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Abstract 23 

 24 

High-depth sequencing of universal marker genes such as the 16S rRNA gene are a common 25 

strategy to profile microbial communities. Traditionally, sequence reads are clustered into 26 

operational taxonomic units (OTUs) at a defined identity threshold to avoid sequencing errors 27 

generating spurious taxonomic units. However, there have been numerous bioinformatic methods 28 

recently released that attempt to correct sequencing errors to determine real biological sequences 29 

at single nucleotide resolution by generating amplicon sequence variants (ASVs). As the 30 

microbiome field moves from OTUs to higher resolution ASVs, there is a need for an in-depth 31 

and unbiased comparison of these novel <denoising= methods. In this study, we conduct a 32 

thorough comparison of three of the most widely-used denoising methods on mock, soil, and 33 

host-associated communities. We tested three different methods - DADA2, UNOISE3, and 34 

Deblur - on four mock communities and found that, although they produced similar microbial 35 

compositions based on relative abundance, the methods identified vastly different numbers of 36 

ASVs. Our analysis of a soil dataset also showed that the three methods were consistent in their 37 

per-sample compositions, resulting in only minor differences based on weighted UniFrac 38 

distances. However, DADA2 tended to find more ASVs than the other two methods when 39 

analyzing both the real soil data and two other host-associated datasets, suggesting that it could 40 

be better at finding rare organisms. The three tested methods were significantly different in their 41 

run times, with UNOISE3 running greater than 1200 and 15 times faster than DADA2 and 42 

Deblur, respectively. Our results indicate that the choice of denoising method will depend on a 43 

researcher’s individual importance for identifying rare ASVs, the availability of computational 44 

resources, and their willingness to support open-source or closed-source software. 45 
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Introduction 46 

 47 

Microbiome studies often use an amplicon sequencing approach where a single genomic region, 48 

such as part of the 16S rRNA gene (16S), is sequenced at a sufficient depth to provide relative 49 

abundance profiles of the majority of the microbes in a sample. This sequencing approach is 50 

often used to avoid the high cost of shotgun metagenomic sequencing or to avoid problems with 51 

sequencing non-microbial DNA from host contamination. However, sequencing errors make it 52 

difficult to distinguish biologically real nucleotide differences in 16S sequences from sequencing 53 

artifacts. In the past, sequences were often clustered into operational taxonomic units (OTUs) at 54 

a particular identity threshold (e.g. 97%) to avoid the problem of differentiating biological from 55 

technical sequence variations. Recently, many new bioinformatic sequence <denoising= methods 56 

have been developed to address this issue which provide improved species and strain resolution. 57 

These methods differ in how they correct sequencing errors. DADA2 generates a parametric 58 

error model that is trained on the entire sequencing run and then applies that model to correct and 59 

collapse the sequence errors into what they call amplicon sequence variants (ASVs) (Callahan et 60 

al., 2016)⁠⁠. This method is advantageous as it builds unique error models for each sequencing run. 61 

Deblur aligns sequences together into <sub-OTUs= and, based on the upper error rate bound 62 

along with a constant probability of indels and the mean read error rate, removes predicted error-63 

derived reads from neighboring sequences (Amir et al., 2017)⁠⁠. Deblur employs a sample-by-64 

sample method which reduces both memory requirements and computational demand. UNOISE3 65 

uses a one-pass clustering strategy that does not depend on quality scores, but rather two 66 

parameters with pre-set values that were curated by its author to generate <zero-radius OTUs= 67 

(Edgar, 2016)⁠. The advantage of a one-pass clustering strategy is that it saves on the 68 
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computational time required to analyze the sequences in the provided study. Note that ASVs, 69 

sub-OTUs, and zero-radius OTUs are synonymous and the term ASV will be used henceforth. It 70 

is expected that denoising approaches provide improved resolution and they avoid having to 71 

make a choice between various OTU strategies which may result in differing results (Edgar, 72 

2017)⁠⁠. In addition, ASVs can be identified by their unique biological sequences instead of 73 

relying on per-study IDs, allowing for easier comparison across datasets (Callahan, McMurdie & 74 

Holmes, 2017)⁠⁠.  75 

Although there have been several bioinformatic comparisons of OTU-based approaches 76 

in the past (Allali et al., 2017; Plummer & Twin, 2015)⁠⁠⁠, a thorough third-party comparison of 77 

denoising methods has yet to be conducted. In this paper, we compare the strengths and 78 

weaknesses of DADA2, UNOISE3, and Deblur and assess their accuracy using several mock 79 

communities including both bacterial and fungal amplicons. In addition, we compare the results 80 

of the three methods on three previously-published real human, mouse, and soil datasets. 81 

 82 

Material & Methods 83 

Sequence Acquisition 84 

The HMP mock community and the ZymoBIOMICS Microbial Community Standard (referred 85 

to as the Zymomock community) were sequenced by the Integrated Microbiome Resource at 86 

Dalhousie University using an Illumina MiSeq on separate sequencing runs, as previously 87 

described using the V4-V5 16S rRNA gene region (Comeau, Douglas, & Langille, 2017)⁠. Reads 88 

were then uploaded to the European Nucleotide Archive (ENA) under accession number 89 

PRJEB24409. The Extreme dataset (mock-12) originally presented in the DADA2 paper and the 90 

fungal ITS1 dataset (mock-9) were retrieved from the Mockrobiota project (Bokulich et al., 91 
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2016)⁠⁠. The Extreme dataset was sequenced using an Illumina MiSeq (Callahan et al., 2016)⁠⁠ and 92 

the fungal mock community was sequenced using an Illumina HiSeq (Bokulich et al., 2016)⁠.⁠ 93 

  94 

Filtering 95 

All sample data were filtered using the Microbiome Helper filtering scripts (Comeau, Douglas, 96 

& Langille, 2017)⁠⁠. In summary, primers were trimmed off all reads using Cutadapt (v 1.14) 97 

(Martin, 2011) ⁠and GNU Parallel (Tange, 2011)⁠⁠. Primer-free sequences were then input into the 98 

dada2_filter.R script available in Microbiome Helper. This script takes in the maximum expected 99 

number of errors allowed as well as a truncation length. The HMP mock community and the 100 

