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One overarching principle of eukaroytic development is the generative spatial emergence

and self-organization of cell populations. As cells divide and differentiate, they and their

descendants form a spatiotemporally explicit and increasingly compartmentalized complex

system. Yet despite this compartmentalization, there is selective functional overlap

between these structural components. While contemporary tools such as lineage trees and

molecular signaling networks provide a window into this complexity, they do not

characterize embryogenesis as a global process. Using a four-dimensional spatial

representation, major features of the developmental process are revealed. To establish the

role of developmental mechanisms that turn a spherical embryo into a highly

asymmetrical adult phenotype, we can map the outcomes of the cell division process to a

complex network model. This type of representational model provides information about

the top-down mechanisms relevant to the differentiation process. In a complementary

manner, looking for phenomena such as superdiffusive positioning and sublineage-based

anatomical clustering incorporates dynamic information to our parallel view of

embryogenesis. Characterizing the spatial organization and geometry of embryos in this

way allows for novel indicators of developmental patterns both within and between

organisms.
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ABSTRACT
One overarching principle of eukaroytic development is the generative spatial emergence

and  self-organization  of  cell  populations.  As  cells  divide  and  differentiate,  they  and  their
descendants  form  a  spatiotemporally  explicit  and  increasingly  compartmentalized  complex
system. Yet despite this compartmentalization, there is selective functional overlap between these
structural components. While contemporary tools such as lineage trees and molecular signaling
networks provide a window into this complexity, they do not characterize embryogenesis as a
global  process.  Using  a  four-dimensional  spatial  representation,  major  features  of  the
developmental process are revealed. To establish the role of developmental mechanisms that turn
a spherical embryo into a highly asymmetrical adult phenotype, we can map the outcomes of the
cell division process to a complex network model. This type of representational model provides
information  about  the  top-down  mechanisms  relevant  to  the  differentiation  process.  In  a
complementary  manner,  looking  for  phenomena  such  as  superdiffusive  positioning  and
sublineage-based anatomical clustering incorporates dynamic information to our parallel view of
embryogenesis.  Characterizing the spatial  organization and geometry of embryos in this  way
allows for novel indicators of developmental patterns both within and between organisms.

Introduction
In  embryogenesis,  one  fundamental  question  involves  how the  embryonic  phenotype

undergoes transformation from a symmetrical sphere to a highly asymmetrical body (Gordon and
Gordon, 2016). Various aspects of this process have been characterized by a wide variety of
developmental  phenomena  such  as  heterogeneity  (Chen  et  al.,  2018),  developmental  bias
(Arthur, 2011), and symmetry-breaking (Zhang and Hiiragi, 2018). This paper will demonstrate
an approach called embryo networks, a representational model that captures embryogenesis as a
parallel,  emergent  process.  As  a  complement  to  the  quantitative  study  of  cell  lineage  trees
(Stadler et al., 2018) and epigenetic landscapes (Guo et al., 2017), embryo networks are meant to
stress  the  role  of  top-down  organization  in  embryogenesis  by  quantifying  the  relationships
between cells, cell sublineages, and different stages of development of the embryo. 

Therefore,  this  work  is  motivated  by  how  we  go  about  representing  the  global  and
spatially explicit structure of the embryo as the developmental process begins to unfold. One
way to do this is to treat each cell as a node in an anatomically-weighted graph. The resulting
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complex networks will  then provide us with information about cellular proximity within and
between sublineages.  These networks are based on lineage tree data,  but more crucially 3-D
positional data, which represent spatially-dependent relationships such as potential intercellular
signaling and the consequences of geometric packing. Specifically, the network topology of a
lineage tree (Sulston et al., 1983) and spatial location of cell nuclei  (Bao et al., 2006) allow for
the prediction of major features that constitute each type of developmental process in a model
organism (the nematode  Caenorhabditis elegans).  Using this  four-dimensional  spatiotemporal
representation (x,y,z,t)  and a  selected network statistics,  major  features  of the developmental
process  can be revealed.  These major  features  include  the regularity  of  cellular  movements,
geometric  properties  of  the  differentiation  process,  and  the  generative  spatial  emergence  of
phenotypic structure. 

While existing network models have made strides in uncovering both the structural and
functional detail of individual cells or developmental gradients (Briscoe & Small, 2015) in the
early  embryo,  a  connectivity  map  has  not  been  applied  to  a  precise  positional  map  of
developmental  cells  that  map  to  the  lineage  tree.  In  doing  so,  we  reveal  potential  cell-cell
interactions at multiple scales, beyond commonly-recognized regional patterns (Schnabel et al.,
1996; Schnabel et al., 2006). In this paper, we construct such a map, and treat the cells of a pre-
hatch  embryo  lineage  tree  as  a  scalable  cell  interactome  (by  analogy  to  a  “molecular
interactome”:  Wikipedia,  2018b).  This  allow  us  to  explore  the  process  of  differentiation  at
several scales, in addition to treating the lineage tree as a series of interconnected subnetworks.
To understand how cell position does or does not predict spatial segregation over developmental
time, we use visualization and clustering techniques as a proxy measure for cell mixing. While
cell mixing varies considerably across the embryogenetic process (Wetts & Fraser, 1989), cells
tend not to mix across tissue boundaries (Fagotto, 2014). In this way, the results of an embryo
network for a particular embryo can be compared to their coarser-grained fate maps (Nishida &
Stach, 2014).

