 

observed in the given complexes is treated as negative. Therefore, it might be possible that the 

selected datasets may still have additional protein–protein interaction sites; affecting the 

performance of the methods, overall extending scope for advanced research in protein interaction 

biology.  

 

However, to understand the prediction performance of SPRINGS at a greater depth in the current 

scenario, we explored few possible factors which might have an influence on the identification of 

interacting residues, such as protein sequence length, amino acid type and secondary structure in 

the independent test datasets. Our findings suggested that the length of protein sequences had no 
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clear influence on the prediction. For the short length proteins, there was no significant bias with 

respect to the percentage presence of protein-protein interaction sites. However, for long length 

proteins, the performance of SPRINGS was positively influenced (Pearson’s Correlation 

Coefficient = 0.4). Also, there was no specific or significant bias noticed in the prediction 

performance of SPRINGS whether it was regarding type of amino acids or secondary structure 

element. 

As per the existing knowledge and approaches, SPRINGS, closely followed by PSIVER could 

help in recognition of protein-protein interacting sites. As of now, the proposed method may 

successfully provide experimental biologists an aid to correctly identify potential interacting 

residues in uncharacterized proteins. This sequence based approach is likely to be broad-ranged 

having an advantage of utilizing important protein properties such as evolutionary conservation, 

averaged cumulative hydropathy and predicted relative solvent accessibility over previously 

reported methods. Additionally, information on protein structures may be used to complement 

prediction of SPRINGS for reliable identification of protein-protein interaction sites. The 

findings of our study are likely to boost studies based on targeted mutation, drug development 

and enzymes for various profitable biotechnological applications. 

 

STANDALONE PACKAGE AVAILABILITY 

Given the significance of protein interactions with other proteins in biological processes and 

growing needs for their functional annotations, rapid and accurate standalone softwares are 

desirable for assisting experimental studies or research applications. Based on our current 

findings, we contribute a user-friendly package of Python codes for generation of sequence 
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feature vectors and identification of interacting residues along with an easy-to-understand user 

manual. The outline of our prediction approach is shown in Fig. 3. Input files of PSSM and 

PRSA from sequence(s) of interest, the query(s), are required to be provided by the user into the 

prediction algorithm. These can be generated from softwares such as NCBI PSI-BLAST and 

Sann web server. Our execution programs first check for the availability of both the input files 

corresponding to a particular protein sequence of interest; followed by deriving of hydropathy 

properties from the sequence(s) using in-house Python codes. SPRINGS then processes these 

features using GNU Octave and offers prediction. Output files are generated in two formats: 

filename.vsprings (vertical) and filename.hsprings (horizontal), to facilitate easy as well as 

detailed results interpretation. 

 

CONCLUSION 

The challenging problem of protein-protein interaction sites identification requires diverse all-

encompassing approaches including significant properties of constituting amino acids. SPRINGS  

is a novel sequence-based method using Neural Networks, with a promising prediction 

performance in most cases of protein-protein interaction sites although the scope for highly 

accurate predictions cannot be denied. We hope to assist biologists in identifying potential 

interacting residues even in cases of complex protein-protein interactions. Our approach is 

available as a user-friendly standalone package with relevant information at 

http://sites.google.com/site/predppis/. Overall, our contribution is targeted at offering directed 

solutions or at the least pointers, for solving various fundamental challenges in protein 

interaction biology.  
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Table 1. Comparison of Predictors Tested on the Independent Validation Set (Dtestset72) 
a
 

Method MCC Precision 

% 

Recall 

% 

Specificity 

% 

Accuracy 

% 

F-measure 

% 

Rigid body (27) 

SPRINGS 0.167 23.5 59.2 62.5 62.1 31.3 

PSIVER 0.127 23.9 46.5 68.8 65.5 27.3 

ISIS 0.110 22.0 37.9 75.7 70.9 25.9 

SPPIDER 0.087 20.4 44.7 65.2 62.9 24.4 

Medium cases (6) 

SPRINGS 0.197 26.2 59.1 65.6 64.9 33.7 

PSIVER 0.171 28.9 43.5 75.3 70.2 27.1 

ISIS 0.050 18.4 23.0 82.6 75.2 19.0 

SPPIDER 0.055 19.4 36.1 68.4 62.7 18.4 

Difficult cases (3) 

SPRINGS 0.143 24.9 57.7 62.3 60.3 32.8 

PSIVER 0.139 26.9 53.2 61.9 62.8 33.2 

ISIS 0.002 17.8 33.5 67.7 62.4 23.0 

SPPIDER 0.070 22.1 70.4 41.3 49.3 32.7 

Overall average performance (72) 

SPRINGS 0.170 24.1 59.0 63.0 62.4 31.8 

PSIVER 0.135 25.0 46.5 69.3 66.1 27.8 

ISIS 0.091 21.0 35.0 76.2 70.6 24.5 

SPPIDER 0.081 20.4 45.4 63.7 61.7 24.1 

a
 Classification and prediction performances of other predictors are based on [7]. 
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Table 2. Comparative Prediction Power of SPRINGS and PSIVER Tested on 

PDBtestset164 

Method MCC Precision 

% 

Recall 

% 

Specificity 

% 

Accuracy 

% 

F-measure 

% 

SPRINGS 0.108 26.8 40.7 64.8 60.6 31.1 

PSIVER 0.078 25.3 46.4 63.4 59.6 29.5 
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Table 3. Different amino acid groups and prediction performance of SPRINGS on 

independent test datasets 

Amino acid groups 
% of occurrence MCC F-measure (%) 

Dtestset72 PDBtestset164 Dtestset72 PDBtestset164 Dtestset72 PDBtestset164 

Hydrophobic 

(AILMVC) 37.8 38.2 0.138 0.085 22.5 23.1 

Polar (NQST) 23.2 21.9 0.114 0.058 27.0 27.4 

Charged (HKRDE) 28.9 30.0 0.127 0.082 28.8 30.4 

Aromatic (FWY) 10.0 9.9 0.142 0.042 28.1 31.5 
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FIGURE LEGENDS 

Figure 1. Amino acid group type and the performance of SPRINGS on independent test datasets. 

 

Figure 2. Secondary structure elements and the performance of SPRINGS on independent test 

datasets. 

 

Figure 3. Overall outline of the SPRINGS standalone package. 
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