Zymomock community were truncated to 270 and 210 base pairs for the forward and reverse 101 

read lengths. The single-end reads from the Extreme mock community and the fungal mock 102 

community were truncated to 80 base-pair lengths. The soil, mouse, and human-associated 103 

datasets were truncated to 270 and 210 base-pairs for the forward and reverse reads, respectively. 104 

The number of expected errors allowed were defined as three different filtering stringencies: 5 105 

(low), 3 (medium), and 1 (high). 106 

  107 

DADA2 Pipeline 108 

The DADA2 method was run using scripts found in Microbiome Helper, which wraps the core 109 

algorithms of the DADA2 method (Callahan et al., 2016) ⁠. Filtered reads were input into the 110 

wrapper script dada2_inference.R which runs the DADA2 inference algorithm. Once ASVs are 111 

determined, they are passed into DADA2’s chimera-checking algorithm which was run using the 112 

wrapper script dada2_chimera_taxa.R to screen out chimeric sequences. The output objects 113 
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containing ASV sequences and abundances counts were then converted into BIOM table format 114 

using convert_dada2_out.R. All DADA2 wrapper scripts were run with default settings.  115 

  116 

UNOISE3 Pipeline 117 

Filtered reads were input into USEARCH’s (v 10) (Edgar, 2010)⁠ fastq_mergepairs command if 118 

they were paired-end reads or concatenated together into one FASTQ if they were single-end 119 

reads. Next, the single merged FASTQ was converted into a FASTA using the Microbiome 120 

Helper script run_fastq_to_fasta.pl and then used as input for USEARCH’s fastx_uniques 121 

command which generated a FASTA containing all the unique sequences found in each sample. 122 

Finally, the FASTA containing unique sequences was used as input into USEARCH’s unoise3 123 

(Edgar, 2016)⁠ command generating a BIOM table and representative ASVs that were used in 124 

subsequent analyses. All USEARCH scripts were run with default settings. 125 

 126 

Deblur Pipeline 127 

Paired-end filtered reads were stitched together using the Microbiome Helper wrapper script 128 

run_pear.pl which wraps the program PEAR (v 0.9.10) (Zhang et al., 2014)⁠. This step was 129 

skipped for filtered single-end reads. Next, reads were renamed to match a format that was 130 

compatible with QIIME2 (Caporaso et al., 2010b)⁠ and converted into a QIIME2 artifact. Samples 131 

were then run through QIIME2’s built-in deblur command using the 16S rRNA gene setting 132 

which uses Greengenes 13_8 (DeSantis et al., 2006)⁠⁠ for positive filtering. Fungal reads were run 133 

using the <other= setting and the UNITE 10.10.2017 database (Kõljalg et al., 2013)⁠⁠. Finally, the 134 

representative ASV sequences and a BIOM table were exported from the QIIME2 artifact. 135 

  136 
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Run Time and Memory Analysis 137 

Data from a blueberry field soil study (available under NCBI SRA PRJNA389786; Yurgel et al., 138 

2017)⁠ was filtered using the low-stringency filter and then individual samples were rarefied to 139 

either 5000, 10000, 20000 or 30000 reads per sample. The different read-depth sets were then 140 

run through the three denoising method pipelines and user time and maximum memory usage 141 

was determined using the GNU time (v 1.7) command. 142 

 143 

ASV Analysis of Mock Communities 144 

ASVs were compared against the expected sequences provided with each of the mock 145 

communities. This comparison was done using the command-line BLASTN (v 2.7.10) (Altschul 146 

et al., 1990)⁠⁠ tool and the number of full length 100% matches and 97% matches were 147 

determined. All ASVs that did not match these criteria were then compared against the SILVA 148 

16S rRNA gene database (v 128) (Pruesse et al., 2007)⁠ to find all 100% and 97% matches. Any 149 

ASVs that did not match this database were then labeled as <Unmatched=. To compare how 150 

filtering of low abundance ASVs affected the type and amount of ASVs called by each method, a 151 

0.1% minimum abundance filter was applied to each dataset and method. 152 

 153 

Abundance Data Analysis of Mock Communities 154 

For the HMP, zymomock and Extreme datasets all ASVs that matched at 97% identity or greater 155 

with the provided expected sequences based on a BLASTN search were added to the abundance 156 

of the corresponding matching taxa. Stacked bar charts of expected taxa relative abundances 157 

were created using the ggplot2 (v 2.2.1) (Wickham, 2009) ⁠R (v 3.4.3) (R Development Core 158 

Team, 2008) ⁠package and the cowplot (v 0.9.2) R package. The number of unique expected 159 
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sequences was determined by slicing out the amplified regions using a custom Python (v 3.6.1) 160 

script (slice_amplified_region.py) from the expected sequences from each mock community. 161 

 Due to the incomplete nature of the expected sequences for the fungal mock community, 162 

Unite database hits at 97% or greater to an expected sequence were considered as expected 163 

ASVs. All other ASVs were classified as <Non-Reference= hits.   164 

  165 

Analysis of Real Datasets 166 

Data from the three real datasets: blueberry field soil (described above), stool from mice that 167 

exercised plus controls (ENA accession PRJEB18615) (Lamoureux, Grandy, and Langille, 2017) ⁠⁠ 168 

and the BISCUIT dataset of intestinal biopsies of pediatric Crohn's disease patients plus controls 169 

(ENA accession PRJEB21933) (Douglas et al., 2018) ⁠were filtered using medium stringencies 170 

for each denoising method and rarified to 5000, 3000 and 4259 reads, respectively. ASV 171 

abundance tables outputted by all three methods were combined into a single table where each 172 

biological sample was represented three times (once for each denoising method). ASVs not 173 

called by a specific method were given an abundance of zero in their column (e.g. ASVs only 174 

called by Deblur for sampleA were given zero abundances in the columns for DADA2’s and 175 

UNOISE3’s outputs of sampleA). Representative sequences from each method were 176 

concatenated into a single file and aligned using PyNast (Caporaso, Bittinger, et al., 2010a)⁠ 177 

against the Greengenes alignment database (v13_8). A phylogenetic tree was then created using 178 

the make_phylogeny.py script available in QIIME1 using the aligned sequences as input. A 179 

weighted UniFrac distance matrix was generated using the beta_diversity.py command in 180 

QIIME1. The distance matrix was then used to determine intra-sample distances between 181 

methods, as well as to generate a principal coordinates analysis plot.  182 
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 The Bray-Curtis distance matrix at the genus level was generated by assigning taxonomy 183 

to the resulting ASV from each method using the RDP classifier (Cole et al., 2014)⁠ with the 184 

assignTaxonomy function available in the DADA2 package and the rdp_train_set_16 database. 185 