Previous  network  approaches  to  development  focus  on  either  the  level  of  gene  and
protein expression or the level  of phenotypic modules  (Gunsalus & Rhrissorrakrai,  2011)  or
functional association studies at the molecular level (Sonnichsen et al., 2005). Green et al. (2011)
use a network reduction method to examine the gonad attempt to make a connection between
protein  expression and phenotypic modules  in  early development  (Gunsalus  et  al.,  2005).  A
network approach has also been used to  examine the role  of  modularity  and evolvability  in
anatomical evolution. In Esteve-Altava et al. (2015a), a network is drawn between landmarks to
examine the relative locations between muscles and how this structure changes across closely-
related species and evolutionary time. The relationships in evolutionary time can demonstrate the
evolvability (or evolutionary capacity) of a specific phenotypic configuration (Esteve-Altava et
al., 2015b). This type of structural approach provides information regarding spatial organization
in the embryo, which may or may not be similar at different spatial scales. Scale-invariance is an
important but understudied feature of early embryogenesis, and may exist in the early embryo as
a self-regulating system of positional information (Lokeshwar & Nanjundiah, 1980/1981) or be
due to the size independence of the geometry of differentiation waves (Gordon & Brodland,
1987, Gordon,  1999).  It  also provides  empirical  detail  to  a  model  of  the cybernetic  embryo
(Stone & Gordon, 2017). In such models, networks can reveal potential functional relationships
and mechanisms.
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While this paper presents a method for network representations of the embryo, a larger
set of issues related spatial organization and the emergence of asymmetry need to be address in
order to interpret the structure of the network models themselves. One such issue is the presence
of cell intercalation in the early embryo (Walck-Shannon & Hardin, 2014). Intercalation occurs
as groups of cells shift their geometry and orientation. While the cells of mosaic embryos such as
C.  elegans are  known  to  engage  in  cell  focusing  (or  changes  in  position)  during  the
differentiation process (Schnabel et al.,  2006), the distribution of positional changes for each
daughter cell upon division are of direct relevance to the connectivity regimes (Albert, 2005) of
embryo networks. We examine this process by treating these processes as Levy flight movements
(Dannemann et  al.,  2018),  the  signature  of  which  reveals  scale-free  motility.  When the  cell
migrations  in  a  specific  group  of  cells  are  uniform,  we  hypothesize  that  the  likelihood  of
autonomous specification is high. By contrast, a few long-distance movements in a background
of shorter migrations suggests that there are regulative mechanisms at work, particularly as they
are related to sublineage-specific function (Wiegner & Schierenberg, 1999). Such superdiffusive
processes (Deterich et al., 2008) have been shown in other cellular systems to be the signature of
non-Brownian noise,  which  in  turn contributes  to  spatial  order  through selective positioning
(Stone et al., 2018). Diffusion in the early embryo can be informative in terms of how cells move
and  ultimately  position  themselves  during  embryogenesis  (Woods  et  al.,  2014).  Thus,
superdiffusive signatures (Fedotov et al., 2015) are a type of random walk behavior that allow us
to understand the nature of clustering and sparse connectivity throughout the network topology.

Methods
We examined the  early  (pre-200 minute)  embryo  of  Caenorhabditis  elegans at  three

stages: 4 level (16-cell condition), 6 level (64-cell condition), and 7 level (128-cell condition).
Four complementary analyses (visualization, examination and classification of subtree variation,
analysis of cell intercalation, and aggregate cell migration analysis) were conducted and led to a
bidirectional network analysis. These complex networks provide a window into the quantitative
relationships between spatial structure and cellular differentiation over time.

Distance Metric.  To calculate a relational distance between three-dimensional cell positions, a
Euclidean distance metric (D) was used. This distance was then normalized in the form of an
index (di), which takes all distances as a proportion of the maximum distance between cells in
the embryo. These metrics are defined mathematically as equ [1] and equ [2], respectively.

D=√x2+ y2+ z2 [1]

d i=( Di
max(Di)) [2]
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In  equ  [2],  max(Di)  is  represented  by  the  largest  value  of  value  for  D in  a  dataset
containing embryos from multiple time points in embryogenesis (roughly the diameter of the
largest embryo). A symmetric matrix indexed relational distances is then used to construct an
unordered network of all nodes in the lineage tree. This matrix can then be partitioned by subtree
or level.

Partitioning of lineage trees.  The lineage tree can be defined as a tree split  into two non-
reticulating parts, originating at cell AB and cell P1. The lineage tree can also be divided into
eight non-reticulating parts, originating at cells ABpl, ABpr, ABar, ABal, MS, E, C, and P3. Cell
names conform to Sulston et al. (1983).

n-Level Trees.  Our reference to trees or embryos of level  n (3-7) is based on the number of
daughter cells generated from a level 1 tree (2-cell embryo). Our data analysis uses comparisons
between trees from level 3 (8-cell), level 4 (16-cell), level 5 (32-cell), level 6 (64-cell), and level
7 (128-cell). The term “terminal cell” is alternatively used to describe trees/embryos greater than
level 5.

Distance  thresholds. Distance  thresholds  are  calculated  by  normalizing  a  given  pairwise
distance i, j to the maximum distance between cells in the embryo. Thresholds were chosen to
reveal informative patterns of short- to long-range interactions without producing a connectivity
pattern (threshold → 0.0) too sparse to interpret.  This reflects a tradeoff between number of
nodes  (cells)  at  a  given  level  and  the  amount  of  complexity  revealed  for  a  given  distance
threshold. 

3-D Cell Positions. Three-dimensional cell positions were obtained from primary datasets (Bao
et al., 2008; Murray et al., 2012). Data were collected from the nuclear positions of 261 embryos.
Cell positions were registered using the lineage tracking software Starry Night, and nuclei were
marked  using  a  GFP+ signal.  Distances  between  cells  were  calculated  using  the  Euclidean
distanceinequ [1]. Full details on the processed dataset can be found in Alicea & Gordon (2016).

k-means Cluster Analysis. The  k-means analysis was conducted in Matlab R14 (MathWorks,
Natick, MA). The kmeans.m function was used with a random seed of 0, which conducts a  k-
means cluster analysis using a squared Euclidean distance metric and the k-means ++ algorithm.
Arthur and Vassilvitskii (2007) have reported that this particular method minimizes the effects of
outliers across runs. In Tables 1-3,  G represents groups based on the spatial colocation (3-D
position)  of  founder  cells  and  descendants.  Groups  generated  from  k-means  clustering  are
unlabeled by lineage identity. Lineage labels are then added to members of each k-means cluster,
and the percentage of correctly-predicted cells for each sublineage. If there is a perfect match
between the actual and predicted categories, the value for the correct k-means generated category
(Gn) will be 1.00. All other generated categories for the sublineage will have a value of 0.0.