Distances were then generated using the summarize_taxa.py and beta_diversity.py commands in 186 

QIIME1.  187 

 188 

Results 189 

 190 

Total number of ASVs varies across methods 191 

We processed four different mock communities with the DADA2, UNOISE3, and Deblur 192 

denoising pipelines to compare the resulting ASVs from each method. The number of called 193 

ASVs varied between methods, but no method consistently called more ASVs. DADA2 called 194 

the most ASVs in two communities (HMP: 42, Extreme: 74) and UNOISE3 called the most 195 

ASVs in the other two communities (Zymomock: 43, Fungal: 37) under medium stringency 196 

filtering (Fig 1). None of the methods output all expected sequences at 100% identity in any of 197 

the mock communities that were processed and in all datasets at least one method output more 198 

ASVs than expected sequences within the mock community. All three methods output at least 199 

one ASV at 97% or greater identity from all organisms in the HMP mock community and the 200 

Zymomock community (Supp Table 1-4). DADA2 output nine more ASVs with 97% or greater 201 

identity matches to expected sequences in the Extreme dataset than the other two methods (Supp 202 

Table 2). Five of the nine taxa that DADA2 called and the other methods did not call had 203 

expected relative abundances of only 0.000427% (Supp Table 2). The other four taxa were also 204 

in low expected abundances with one taxa being expected at 0.00427% (Supp Table 2). None of 205 
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the methods called any sequences that did not match either the expected sequences or the SILVA 206 

database at 97% identity or greater for the Extreme dataset, which has previously been used for 207 

validating both UNOISE2 and DADA2 (Supp Table 2). 208 

 Given that some of the above potential spurious ASVs would be removed by sequence 209 

bleed-through (Illumina, 2017)⁠ or low abundance filters in typical workflows,  we applied an 210 

abundance cutoff filter of 0.1% abundance to the ASVs called by each method to see the effect 211 

on the resulting abundances (Supp Fig 1). This resulted in all 10 unmatched ASVs (those that 212 

did not match either the expected or SILVA by 97% or greater) called by DADA2 to be 213 

discarded in the HMP community, but none of the four unmatched reads in UNOISE3 to be 214 

discarded. A similar phenomenon was seen in the Zymomock community with all 12 of Deblur’s 215 

unmatched reads being discarded (along with one database hit) and UNOISE3 only discarding 216 

one of 19 unmatched reads it called.  217 

To determine how read quality filtering affects the number of ASVs called by each 218 

pipeline, we ran all methods using two additional quality filtering stringencies, low and high (see 219 

Methods). The different filter stringencies used made only small impacts on the numbers of 220 

ASVs called by each method for the HMP, Extreme and fungal datasets. A difference of six 221 

ASVs was the largest between the high and medium stringencies using the UNOISE3 method in 222 

the HMP community (Supp Table 5). In the Zymomock community, the number of ASVs called 223 

by DADA2 only varied by one for all three stringencies, but Deblur varied by as much as 12 224 

ASVs and UNOISE3 varied by as much as 16 ASVs being outputted between the high and 225 

medium filter stringencies (Supp Table 5).  226 

We next wanted to see if these trends held in a real dataset, as the diversity of a mock 227 

community is limited. In the soil dataset, DADA2 called 16609 ASVs, UNOISE3 called 11613 228 
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ASVs, and Deblur called 8270 ASVs after rarefaction (Supp Fig 2a). To determine how many of 229 

these extra ASVs corresponded to new species, taxonomy was assigned used the RDP classifier 230 

(see Methods). This showed that DADA2 called more classified taxa (413) than Deblur (315) or 231 

UNOISE3 (360) (Supp Fig 2b). All of these extra taxa called by DADA2 were at abundances 232 

less than 0.0006%. To confirm that DADA2 tended to call more ASVs in real datasets, the 233 

denoising pipelines were also run on stool microbiome data from mice (exercise dataset) as well 234 

as intestinal biopsy samples from pediatric patients (BISCUIT dataset). DADA2 called more 235 

ASVs than the other two pipelines when run on each of these datasets, with DADA2 calling 727 236 

more ASVs on average than Deblur and 532 more ASVs than UNOISE3 on average before 237 

rarefaction (Supp Table 6). 238 

 239 

Methods are consistent in determining mock community composition 240 

Despite the different ASV counts between each method, the relative abundances of the expected 241 

taxa are strikingly similar (Fig. 2). In both the HMP and zymomock datasets, only a small 242 

portion of ASVs did not match the SILVA database by 97% identity or greater. In contrast, 243 

UNOISE3 identified multiple (8 in HMP, 20 in Zymomock) sequences that summed together to 244 

make up 2.5% and 4.6% of the relative abundance in the HMP and Zymomock communities, 245 

respectively. None of the methods performed well at matching the expected abundance of the 246 

Zymomock community or the fungal community. All three methods called over-abundances of 247 

Lactobacillus fermentum in the Zymomock community. Similarly, all methods called non-248 

reference hits in greater than 10% abundance in the fungal community. Due to all three methods 249 

producing similar results, this could suggest that either the mock compositions are not in the 250 
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expected proportions or that the three methods are similarly biased. Similar to above, the three 251 

different filter stringencies resulted in similar relative abundance profiles (Supp Fig 3).  252 

 253 

Biological results from alternative methods are indistinguishable in real soil and host-254 

associated communities 255 

After comparing the relative abundances inferred by each method, we next investigated how 256 

comparable the results between methods were for real 16S datasets. A soil dataset was chosen as 257 

soil communities generally have high diversity (Fierer & Jackson, 2006)⁠ in direct contrast to the 258 

limited diversity in mock communities. The intra-sample distances were compared between each 259 

method using both weighted UniFrac and Bray-Curtis (based on genus-level taxonomy 260 

assignment by the RDP classifier) metrics (Fig 3). All three methods had similarly small intra-261 

sample distances (~0.06) based on weighted UniFrac comparison (Fig 3A). Deblur-processed 262 

samples had higher intra-sample Bray-Curtis distances (medians of 0.1707 vs. UNOISE3 and 263 

0.1852 vs. DADA2) when compared with the other two methods (median 0.1193) (Fig 3B), 264 

suggesting slightly higher agreement between DADA2 and UNOISE3 in comparison to Deblur. 265 

This difference can be explained by a few outlying classifications because, in general, the 266 

differences in relative abundances between the identified genera are close to 0 (Supp Fig 6). 267 

DADA2 and UNOISE3 identified no genera in the soil dataset that differed by more than 1% 268 

relative abundance, which contrasts with the comparisons of Deblur to DADA2 and UNOISE3 in 269 

this dataset. Closer inspection of these outliers revealed that six of them were shared between the 270 

comparisons of Deblur to DADA2 and UNOISE3. Two of the ASVs were assigned the same 271 

class, Verrucomicrobia, but one of them was unclassified at the order level whereas the other 272 

was placed in the Spartobacteria order (Supp Fig 7B-C). The abundances of these two classified 273 
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reads share an inverse relationship. The ASV classified at the order level was found in higher 274 

abundance in DADA2 and NOISE3, but the unclassified ASV was found at higher abundance in 275 

Deblur. Looking at another classification group, unclassified at the kingdom level, also shows 276 

higher abundances found by Deblur than by DADA2 or UNOISE3 (Supp Fig 7A). Looking at 277 

other taxa that have greater than 1% differences in abundance between Deblur and the other two 278 

methods also revealed two similar classifications that differed at the order level and remained 279 

unclassified at the family level. Deblur called more sequences for one of these classifications 280 

whereas DADA2 and UNOISE3 called more for the other classification. These phylogenetically 281 

close sequences could explain why the weighted UniFrac and Bray-Curtis distances show 282 

different trends (Supp Fig 7D-E). Despite these differences, biological samples did indeed group 283 

together regardless of the method used when visualized with either a principal coordinate 284 

analysis (PCoA) plot (Fig 3C) or a non-metric multidimensional (NMDS) scaling plot (Fig 3D).  285 

 The same analysis was also done for the mouse exercise and BISCUIT datasets and we 286 

found that in the mouse exercise dataset all three methods were equally similar for both weighted 287 

UniFrac and Bray-Curtis metrics. On the other hand, in the BISCUIT dataset we found that again 288 

Deblur was different in Bray-Curtis distances and also in weighted UniFrac distances. One large 289 

driving force between these differences was the abundance of two different taxa, one in the 290 

Lachnospiraceae family unclassified at the genus level and the other in the Escherichia/Shigella 291 

genus. Deblur found higher abundances of the Escherichia/Shigella genus whereas DADA2 and 292 

UNOISE3 found higher abundances of the Lachnospiraceae unclassified genus.  293 

 294 

Computational requirements are vastly different across methods 295 
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Knowing that all three of these methods resulted in similar relative abundance profiles on mock 296 

communities and small intra-sample distances on real 16S communities, we next investigated 297 

how the run time and memory usage differed between the denoising methods. We found that 298 

UNOISE3 (4.6 minutes) was 1272.52 times faster than DADA2 (5834.3 minutes) and 15.11 299 

times faster than Deblur (69.3 minutes) at a total read count of 1,926,000 reads evenly distributed 300 

across 103 samples (Fig 4A). Run times for all methods increased as the number of reads per 301 

sample increased. Deblur used a static amount of memory (611 Mb) as reads per sample 302 

increased, whereas in general the other two methods increased in memory usage as the number 303 

of reads per sample increased with the exception of DADA2 run at 1,926,000 reads (Fig 4B). 304 

Deblur used the smallest amount of memory at the maximum read count of 1,926,000 reads. We 305 

found that DADA2 had the highest amount of memory usage (4071 Mb at 1,287,000 reads) 306 

among the three methods. Interestingly, this usage was more than the amount used at the 307 

maximum read count (3600 Mb). In addition, none of the runs exceeded the 4 Gb memory cap 308 

on the 32-bit free academic version of USEARCH10.  309 

 310 

Discussion 311 

 312 

Besides specific differences in accuracy, there are other important aspects that need to be 313 

considered when determining what method a researcher should use for their project. Both 314 

DADA2 and UNOISE3 are suggested to be run in a pooled sample workflow, where all 315 

sequences are pooled together during the denoising process (Table 1). Deblur, on the other hand, 316 

runs its denoising process sample-by-sample. This approach helps lower Deblur’s computational 317 

requirements. Both DADA2 and Deblur are open source projects, whereas UNOISE3 is a closed-318 
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source project which has a free 32-bit academic version with a 4 Gb memory cap and a full 64-319 

bit version that costs between $885-1485 USD (Table 1). Another major difference is that the 320 

built-in Deblur function in QIIME2 has a positive filtering process. This default setting causes 321 

Deblur to discard reads that do not match with 88% identity to any sequences in the Greengenes 322 

database. Note the default database can be changed using the <other= version of the Deblur 323 

plugin in QIIME2, an important feature when working with fungal or eukaryotic data. It is also 324 

important to note that the stand-alone version of Deblur does not perform positive filtering by 325 

default, unlike the QIIME2 plugin which is the current version recommended by the authors. 326 

Currently, the functionality of both DADA2 and Deblur can be accessed through a graphical user 327 

interface as plugins in QIIME2, whereas UNOISE3 does not support a graphical user interface 328 

(Table 1). 329 

During mock community data processing, no method consistently called more ASVs than 330 

another method. In addition, no method was able to call all expected sequences for each 331 

community at 100% identity. However, each method was able to detect every organism in the 332 

HMP community (note S. aureus and S. epidermidis are collapsed together as they have the same 333 

sequenced region) and the Zymomock community which in the end generated comparable 334 

relative abundance compositions to the expected amounts for the HMP community, but not the 335 

Zymomock community. In the Extreme dataset, all methods missed P. buccalis, C. 336 

methylpentusum and P. sp._D13. All three of these organisms had very low expected abundances 337 

(less than 0.00427%) which may explain why they were difficult to detect (Supp Table 1). 338 