3-Dimensional Graphs and Network Visualization. All 3-dimensional graphs are created using
MATLAB. The associated code can be found in a project-related Jupyter Notebook, located at
Figshare,  doi:10.6084/m9.figshare.4667848.  All  network  visualizations  and  associated  graph
analyses are produced using Gephi 0.9.0. Circular graphs are produced by using the Circular
Layout plug-in for Gephi (https://marketplace.gephi.org/plugin/circular-layout/).
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Communities and Community Detection.  The communities within a network are groups of
nodes  that  are  densely  interconnected,  and  contribute  to  so-called  community  structure.
Communities can be mutually exclusive or overlap, and closely resemble cliques and modules.
Gephi uses the Louvain community detection method (Blondel et al., 2008), which represents the
number of detectable communities within a specific network. When testing networks of the same
size  (e.g.  number  of  nodes)  but  at  different  distance  thresholds,  an  increasing  community
parameter value translates into greater spatial segregation for various parts of the network. The
clique analysis points us to specific groups of nodes (cells) that exhibit this tendency.

Clique Analysis. All clique analyses and associated network statistics are generated using Gephi
0.9.0. The clique analysis is conducted using the 7 level dataset. A clique is an undirected graph
G = (V, E) where a subset of vertices V and edges E form a fully connected graph G (e.g. every
pair of vertices are adjacent). A clique analysis produces all completely connected subgraphs for
a pre-determined clique size (k). In this analysis, a range of values for k (3-8) were used to yield
a set of cliques large enough to compare across eight founder cell lineage subtrees. A search for
all 5-vertex cliques yielded 117 individual subgraphs. 

Modularity. Modularity  within  a  network  identifies  local  groups  of  dense  interconnectivity,
separated  from other  parts  of  the  network  by  sparse  connections.  In  Gephi,  the  modularity
parameter (Blondel et al., 2008), is another way to summarize community structure. In terms of
biological  significance,  modularity  represents  functional  independence  and  independent
evolutionary  histories  for  modular  components  of  the  embryo  (Bolker,  2000).  While  the
modularity parameter should be interpreted along with the community measure, it can also be
informative as to the emergence of spatial structure within the embryo.

Other Network Statistics. For definitions of common complex network statistics in Table 6
(average degree, network diameter, graph density, clustering coefficient), please see Newman
(2003).

Data.  All  raw  data  used  in  this  study  are  available  at  Github.  Lineage  Tree  Raw  Data:
https://github.com/balicea/DevoWorm/tree/master/Lineage%20Tree%20DB, Differentiation Tree
Raw  Data:  https://github.com/balicea/DevoWorm/tree/master/Differentiation%20Tree%20
Dataset.  All  processed  data  (used  in  the  analyses)  are  available  from  the  Open  Science
Framework: https://osf.io/q9jvb/

Results
To make an assessment of the spatial distributions of cells based on identity, we extracted

differentiation codes (Gordon, 1999; Gordon and Gordon, 2016) from the lineage tree at 4 level,
6 level, and 7 level stages. This provided us with a sample size of 30, 114, and 230, respectively.
In the 16-cell condition, we compare the components of a lineage tree originating at the 2-cell
embryo, one rooted at AB and the other rooted at P1. In the 64- and 128-cell condition, we
compare components of a lineage tree originating at each cell of the 8-cell embryo. 

Five analyses  were conducted to demonstrate  the mosaic developmental signal  in the
early stages of a  C. elegans embryo. The first is to visualize the three-dimensional position of
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cell nuclei according to their differentiation code. This code corresponds to the founder cell of a
lineage tree’s sublineages. While our 4 level condition used AB and P1 as the founder cells, the 6
and 7 level conditions used eight founder cells corresponding to the constituents of the 8-cell
embryo  (ABal,  ABar,  ABpl,  ABpr,  C,  E,  MS,  and  P3).  These  visualizations  demonstrate
separability between subtrees. To quantify and further investigate this spatial segregation, we use
a  k-means  classification  method  and  compare  these  categories  with  the  differentiation  code
classification. 

To better understand the resulting overlap in categories, we use an intercalation analysis
to find signatures of biological intercalation. While biological intercalation commonly occurs in
mosaic  development,  it  can  often  mimic  our  criterion  of  regulative  development.  Another
phenomenon that can be confused with regulative development are ballistic cell migrations. To
test for cell migrations, we use an exponential cell migration analysis to detect quasi-stochastic
cell migrations that occur according to an exponential distribution.

Finally, we use a connectivity measure to build an undirected network of relationships
between cells. The structure of this network will provide information about interactions between
cells.  Comparisons  between  a  random network (cells  placed  in  random positions)  and a  C.
elegans embryo  network  (Alicea,  2018)  reveals  that  the  network  topologies  presented  here
contain rich structural information. However, we do not make any claims about the significance
of different connectivity regimes (see Albert 2005) other than to point out their relationship to
geometric features of the embryo. Taken collectively, these analyses will allow us to distinguish
between deterministically specified cell fates and cell fates that result from regulative influences.