Deblur and UNOISE3 both did not detect 9 of the 27 expected sequences in the Extreme dataset 339 

at 97% identity which were all detected by DADA2. Again, these nine organisms were at very 340 

low abundances (less than 0.05%). This difference in detection between DADA2 and the other 341 
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two methods suggests that it is better at detecting organisms that are very rare. Whether this 342 

feature is truly advantageous is debatable, as many of these low-abundance organisms would be 343 

removed by typical filtering cut-offs and/or contribute little to weighted beta-diversity metrics 344 

such as the UniFrac measure. 345 

To address the possibility of ASV abundance filtering, a minimum 0.1% abundance filter 346 

was applied to the three different methods over all the datasets (Supp Fig 1). This filter cutoff 347 

had a large effect on the number of unmatched ASVs called by DADA2 in the HMP mock 348 

community (Supp Fig 1a) and the unmatched ASVs called by Deblur in the Zymomock 349 

community (Supp Fig 1c), but had little effect on the number of ASVs called by UNOISE3 on 350 

these communities. This cutoff had little to no effect on the fungal community (Supp Fig 1b). 351 

One possibility for this occurrence is the difference in sequencing platforms as both the HMP 352 

mock community and the Zymomock communities were sequenced on an Illumina MiSeq which 353 

has an estimated sequence bleed-through rate of 0.1% (Illumina, 2017), whereas as the fungal 354 

community was sequenced on an Illumina HiSeq. Overall, these results suggest that this filtering 355 

practice may be useful when working on Illumina MiSeq data that has been processed using the 356 

Deblur or DADA2 methods.  357 

When testing the methods on a real soil dataset, DADA2 called significantly more ASVs 358 

compared to the other two methods which is inconsistent with a previous report of UNOISE2 359 

calling more ASVs than DADA2 in a soil sample (Edgar, 2016)⁠. This trend was confirmed on 360 

the two other real 16S datasets used for validation. This discrepancy is most likely due to using a 361 

different version of UNOISE, as UNOISE’s chimera detection parameters were updated in its 362 

latest iteration. Deblur, on the other hand, always called the least amount of ASVs among the 363 

three methods on these three real datasets, although it was only slightly different than UNOISE3 364 
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on the human gut samples (difference of 44 ASVs before rarefaction). Deblur most likely called 365 

the least amount of ASVs due to its positive filtering feature that discards reads not matching 366 

with 88% identity to the Greengenes database. This feature is useful when dealing with well-367 

explored environments such as the gut, but could cause Deblur to miss many novel sequences in 368 

less-characterized environments such as sediments (Karst et al., 2018)⁠. The rank-abundance 369 

curve for the soil data also revealed that DADA2 called more rare taxa (Supp Fig 2b), similar to 370 

what was seen in the Extreme mock community. This again indicates that DADA2 is better at 371 

finding rare organisms within a sample.  372 

Running the mock communities at different filtering stringencies had little effect on 373 

microbial composition, which attests to the denoising capability of the three different methods 374 

(Supp Fig 3). In general, allowing an increased number of expected errors resulted in more 375 

sequences that did not match an expected sequence or a database, but did not have a large overall 376 

effect. However, this finding was not true in all cases as DADA2 found more unmatched 377 

sequences when the filter stringency was set to high in the HMP community (Supp Table 5). 378 

However, this was not seen in the other three communities suggesting it is dataset-specific and 379 

may not be a common occurrence.  380 

The relative abundances determined for each study were similar to each other irrespective 381 

of which method processed the data. This finding suggests that biological conclusions based on 382 

microbial relative abundance data should be unaffected by the choice of denoising method. One 383 

trend that was noticed in the relative abundance data was that UNOISE3 tended to call higher 384 

abundances of non-reference ASVs. Interestingly, the lowest identity match for any of these 385 

ASVs called in both the Zymomock and HMP mock communities by UNOISE3 was still found 386 

at 90.4% identity to the SILVA 16S rRNA database and was classified as Gammaproteobacteria 387 
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by the RDP classifier using a 70% confidence threshold, suggesting it is a real biological 388 

sequence that may have been introduced by contamination or sequencing bleed-through. 389 

Importantly, these sequences were found at relatively low abundances and so had little impact on 390 

the overall microbial compositions found in these mock communities (Fig 2). 391 

The relative abundances determined within the Zymomock and fungal communities were 392 

highly similar between methods, but markedly differed from the expected result. This finding 393 

suggests that either the expected abundances of sequences from these communities may be 394 

incorrect or all three methods are similarly biased. This non-agreement could also be due to steps 395 

during the sequencing processes such as PCR amplification, which may be causing primer bias 396 

(Aird et al., 2011)⁠ or the inclusion of contaminant organisms. In the case of the fungal 397 

community, it is possible that none of these methods work well with ITS1 data which are more 398 

variable than 16S data. Additional fungal mock communities should be analyzed in the future to 399 

better explore this issue.  400 

 Benchmarking relative abundance profiles from different methods with mock 401 

communities can be useful, however, they tend to lack the diversity that is found in many real 402 

sample datasets. To address this issue, we compared resulting microbial compositions from each 403 

method across three real datasets (mouse gut, human gut, and soil). Both weighted UniFrac and 404 

Bray-Curtis distances between the same biological samples for each method were examined. In 405 

both cases the weighted UniFrac and Bray-Curtis distances for all three datasets were small (less 406 

than a median of 0.18) (Fig 3a-b, Supp Figure 4a-b, 5a-b). This complemented our previous 407 

results, showing that each method had comparable microbial compositions for the mock 408 

communities. Furthermore, plotting the samples on a PCoA or NMDS resulted in the same 409 

biological samples from each pipeline grouping together (Fig 3c-d). This indicated that a similar 410 
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plot would be observed whether the researcher was using the Deblur, UNOISE3 or DADA2 411 

method. Interestingly, Deblur did not agree with the DADA2 or UNOISE3 as much as they 412 

agreed with each other on multiple occasions (Fig 3b, Supp Fig 4a-b). In the soil dataset, 413 

differences in the Bray-Curtis distances, but not the weighted UniFrac distances, could be 414 

explained by phylogenetically similar sequences being classified slightly differently, as well as 415 

Deblur finding larger abundances of bacteria unclassified at the kingdom level (Supp Fig 7). 416 

This result is interesting, as one of the main differences between Deblur and the other two 417 

methods is its positive filtering feature, and so we expected this difference to drive Deblur into 418 

finding less highly-unclassifiable, the opposite of what was seen in the soil dataset. Importantly, 419 

this was not the case in the BISCUIT dataset where both the weighted UniFrac and Bray-Curtis 420 

distances did not agree. In this dataset the differences between Deblur and the other two 421 

denoising methods were driven by Deblur calling higher abundances of Escherichia/Shigella and 422 

lower abundances of an unclassified genus in the Lachnospiraceae family. This indicated that 423 

although in both cases Deblur did not line up with the other two methods it was for different 424 

reasons. The mouse dataset did not show differences between Deblur and the other two methods.  425 

A major difference between the three methods was their computational run time. 426 

UNOISE3 was magnitudes faster than both DADA2 and Deblur. This is most likely due to both 427 

the programming language that UNOISE3 is implemented in (C++), as well as its simple one-428 

pass denoising method. DADA2 was the slowest method and, although computation time could 429 

be inconvenient for those with limited computational power, it did not reach times that were 430 

impractical even when running almost 2 million total reads. Memory usage for each program 431 

also did not reach impractical amounts when running close to 2 million reads, with DADA2 432 

using a maximum amount of 1024 Mb of memory which is a reasonable amount for modern 433 
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computers. Memory usage by UNOISE3 did not come close to reaching the 4 Gb memory cap on 434 

the 32-bit version, suggesting that this version can be used on most datasets.  435 

In conclusion, all three methods are comparable when looking at their end results. The 436 

main differences between the methods are the time taken to process data, as well as the number 437 

of ASVs called. The number of ASVs called did not differ between methods in a consistent way 438 

across mock communities, suggesting that determining species richness within low diverse 439 

samples could be problematic. However, our analysis of real datasets showed that DADA2 440 

consistently called more ASVs than the other two methods. More importantly, in the soil dataset 441 

and in the Extreme dataset it was capable of finding more low-abundance organisms. In the end, 442 

the choice of method did not play a large role in the microbial composition that was found for the 443 

three mock communities. We believe this is a promising result, as it indicates that no matter the 444 

choice of denoising method, the same biological signal will be observed. Our results also show 445 

that the choice of denoising method will largely depend on the individual values of the 446 

researcher that is using them, such as the importance of identifying rare organisms, the 447 

availability of computational resources, and their willingness to support closed-source software.  448 
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Figure 1: Total number of ASVs identified by each denoising method for four different 

mock communities. Amplicon sequence variants (ASVs) were compared to a database of full-

length amplicon sequences for just the microbes supposedly in the community (<Expected=) and 

against the full SILVA or ITS databases (<Database=) using BLASTN at 97% and 100% identity 

cutoffs. <Unmatched= sequences did not match an expected sequence or the SILVA/ITS 

databases at 97% identity or greater. Dotted lines indicate the total number of ASVs expected, 

accounting for 16S copy variation within genomes. A) Human Microbiome Project mock 

community; B) Extreme dataset; C) Fungal ITS1 mock community; D) Zymomock community. 
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Figure 2: Relative abundances of taxa generated by each denoising method for four 

different mock communities. All ASVs that matched with expected sequences at 97% or 

greater identity were assigned taxonomy using a BLASTN search against the expected sequences 

provided for each the Extreme, Human Microbiome Project, and Zymomock mock communities. 

All ASVs that matched an expected species with 97% or greater identity to the UNITE database 

were classified as expected sequences for the fungal community. Non reference refers to the 

abundance of ASVs that did not match expected sequences with 97% or greater identity. A) 

Human Microbiome Project mock community; B) Extreme dataset - it is important to note that 

due to the low abundance of some organisms in the Extreme dataset they were not displayed in 

this figure; C) fungal ITS1 mock community; D) Zymomock community. 
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Figure 3: Intra-sample distances between denoising methods based on a real soil 

community. A) The weighted UniFrac distances between the same biological samples based on 

ASVs outputted by each of the different methods. B) The Bray-Curtis dissimilarity distances 

between the same biological samples based on genera outputted by the three methods after being 

classified with the RDP classifier. Deblur tends to be slightly more dissimilar when compared to 

the other two methods. C) Principal coordinates analysis of the weighted UniFrac distances of all 

the samples in the real soil dataset generated by each method. The three different profiles 

generated for each biological sample are colour-coded and are joined by an interconnecting line. 

D) Non-metric multidimensional scaling plot that displays the Bray-Curtis dissimilarity profiles 

of all the samples in the real soil dataset generated by each method. The three different profiles 

generated for each biological sample are colour-coded and are joined by an interconnecting line. 
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Figure 4: Run time and memory usage of each denoising method on a dataset of varying 

size. The time in seconds A) and memory in megabytes B) to run varying amounts of reads 

through the three different methods. Note time is on a log10 scale.   
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Table 1: 

Qualitative Comparison of DADA2, Deblur, and UNOISE3 

 

 

Pipeline 
Implemented 

In 
Open 

Source 
*Pooled 

Sampling 
**Positive 
Filtering 

Version 
Tested 

GUI via 
Qiime2 

Publication 
Date 

DADA2 R Yes Yes No 1.6 Yes April 13 2016 

Deblur Python Yes No Yes 1.0.2 Yes 
March 7, 

2017 

UNOISE3 C++ No Yes No 3 No Oct 15, 2016 

 

* When all sequences from all samples are denoised at the same time (in contrast to running each 

sample separately). 

** Compares resulting ASVs to a database (Greengenes for Deblur) and discards reads if they do 

not match a certain identity threshold (88% for Deblur). 
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Supplemental Figure 1: Removal of low abundance ASVs removes many unmatched 

sequences from Deblur- and DADA2-generated ASVs. Amplicon sequence variants (ASVs) 

were run through an abundance filtering at 0.1% and then were compared to a database of full-

length amplicon sequences for just the microbes supposedly in the community (<Expected=) and 

against the full SILVA or ITS databases (<Database=) using BLASTN at 97% and 100% identity 

cutoffs. <Unmatched= sequences did not match an expected sequence or the SILVA 16S rRNA 

gene database at 97% identity or greater. Dotted lines indicate the total number of ASVs 

expected, accounting for 16S gene-copy variations within genomes. A) Human Microbiome 

Project mock community; B) Extreme dataset; C) Fungal ITS1 mock community; D) Zymo 

mock community. 
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Supplemental Figure 2: DADA2 finds more rare organisms than Deblur or UNOISE3. 