Visualization of Lineage Trees.  The first analysis demonstrates that dividing the lineage tree
into  two  sublineages  reveals  spatial  segregation  amongst  cells  in  each  subtree.  The  spatial
locations of cells in these subtrees is shown in Figures 1A, 1B, and 1C. Figure 1A shows cells
from the 4 level tree, Figure 1B from the 6 level tree, and Figure 1C from the 7 level tree. We can
learn some basic relational lessons from this qualitative set of comparisons. The left panel of
Figure 2 shows spatial separability along the left-right (L-R) axis, while the right panel of Figure
2 demonstrates spatial separability long the anterior-posterior (A-P) axis.

While the spatial segregation of cells decreases with the birth of new cells, in the 7 level
example (Figure 1C) there are clusters of cells that are descended exclusively from each subtree.
Figure 2 shows the results of Figures 1A through 1C on the basis of comparing two major axes of
variance (anterior-posterior and left-right) for the eight major subtrees in the lineage tree. Each
major subtree descends from a single cell in the 8-cell embryo. For the two examples in Figure 2,
variation along the anterior-posterior (A-P) dimension is compared to variation along the left-
right (L-R) dimension for six of the eight subtrees in C. elegans the lineage tree. Data from the 6
level stage are shown.

k-means Classification of Subtrees. A more quantitative way to measure the degree of spatial
integration across development is to use biologically-based categories with the outcome of an
unsupervised classification process. A k-means cluster analysis based on the x,y,z position of the
cells is used to demonstrate this for trees rooted at both  two founder cells (16-, 64-, and 128-cell
condition) and eight founder cells (64- and 128-cell condition). As we can see in Table 1, the k-
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means groups are highly predictive of lineage subtrees (G1 predicts AB at a rate of 0.8, and G2
predicts P1 at a rate of 0.8) in the 16 cell condition, but become less predictive as the tree grows
in size. Even for the 128 cell condition, the k-means groups are moderately predictive (0.56 for
G1 and 0.64 for G2). 

Figure 1. A: Visualization of spatial segregation by differentiation code for the 16-cell condition
(N = 30), embedded in a bounding box (black) that represents the extent of embryo space. B:
Visualization of spatial segregation by differentiation code for the 64-cell condition (N = 114),
embedded in a bounding box (black) that represents the extent of embryo space. C: Visualization
of spatial segregation by differentiation code for the 128-cell condition (N = 224), embedded in a
bounding box (black) that represents the extent of embryo space.

In Tables 2 and 3, k-means generated groups are even less likely to predict the position of
sublineages based on eight founder cells. There are, however, specific groups that are moderately
predictive (0.4 to 0.7) of sublineage. For Table 2 (the 64 cell condition), these include group 4 as
a  predictor  of  cells  in  the  C  and  P3  sublineages  and  group  8  as  a  predictor  of  the  ABar
sublineage. For Table 3 (the 128 cell condition), these include group 1 as a predictor of cells in
the C sublineage and group 5 as a predictor of the ABal sublineage. 
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Table 1. Comparison of k-means cluster analysis (k=2) versus the AB and P1 subtrees for 16, 64,
and 128 cell conditions. G1-G2 represents the groups generated by the k-means analysis, and the
sublineage  groups  are  identified  by  their  lineage  tree  nomenclature.  Each  sublineage  has  a
percentage of cells in each k-means generated group so that the sum of values across each row
equal 1.00 (see Methods for more detail).

16 cell condition G1 G2

AB 0.80 0.20

P1 0.20 0.80

64 cell condition G1 G2

AB 0.67 0.33

P1 0.20 0.80

128 cell condition G1 G2

AB 0.56 0.44

P1 0.36 0.64

There were no obvious outliers in the input data for Tables 1-3, which resulted in minimal
observed variation between simulation runs. It should be noted that the reported numbers for k-
means  group  membership  will  only  vary  slightly  with  multiple  applications  of  the  k-means
algorithm (see Methods), embryos of a different species (e.g. less stereotypic than C. elegans),
and different values of k.

Intercalation Analysis. The intercalation analysis tests for uniform changes over time in spatial
position amongst cell  nuclei  in a certain differentiation code subtree.  Biological intercalation
occurs by a set of cells (e.g. a tissue) narrowing along one anatomical axis while simultaneously
expanding  along  an  orthogonal  axis.  We  test  for  this  by  making  pairwise  comparisons  of
correlation in variance for each differentiation code category along the A-P (x), L-R (y), and D-V
(z) axes (Supplemental Table 1). This results in the following cross-correlations: x-y, y-z, and x-z.

Table 2. Comparison of  k-means cluster analysis (k=8) versus subtrees based on eight founder
cells for 64-cell condition (114 node tree with 6 levels). G1-G8 represents the groups generated
by  the  k-means  analysis,  and  the  sublineage  groups  are  identified  by  their  lineage  tree
nomenclature. Each sublineage has a percentage of cells in each k-means generated group so that
the sum of values across each row equal 1.00 (see Methods for more detail).

G1 G2 G3 G4 G5 G6 G7 G8

ABpl 0.00 0.13 0.27 0.00 0.00 0.13 0.27 0.20

ABpr 0.20 0.00 0.07 0.27 0.00 0.33 0.13 0.00

ABar 0.00 0.13 0.33 0.00 0.00 0.00 0.13 0.40

ABal 0.00 0.33 0.00 0.00 0.60 0.00 0.00 0.07

MS 0.00 0.13 0.4 0.07 0.00 0.13 0.2 0.07

E 0.00 0.00 0.13 0.33 0.00 0.27 0.27 0.00

C 0.27 0.00 0.00 0.53 0.00 0.07 0.13 0.00
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P3 0.33 0.00 0.00 0.56 0.00 0.11 0.00 0.00

Figure 2. Anterior-posterior axis versus left-right axis variation for various octopartite subtrees
for a 6 level tree (fixed axial plane). TOP: ABar (010), ABpl (000), ABpr (011). BOTTOM: ABal
(011), MS (100), P3/P4/D (111). All identities: Lineage subtree (Differentiation subtree).

For the 4 level condition, these cross-correlations were obtained for the two subtrees of
the two founder cell lineage trees. This results in cells of the AB sublineage exhibiting a weak
positive correlation amongst  the  x-y comparisons,  but  an anti-correlation for  the  y-z and  x-z
comparisons. For the 6 level condition, the cross-correlations were obtained for lineage subtrees
based on eight founder cells. In the case of the  x-y comparison, this results in moderately-to-
strong negative correlations for the ABpl, ABpr, and ABal sublineages and no moderately-to-
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weak positive correlations. For the y-z comparison, this results in moderately-to-strong negative
correlations for the MS and E sublineages and moderately-to-weak positive correlations for the
ABar  sublineage.  The  x-z comparison,  this  results  in  no  moderately-to-strong  negative
correlations but moderately-to-weak positive correlations for the E and P3 sublineages. These
results mostly hold for the 7 level condition, despite the addition of data from another round of
cell division.

Table 3. Comparison of k-means cluster analysis versus each subtree for 128-cell condition (230
node tree with 7 levels). G1-G8 represents the groups generated by the k-means analysis, and the
sublineage  groups  are  identified  by  their  lineage  tree  nomenclature.  Each  sublineage  has  a
percentage of cells in each k-means generated group so that the sum of values across each row
equal 1.00 (see Methods for more detail).

G1 G2 G3 G4 G5 G6 G7 G8

ABpl 0 0.20 0.29 0.06 0.03 0.26 0 0.16

ABpr 0.23 0.03 0 0.32 0 0.07 0.35 0

ABar 0 0.32 0.07 0 0.03 0.26 0.13 0.19

ABal 0 0.13 0 0 0.52 0 0 0.35

MS 0 0.13 0.26 0.03 0 0.32 0.16 0.10

E 0.08 0 0.24 0.36 0 0.16 0.16 0

C 0.56 0 0 0.33 0 0 0.11 0

P3 0.24 0 0.18 0.35 0 0 0.23 0

Aggregate Cell Migration Analysis. To understand the role of diffusion in the early C. elegans
embryo, we calculate the three-dimensional distance between all mother-daughter cell pairs at
different  stages  (16-cell  condition,  64-cell  condition,  and  128-cell  condition)  of  early
embryogenesis.  Table  4  shows  the  results  of  this  analysis.  The  distances  between  mother-
daughter pairs are ranked according to distance. A power law exponent (α) is then calculated for
the 4, 6, and 7 level conditions. Negative values of α greater than 1.0 represent a superdiffusive
effect  with  movements  after  division  from the  mother  cell  at  more  than  one  distance scale.
Superdiffusion translates  into  relatively rare  instances  of  large scale  displacements  against  a
background of shorter displacements. 

The results  in Table 4 show no trend towards a superdiffusive process in time as the
embryo gains cells but a slight evidence for a superdiffusive process in space as one moves from
the A-P axis to the L-R axis and then to the D-V axis. This result is consistent with the lineage
tree being organized along the A-P axis, as it exhibits the most regularity in terms of positioning.
While this matches a trend towards decreasing size along each of these axes, this analysis pulls
out the rare large diffusion of a daughter cell along that axis.

Table 4. Power law exponent (α) for 16-cell, 64-cell, and 128-cell embryos for each spatial axis. ) for 16-cell, 64-cell, and 128-cell embryos for each spatial axis. 
α

16-cell 64-cell 128-cell
A-P axis 0.8 0.67 0.78
L-R axis 1.08 0.91 0.93
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D-V axis 1.15 1.05 1.05
Network Analysis. The first analysis involved constructing a complex network out of a lineage
tree  by  comparing  the  three-dimensional  position  of  the  nodes  in  a  pairwise  fashion.  This
comparison is done by calculating a Euclidean distance between each pair of cells, and then
normalizing to the maximum value (see Methods). These comparisons were stratified by both
Euclidean distance threshold and a distinction between subtrees AB and P1. 

The first analysis involves examining the potential interactions between cells at different
distances in the lineage tree. For example, comparisons can be restricted to all cell pairs at the
same level in the lineage tree, cells that are only one level away, cells two levels away, and cells
that are 3-7 levels away. This provides a baseline for subsequent analyses which smear the time
interval component of the lineage tree. Supplemental Figure 1 shows a series of circular graphs
for network topologies for all potential interactions between pairs of cells at different levels of
the lineage tree (calculated for cells at different differentiation tree depths). All networks are
based on data from 7 level condition (N=224). 

Table 5 shows that there is diffusion across space as the subtrees grow in terms of depth
based on an analysis of inter- and intra-subtree connections shown in Supplemental Figure 1. As
several rounds of proliferation separate cell pairs in the same sublineage, they tend to spread out
either axially or concentrically. This diffusion according to developmental time is best explained
as a shift from intra-subtree to inter-subtree above-threshold connectivity as cellular relationships
become separated over time (e.g. lineage tree depth).

Table 5. Pairwise comparisons for a 7 level tree where embryo space distances were calculated
for cells at different differentiation tree depths and both within and between sublineages. Values
represent the percentage of interactions in each distance class for that category. The threshold for
the distance metric was 0.75. Intra (AB) represents all pairwise comparisons where cells are
descended from AB, Intra (P1) represents all pairwise comparisons where cells are descended
from P1. 

Distance
between (i,j)

Intra- (AB, AB)
comparisions only

Intra- (P1, P1)
comparisons only

Inter – (AB, P1)
comparisons only

0 57% 31% 12%
1 43% 35% 22%
2 27% 28% 45%

3-7 13% 13% 74%

Table  5 reveals  that  for  a  fixed  distance  threshold  (0.75),  we can  compare  distances
between cells across different linage tree levels to examine whether different sublineages remain
mutually exclusive in their long-range interaction, or whether interactions between sublineages
might be revealed across several cell divisions. In this case, we can see that lineage distance
increases (e.g.  distant ancestor vs.  distant descendent),  comparisons dominate the network at
threshold 0.75.