Rank-abundance curves for ASVs (A) and classified species (B) generated from the soil dataset 

using the DADA2, Deblur and UNOISE3 methods. ASVs were classified using the RDP 

classifier against the Greengenes (13_8) database. 
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Supplemental Figure 3: Filter stringency does not affect relative abundance data 

drastically. The Human Microbiome Project mock community was run using DADA2, 

UNOISE3, and Deblur at varying stringency filters (low, medium and high). Resulting relative 

abundance profiles are shown for A) DADA2, B) Deblur and C) UNOISE3. 
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Supplemental Figure 4: Intra-sample distances between methods based on intestinal biopsy 

samples from pediatric Crohn’s disease patients and controls. A) The weighted UniFrac 

distances between the same biological samples based on ASVs outputted by each of the different 

methods. B) The Bray-Curtis dissimilarity distance between the same biological samples based 

on genera outputted by the three methods after being classified with the RDP classifier. C) 

Principal coordinates analysis of the weighted UniFrac distances of all the samples in the real 

soil dataset generated by each method. The three different profiles generated for each biological 

sample are colour-coded and are joined by an interconnecting line. D) Non-metric 

multidimensional scaling plot that displays the Bray-Curtis dissimilarity profiles of all the 

samples in the real soil dataset generated by each method. The three different profiles generated 

for each biological sample are colour-coded and are joined by an interconnecting line. 
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Supplemental Figure 5: Intra-sample distances between methods based on mouse exercise 

associated fecal samples.  A) The weighted UniFrac distances between the same biological 

sample based on ASVs outputted by each of the different methods. B) The Bray-Curtis 

dissimilarity distance between the same biological samples based on genera outputted by the 

three methods after being classified with the RDP classifier. C) Principal coordinates analysis of 

the weighted UniFrac distances of all the samples in the real soil dataset generated by each 

method. The three different profiles generated for each biological sample are colour-coded and 

are joined by an interconnecting line. D) Non-metric multidimensional scaling plot that displays 

the Bray-Curtis dissimilarity profiles of all the samples in the real soil dataset generated by each 

method. The three different profiles generated for each biological sample are colour-coded and 

are joined by an interconnecting line. 
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Supplemental Figure 6: There are outlier genera that drastically differ in relative 

abundance between Deblur and the other denoising methods. ASVs were classified using the 

RDP classifier against the Greengenes (13_8) database. Relative abundances of each genus were 

than compared between methods and differences were plotted in a histogram. A) Relative 

abundance differences by genus between DADA2 and Deblur. B) Relative abundance 

differences by genus between DADA2 and UNOISE3. C) Relative abundance differences by 

genus between Deblur and UNOISE3. 
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Supplemental Figure 7: Top 5 genera driving differences between Deblur and the other two 

denoising tools in the soil dataset. Boxplots of the relative abundances per sample of five of the 

classified genera that had relative abundance differences greater than 1% between Deblur and 

both DADA2 and UNOISE3. Deblur calls more reads that were unclassified at the kingdom and 

class levels than DADA2 or UNOISE3. A) ASVs only classified at the Bacteria kingdom level. 

Deblur tends to find higher abundances of these ASVs. B) ASVs only classified at the 

Verrucomicrobia phylum level. Deblur finds higher abundances of these ASVs. C) ASVs only 

classified at the Spartobacteria class level. DADA2 and UNOISE3 find more of these ASVs than 

Deblur. D) ASVs classified at the Gp1 order level of the Acidobacteria_Gp1 class. E) ASVs 

classified at the Granulicella order level of the Acidobacterta_Gp1 class. Strikingly these two 

classifications share opposite relationships where Deblur finds more ASVs in the Gp1 order and 

DADA2 and UNOISE3 find more ASVs in the Granulicella order.  
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Supplemental Table 1: 

Presence of expected organisms across DADA2, UNOISE3, and Deblur in the Human 

Microbiome Project mock community 

 

Organism 
DADA2 
Found 

Deblur 
Found 

UNOISE3 
Found 

Precent 
Abundance 

Acinetobacter baumannii ATCC 17978 Yes Yes Yes 0.05 

Actinomyces odontolyticus ATCC 17982 Yes Yes Yes 0.05 

Bacillus cereus ATCC 10987 Yes Yes Yes 0.05 

Bacteroides vulgatus ATCC 8482 Yes Yes Yes 0.05 

Clostridium beijerinckii ATCC 51743 Yes Yes Yes 0.05 

Deinococcus radiodurans DSM 20539 Yes Yes Yes 0.05 

Enterococcus faecalis ATCC 47077 Yes Yes Yes 0.05 

Escherichia coli ATCC 700926 Yes Yes Yes 0.05 

Helicobacter pylori ATCC 700392 Yes Yes Yes 0.05 

Lactobacillus gasseri DSM 20243 Yes Yes Yes 0.05 

Listeria monocytogenes ATCC BAA-679 Yes Yes Yes 0.05 

Neisseria meningitidis ATCC BAA-335 Yes Yes Yes 0.05 

Propionibacterium acnes DSM16379 Yes Yes Yes 0.05 

Pseudomonas aeruginosa ATCC 47085 Yes Yes Yes 0.05 

Rhodobacter sphaeroides ATCC 17023 Yes Yes Yes 0.05 

Streptococcus agalactiae ATCC BAA-611 Yes Yes Yes 0.05 

Streptococcus mutans ATCC 700610 Yes Yes Yes 0.05 

Streptococcus pneumoniae ATCC BAA-334 Yes Yes Yes 0.05 

Staphylococcus aureus ATCC BAA-
1718/epidermidis ATCC 12228 Yes Yes Yes 0.1 
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Supplemental Table 2: 