Figures  3,  4,  and  5  show  circular  network  topologies  for  the  16-,  64-,  and  7  level
conditions, respectively.  Sublineages AB and P1 are color-coded: the nodes and intra-subtree
connections for AB are shown in yellow, while the nodes and intra-subtree connections for P1
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are shown in purple. Connections that span the subtrees are shown in gray, while an analysis of
these network topologies are shown in Figure 5.

Figure 3. Circular layout of network topology with descendants of the smaller 2-cell division on
the left  and the larger 2-cell  division on the right.  Undirected complex network for all  cells
(represented as nodes) in 4 level condition (N = 30). Threshold is 0.75. Yellow and purple arcs
are intra-sublineage connections (smaller and larger, respectively), while the light red arcs are
inter-sublineage connections.

Table 6 connects Figures 1A, 1B, and 1C to Figures 3, 4, and 5 by showing the network
summary statistics for different distance thresholds for the 16-cell, 64-cell, and 128-cell embryos.
As lineage trees get larger, the average degree tends to get larger for greater distances. The two
most important results are that network modularity increases with relative distance, and that the
number of communities increases dramatically as the relative distance threshold increases (and
relative  distance  decreases).  While  these  measures  are  interrelated,  the  community metric  in
particular provides strong evidence that dense patches of local connectivity becomes apparent at
very limited spatial scales (5% of the entire embryo).

To gain a better understanding of how geometric and spatial heterogeneity of the early
embryo relate to cell lineage, we conducted two analyses related to connectivity. As connectivity
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is  defined as the potential  interaction between cells  within a  given Euclidean distance,  both
analyses utilized data from the 128-cell condition at a threshold of 0.75 (25% of the maximum
distance across the embryo). The results of these analyses are shown in Figures 3 (4 level), 4 (6
level), and 5 (7 level). These circular network plots demonstrate rich local and cross-connectivity
between each subtree. Table 8 shows the proportion of connections between cells within and
between each subtree in the two founder cell lineage tree for a given distance threshold. 

Figure 4. Circular layout of network topology with descendants of the smaller 2-cell division on
the left  and the larger 2-cell  division on the right.  Undirected complex network for all  cells
(represented as nodes) in the 6 level condition (N = 114). Threshold is 0.95. Yellow and purple
arcs are intra-sublineage connections (smaller and larger, respectively), while the light red arcs
are inter-sublineage connections.

From this analysis of connections based on Euclidean distance (Table 7), roughly 70-80%
of all connections across early embryogenetic time are within a subtree. This is consistent with
the 3-D spatial location plots shown in Figures 1A, 1B, and 1C. The only aberration in this
pattern is in the 6 level embryo, where the number of intra-connections within the P1 subtree rise
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to  46%  at  the  expense  of  inter-subtree  connections.  The  P1  subtree  contains  all  non-AB
sublineages, which give rise to a number of specialized fates.

Figure 5. Circular layout of network topology with descendants of the smaller 2-cell division on
the left  and the larger 2-cell  division on the right.  Undirected complex network for all  cells
(represented as nodes) in the 7 level condition (N = 224). Threshold is 0.95. Yellow and purple
arcs are intra-sublineage connections (smaller and larger, respectively), while the light red arcs
are inter-sublineage connections.

Table 8 shows the results of a clique analysis for the eight founder cell linage tree. A
clique analysis for cliques of size 5 yielded 117 unique cliques. A majority of the nodes amongst
all  of  the  cliques  found  came  from just  two  eight  founder  cell  sublineages  (C  and  ABpr).
Furthermore, 75.2% of all cliques generated exhibited overlap between each subtree (AB and
P1). This suggests that there is strong inter-subtree connectivity and thus local structure in the
midline of the embryo, in particular involving cells from the C and ABpr sublineages.
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Table  6.  Network summary statistics  for  different  terminal  cell  sizes  (16,  64,  and 128)  and
thresholds (0.25 to 0.95). Missing values (-) reflect threshold values for which an analyzable
graph could not be produced.

Average
Degree

Network
Diameter

Graph
Density

Modularity* Number of
Communities

Clustering
Coefficient

16

0.25 29.13 2 1.005 0 1 0.93
0.50 23.6 3 0.814 0 1 0.85
0.75 14.4 5 0.497 0.34 2 0.78
0.85 8.53 8 0.294 0.46 3 0.71
0.95 - - - - - -

64

0.25 103.79 2 0.92 0 1 0.94
0.50 81.88 3 0.73 0 1 0.87
0.75 45.51 5 0.41 0.35 2 0.80
0.85 25.91 9 0.23 0.54 3 0.76
0.95 5.6 14 0.05 0.8 11 0.74

128

0.25 - - - - - -
0.50 145.8 3 0.654 0.226 2 0.85
0.75 77.58 6 0.348 0.372 2 0.79
0.85 41.37 10 0.185 0.560 3 0.74
0.95 7.83 20 0.035 0.834 9 0.72

* resolution = 2.0.

Table  7.  Pattern  of  intra-subtree  versus  inter-subtree  connectivity  patterns  for  three  sizes  of
embryo distance network. Subtrees are based on the descendent of the smaller (subtree 0) and
larger (subtree 1) cells of the 2-cell embryo.

Number of Terminal Cells
16 64 128

Distance Threshold 0.75 0.95 0.95

Proportion of Intra-subtree
Connections (total)

0.68 0.79 0.74

Proportion of Inter-subtree
Connections

0.32 0.21 0.26

Proportion of Intra-subtree
Connections (AB)

0.31 0.34 0.39

Proportion of Intra-subtree
Connections (P1)

0.37 0.46 0.35

Supplemental Figure 2 shows a heat map (Wikipedia, 2018a) that displays the frequency
of nodes  in  each 8-cell  subtree category for  all  117 identified cliques  of size 5.  Cells  from
sublineages ABpr and C are the most heterogeneous, being included in cliques with cells from
multiple  sublineages.  These  two sublineages  are  represented in  most  of  the 117 cliques  and
contain cells from a wide variety of other sublineages. One exception to this heterogeneous trend
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is  the sublineage ABal.  Not only do cells  from ABal form homogeneous cliques,  ABal also
contributes the fewest number of cells to the 117 identified cliques. 

Another way to assess connectivity is by conducting an analysis of degree distributions
for interactions within the AB (intra AB) and P1 (intra P1) subtrees, and interactions between
cells  from the  AB and  P1  subtrees  (inter  AB-P1).  Figure  6  shows  the  differences  in  these
distributions. Overall, there is a difference between intra AB/inter AB-P1 and intra P1, namely
that intra P1 exhibits a slightly larger tail representing more cells of a higher degree. Yet there is
also a difference between intra AB and inter AB-P1 in that inter AB-P1 exhibits a greater number
of  cells  with a  smaller  degree.  These  trends  may reflects  the  geometry  of  the  embryo,  and
suggest that the P1 sublineage is more spatially heterogeneous than the AB sublineage overall. 

Figure 6. An analysis of connectivity in AB subtree (upper left), P1 subtree (upper right), and
connections between the AB and P1 subtrees (bottom). Plots show degree distribution (degree)
vs. complementary cumulative distribution function (CCDF).

Stratifying the data by lineage tree depth also suggests that certain sets of closely-related
cells  (and thus specific locations in the embryo) are the source of most of this  nonlinearity.
Figure 7 demonstrates this by visualizing the rank-order relationships in each of the levels (7) in
a  7  level  lineage  tree.  Consistently,  the  descendant  cells  of  MS  and  ABpr  serve  as  least-
connected outliers at their respective level. These cells represent 16 of the 17 labeled cells in
Figure 7.

Discussion and Broader Implications
In this paper, we have introduced a method called embryo networks that can characterize

the emergent properties of early embryogenesis. This approach not only explicitly represents the
spatiotemporal  complexity  of  the  embryogenetic  process,  but  also  demonstrates  that  the
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embryogenetic process operates on a variety of different temporal and spatial scales. Our work is
motivated by the transformation of a symmetric structure to an asymmetric structure. Yet we can
see that there is much more complexity than revealed by conceptual models of processes such as
symmetry-breaking or pairwise branching. This study fills a gap in the literature by presenting a
quantitative interpretation of the parallel and top-down processes inherent in embryogenesis.

Figure 7.  A rank-order  analysis  of  128-cell  condition  (N = 224),  stratified  by lineage depth
(ranging from 3-7). Outlier cells are labeled for each series.

Moreover,  we  have  introduced  an  approach  to  characterize  the  spatial  emergence  of
structure  at  the  cellular  level  during  the  embryogenetic  process.  It  is  an  approach  that
encompasses network science, statistical analysis, and data visualization. Based on the averaged
locations of founder cells as well as their subsequent daughter cells, we infer a network that
provides a model  of connectivity  separate  from but not independent  of lineage relationships.
While we utilize data from the nematode  C. elegans to illustrate the concept, this approach to
embryogenetic emergence has the potential to be broadly applicable to species across the tree of
life. 

In  terms  of  biological  relevance,  a  network  approach  allows  us  to  characterize  the
dynamic topology of the embryo's cell interactome in a quantitative fashion. This allows us to
characterize potential signaling relationships between cells and over time as cells divide and their
descendants acquire new spatial relationships. By taking into account the diffusion of cells upon
division, we can also get a sense of how the global network topology shifts as the position of and
interactions between adult cells  are established. Our use of the differentiation code (Gordon,
1999)  provides  means  to  categorize  cells  by  the  lineage  subtree  based  on size  asymmetries
amongst daughter cells (Alicea and Gordon, 2016). This allows us to classify the lineage tree in
an alternate way that is more sensitive to phenotypic variation within developmental sublineages.
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In a broader context, this may allow us to find potential modules or communities (Newman,
2006) in the network that equate to the differentiation of distinct tissue types. As lineage and
differentiation trees become available for regulating embryos, the methods developed here may
better  allow us to understand the differences and similarities between mosaic and regulating
embryos,  postulated  as  being based in  single  cell  versus  multiple  cell  differentiation waves,
respectively (Gordon, 1999; Gordon and Gordon, 2016).

Table 8. Clique analysis for a 7 level network topology. 
Sublineage

ABpl ABpr ABar ABal MS E C P3

Number of members of
sublineage across all cliques

generated 

42 151 68 34 35 58 159 38

AB P1

Number of cliques with
overlap

75.2%

Number of cliques without
overlap 15.4% 9.4%

By combining our approach to generativity, diffusion, and differentiation processes, we
can also characterize a new phenomenon related to spatial segregation. As in cognitive brain
networks, another advantage to a dynamic network approach is the potential to discover so-called
temporal  metastates  (Shine  et  al.,  2016).  As  a  set  of  candidate  measures  and  generalized
methodology,  a  complex  network  model  allows  us  to  observe  global  relationships  between
embryo  geometry,  spatial  distributions  of  cell  lineages  over  time,  and potential  multivariate
structural relationships.

It should be noted that a similar method called the scale-invariant power law approach
(Tiraihi et al.,  2011) has been used to study self-organization in developing embryos. As the
scale-invarient approach focuses on the entirely of the early embryo, it also treats macroscopic
cellular proliferation as a scale-invariant process. In this study, approximations of cell positions
and distances were used to estimate the geometry of the early embryo, with greater statistical
variation expressed in the non-AB sublineages. This is similar to our results, as the non-AB
lineages are quantitatively different from AB sublineages.