Presence of expected organisms across DADA2, UNOISE3, and Deblur in the Extreme 

mock community 

Organism 
DADA2 
Found 

Deblur 
Found 

UNOISE3 
Found 

Precent 
Abundance 

Bacteroides cellulosilyticus DSM 
14838. Yes Yes Yes 4.27E-02 

Bacteroides eggerthii Yes No No 4.27E-06 

Bacteroides fragilis Yes No No 4.27E-04 

Bacteroides massiliensis Yes No No 4.27E-05 

Bacteroides ovatus Yes Yes Yes 4.27E-01 

Bacteroides thetaiotaomicron Yes No No 4.27E-04 

Bacteroides uniformis Yes Yes Yes 4.27E-03 

Bacteroides vulgatus Yes Yes Yes 4.27E-01 

Barnesiella intestinihominis Yes No No 4.27E-06 

Clostridium celatum JCM 1394 Yes Yes Yes 4.27E-04 

Clostridium cocleatum Yes Yes Yes 4.27E-03 

Clostridium methylpentusum DSM 
5476 No No No 4.27E-06 

Clostridium phytofermentans  Yes No No 4.27E-06 

Clostridium xylanovorans Yes Yes Yes 4.27E-02 

Coprococcus comes ATCC 27758 Yes Yes Yes 4.27E-03 

Eubacterium rectale DSM 17629 Yes Yes Yes 4.27E-05 

Howardella ureilytica Yes No No 4.27E-06 

Parabacteroides distasonis JCM 
13400 Yes Yes Yes 4.27E-06 

Parabacteroides distasonis JCM 
13401 Yes Yes Yes 4.27E-02 

Parabacteroides merdae Yes Yes Yes 4.27E-03 

Parabacteroides sp. D13 No No No 4.27E-06 

Paraprevotella clara YIT 11840 Yes Yes Yes 4.27E-05 

Prevotella buccalis No No No 4.27E-06 

Prevotella copri DSM 18205 Yes No No 4.27E-06 

Roseburia intestinalis L1-82 Yes Yes Yes 4.27E-05 

Roseburia inulinivorans DSM 16841 Yes Yes Yes 4.27E-04 

Ruminococcus gnavus ATCC 29149 Yes No No 4.27E-06 
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Supplemental Table 3: 

Presence of expected organisms across DADA2, UNOISE3, and Deblur in the fungal mock 

community 

 

Organism 
DADA2 
Found 

Deblur 
Found 

UNOISE3 
Found 

Precent 
Abundance 

Cyberlindnera jadinii Yes Yes Yes 0.0625 

Debaryomyces hansenii Yes Yes Yes 0.0625 

Diutina catenulata (Candida 
catenulata) Yes Yes Yes 0.0625 

Fusarium domesticum Yes Yes Yes 0.0625 

Galactomyces geotrichum Type 1 Yes Yes Yes 0.0625 

Galactomyces geotrichum Type 2 Yes Yes Yes 0.0625 

Galactomyces geotrichum Type 3 Yes Yes Yes 0.0625 

Galactomyces geotrichum Type 4 Yes Yes Yes 0.0625 

Hyphopichia burtonii Yes Yes Yes 0.0625 

Kluyveromyces lactis Yes Yes Yes 0.0625 

Penicillium allii No No No 0.0625 

Penicillium commune No No No 0.0625 

Penicillium roqueforti Yes Yes Yes 0.0625 

Pichia Kudriavzevii Yes Yes Yes 0.0625 

Scopulariopsis fusca Yes Yes Yes 0.0625 

Zygosaccharomyces rouxii Yes Yes Yes 0.0625 
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Supplemental Table 4: 

Presence of expected organisms across DADA2, UNOISE3, and Deblur in the Zymomock 

community 

 

Organism DADA2 Found Deblur Found UNOISE3 Found Precent Abundance 

Bacillus subtilis Yes Yes Yes 0.1571 

Enterococcus faecalis Yes Yes Yes 0.1037 

Escherichia coli  Yes Yes Yes 0.0999 

Lactobacillus fermentum Yes Yes Yes 0.1878 

Listeria monocytogenes Yes Yes Yes 0.1588 

Pseudomonas aeruginosa Yes Yes Yes 0.0462 

Salmonella enterica Yes Yes Yes 0.1132 

Staphylococcus aureus Yes Yes Yes 0.1331 
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Supplemental Table 5: 

Total ASVs called across DADA2, UNOISE3, and Deblur for all filter stringencies and 

mock communities 

Study Method Filter 100% Expected 97% Expected 100% Database 97% Database Unmatched Total 

HMP DADA2 High 25 5 0 1 12 43 

HMP Deblur High 21 0 0 0 0 21 

HMP UNOISE3 High 23 3 0 0 2 28 

Extreme DADA2 High 26 3 33 11 0 73 

Extreme Deblur High 16 1 9 1 0 27 

Extreme UNOISE3 High 17 2 10 4 0 33 

Fungal DADA2 High 10 1 3 3 2 19 

Fungal Deblur High 10 0 3 8 6 27 

Fungal UNOISE3 High 10 0 3 13 11 37 

Zymomock DADA2 High 8 3 0 0 0 11 

Zymomock Deblur High 8 0 0 0 1 9 

Zymomock UNOISE3 High 8 11 0 4 4 27 

HMP DADA2 Med 25 7 0 0 10 42 

HMP Deblur Med 21 0 0 1 0 22 

HMP UNOISE3 Med 23 3 0 4 4 34 

Extreme DADA2 Med 26 3 34 11 0 74 

Extreme Deblur Med 16 1 9 1 0 27 

Extreme UNOISE3 Med 17 2 10 6 0 35 

Fungal DADA2 Med 10 1 3 3 2 19 

Fungal Deblur Med 10 0 3 8 6 27 

Fungal UNOISE3 Med 10 0 3 13 11 37 

Zymomock DADA2 Med 8 3 1 0 0 12 

Zymomock Deblur Med 8 0 0 1 12 21 

Zymomock UNOISE3 Med 8 15 0 1 19 43 

HMP DADA2 Low 25 7 0 0 9 41 

HMP Deblur Low 21 0 0 0 0 21 

HMP UNOISE3 Low 23 3 0 4 6 36 

Extreme DADA2 Low 26 3 34 11 0 74 

Extreme Deblur Low 16 1 9 1 0 27 
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Extreme UNOISE3 Low 17 2 10 6 0 35 

Fungal DADA2 Low 10 1 3 3 2 19 

Fungal Deblur Low 10 0 3 8 6 27 

Fungal UNOISE3 Low 10 0 3 13 11 37 

Zymomock DADA2 Low 8 3 1 0 0 12 

Zymomock Deblur Low 8 0 0 3 12 23 

Zymomock UNOISE3 Low 8 15 0 1 20 44 
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Supplemental Table 6: 

Total amount of ASVs called by DADA2, UNOISE3, and Deblur in the real soil, BISCUIT, 

and mouse exercise datasets 

 

Rarefaction Dataset UNOISE3 Deblur DADA2 

Before Soil 12228 8273 23075 

After Soil 11613 8270 16609 

Before BISCUIT 1177 1130 1675 

After BISCUIT 1160 1119 1589 

Before Exercise 1663 1320 2229 

After Exercise 1643 1318 1927 

 

 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26566v1 | CC BY 4.0 Open Access | rec: 23 Feb 2018, publ: 23 Feb 2018