Shortcomings and Future Work
There are  several  unanswered questions regarding the relevance and outcomes of the

embryo  network  approach,  in  addition  to  avenues  for  future  work.  The  first  issue  is  what
structural and functional features the embryo network method actually represents. While it is
hypothesized  that  the  connections  of  our  network  represent  juxtacrine  and  other  types  of
proximity  signaling,  the  network  structure  itself  is  indicative  of  the  emergence  of  embryo
geometry. This is not limited to C. elegans: networks created using cell centroid data from mouse
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embryos (Strnad et al., 2016) demonstrate clear spatial segregation between the inner cell mass
and  trophectoderm  (Alicea,  2018).  Whether  embryo  networks  reflect  information  about  the
combined effects of local signaling and the phenotypic geometry is not clear at this point. Future
work might focus on discovering connections between network structure and topological models
of embryology (Thom, 1972).

The second issue involves how current methods of network analysis and visualization
limit our ability to see these distinctions clearly. Network science has been colloquially called
"hairball  science"  (Rottjers  and  Faust,  2018),  which  arises  from  the  resemblance  of  even
moderately-sized  networks  to  hairballs  that  have  no  clear  inputs  and  outputs  nor  causality.
Plotting networks that emphasize one set of relationships often comes at the expense of another.
For example, the circular plots shown in this paper do not clearly reveal spatial patterns, but do
reveal global patterns of connectivity. Yet even here, it is hard to discern what these patterns
actually  mean in  an anatomical  context.  Future  work  should  involve  rendering  anatomically
explicit and multilayer (Kivela et al., 2014) network topologies, such as the 4D tree sketched out
for an ascidian (Figure 11.8 in Gordon and Gordon, 2016). 

A third issue is the true nature of networks based on developmental phenotypes. While
our ability to find structure in the form of communities and weak connectors may be informative,
the  typical  means  of  classifying  global  network  properties  may  not  be.  While  the  technical
distinctions  between  random,  scale-free,  and  small-world  global  network  topologies  can  be
adapted  to  biological  contexts  (Prettejohn  et  al.,  2011),  the  phenotypic  and  developmental
informativeness of these categories may not be sufficient. At times, the meaning of concepts such
as modularity intersect and serve to describe structural phenomena. Yet we need a different form
of visualization and a new vocabulary to  think about  developmental  phenotypes in  terms of
degree distributions.

Conclusions
How does this type of network analysis specifically inform us about the developmental

process? Taken together  with the  k-means analysis,  we can see that  cells  in  Caenorhabditis
elegans embryos only partially segregate by lineage and sublineage. Cells that are colocated, or
in this case are directly connected with cells of a different sublineage, may serve as so-called
weak connectors (Albert and Barabasi, 2002; Granovetter, 1983) in a network representation. In
embryo networks, weak connectors can be defined as the connection between cells based solely
on proximity rather than a combination of proximity and lineage identity.

In this case, weak connectors serve to indirectly link different populations of cells in a
way that would not be possible in a regulative developmental system. In a regulative embryo, a
cell from one sublineage in close proximity to cells of another sublineage would acquire the fate
of neighboring cells, if it is in the “competent”, but not yet “determined” state (Gordon, 1999).
By capturing their position in the middle of the embryogenetic process, we can see how a given
sublineage can be founded in a single spatial location and later spread out across the nematode
body, performing either specialized or diverse functions.

Discovering the identity of weak connectors is just one advantage of using this type of
analysis in Caenorhabditis elegans: we can keep track of the ultimate fate of a given cell based
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on its lineage identity. Therefore, no matter its temporary developmental position, we can make
the distinction between a deterministic (analogous to mosaic development) and a semi-stochastic
(analogous to  regulative development)  process.  Future work might  focus on extending these
methods  to  regulative  embryos  using  cellular  barcoding  techniques  to  infer  developmental
lineages (Perie et al., 2014).

The final point stems from an intriguing outcome, suggested from the clique analysis,
that specific sublineage groups can coexist in a spatial region of limited size. For example, some
cliques might contain several closely-related cells (based on their position in the lineage tree),
and a few cells that are from a separate sublineage. However, if the mosaic mode of development
dominates, we should expect these interloping cells to remain autonomous and be defined by
their lineage tree location rather than by their spatial position (e.g. the cells they interact with).
Whether this has significant consequence for future differentiation is an open question that can
be addressed by applying these techniques to other species and developmental contexts. As some
regulation,  i.e.,  differentiation  dependent  in  part  on  cell-cell  interactions,  has  been  found in
nematodes (Wiegner and Schierenberg, 1999), the next step in network analysis could be to find
criteria for when cell-cell proximity has no effect or alters the fate of the cells.
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Supplemental Files
Supplemental File 1:  circular network topologies comparing connections among subtrees and
tree levels.  The x-axis  features a  series  of circular  networks  based on the number of above
threshold connections between cells at different levels of the tree in a 7 level (128-cell condition)
tree.  Rows in  descending order:  no  difference  in  tree  level  (0),  difference  of  one  level  (1),
difference of two levels (2), difference of between 3 and 7 levels (3-7). Columns from left to
right:  all  connections  between  cells  in  the  AB  sublineage  only  (intra-AB),  all  connections
between cells in the P1 sublineage only (intra-P1), all connections between cells where one cell
is from the AB sublineage and the other cell is from the P1 sublineage (inter-AB-P1).

Supplemental File 2: Heat map of the clique analysis for a 7 level (128-cell condition) tree. Each
row represents a unique clique generated from a connectivity matrix of the 7 level tree. The heat
map columns represent the number of members in the generated cliques from each subtree based
on eight founder cells (8 categories). Color coding scheme is presented in the legend to the right
of the map.

Supplemental  Table  1:  Correlations  of  positional  variance  between  three  pairs  of  spatial
dimensions (X-Y, Y-Z, and X-Z) and within differentiation code categories (4, 6, and 7 level).
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