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Abstract 53 

The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining 54 

the influence of different diets on fish skin. Rainbow trout (Oncorhynchus mykiss) were fed either 55 

a commercial based diet (N= 80) or a 100 % plant-based diet (N = 80). Hyperspectral images were 56 

made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All 57 

images were calibrated using dark and white reference and the average spectral data from the region 58 

of interest were extracted. Six spectral pre-treatment methods were used, including Savitzky-Golay 59 

(SG), First Derivative(FD), Second Derivative (SD), Standard Normal Variate (SNV) and 60 

Multiplicative Scatter Correction (MSC) then a support vector machine (SVM) with linear kernel 61 

was applied to establish the classification models. Additionally, the Genetic algorithm (GA) was 62 

used to select optimal wavelengths to reduce the high dimensionality from hyperspectral images in 63 

order to decrease the computational costs and simplify the classification models. Overall 64 

classification models established from full wavelengths and selected wavelengths showed the good 65 

performance (Correct Classification Rate (CCR) = 0.871, Kappa = 0.741) when coupled with SG. 66 

The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and 67 

machine learning algorithms has promise for discriminating different diets based on the live fish 68 

skin. 69 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26562v1 | CC BY 4.0 Open Access | rec: 22 Feb 2018, publ: 22 Feb 2018



 3 

Introduction 70 

The processes of light interaction with tissue has fundamental importance in biology. By studying 71 

the process involve in light remission from tissues, better protocols can be developed to 72 

automatically determine physiological and pathological status of animals. Light entering the skin 73 

undergoes multiple scattering and absorption events as it propagates across the tissue(Patterson, 74 

Wilson & Wyman, 1991). Tissue absorption is a function of molecular composition. Molecules 75 

absorb photons when the photons’ energy matches interval energy states, and the transition between 76 

quantum states obeys the selection rules for the species. During the absorption process, transitions 77 

between two energy levels of a molecule that are well defined at a specific wavelength which could 78 

serve as a spectral fingerprint for diagnostic purposes(Zhang et al., 2013). The reflectance signal 79 

measured from the tissue is determined by the structural and biochemical properties of the tissue; 80 

therefore, change in optical properties can be used to noninvasively probe the living 81 

microenvironment. In other words, changes in tissue status will lead to corresponding changes in 82 

the pattern of reflected light. 83 

Tissue components that absorb light are called chromophores. Some of the most important 84 

chromophores for visible wavelength is skin colour (Lu & Fei, 2014). Skin colour, as a complex 85 

trait that is determined by genetic, cellular, and physiological factors, has important role in 86 

displaying physiological, behavioural and ecological status of aquatic organisms. Knowledge about 87 

skin colouration pattern in fish is not only representative of growth rates(Colihueque et al., 2011) 88 

but also it exhibits the welfare of fish (Pavlidis et al., 2006). The colouration of fish is caused by 89 

the overlay and stacking of several types of pigmented cells including melanophores (black cell), 90 

xanthophores (yellow cells), erythrophores (red cells) and leucophores (silvery cells) in the dermis 91 

(Kelsh, 2004). Some researchers have shown that skin colour is highly dependent on the 92 

carotenoids present in the diet (Ho, O’Shea & Pomeroy, 2013), therefore, skin colour can provide 93 
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useful information for regulating accurate feeding. Also, some patterns show when fish are stressed 94 

of if they undergo various metabolic changes(Sefc, Brown & Clotfelter, 2014). Also, consumers 95 

use colour when selecting fish in the market. For instance, Colihueque et al. (Colihueque et al., 96 

2011) showed the importance of Blue Black (BB) phenotype in adult rainbow trout (Oncorhynchus 97 

mycosis) as a positive trait in some markets; fish of this type had 23% higher growth rate than other 98 

skin colour phenotypes. Farmed large yellow croacker loses its natural colour under the intensive 99 

cultured condition. This loss is one of the most important reasons leading to its low market price 100 

and low consumer acceptance(Yi et al., 2014). Thus, fish farmers use augmented diet so as to 101 

develop optimal skin colour and enhance acceptance by consumers. Farmers avoid diets with no 102 

astaxanthin supplementation, in red porgy culture to prevent dark-gray skin colour that leads to the 103 

rejection by consumers (Kalinowski et al., 2007). Skin colour is crucial for quality assessment of 104 

ornamental fishes relative to market price but also breeding of high quality fish; repeated sorting 105 

and grading is done during grow-out according to skin colour quality(Zion et al., 2008). Therefore, 106 

analysis of skin colour, interpretation of the significance of colouration pattern and colour changes 107 

of aquatic animals is an important issue.  108 

Diet, among other factors, has strong effects on stress tolerance and health, and therefore, fish must 109 

be fed adequate diet that meet all their nutrient requirements for a good growth and resistance to 110 

stress and disease problems(Trichet, 2010). In other words, feeding fish with an inadequate 111 

nutritional diet not only affects growth and feed efficiency but also increase susceptibility to disease 112 

and induces the appearance of deficiency signs, including altered behavioral and pathological 113 

changes(Oliva-Teles, 2012). Feed is the most expensive constituent of production costs in 114 

aquaculture(Hemre et al., 2003). Currently, some considerable effort is addressing the replacement 115 

fish meal and fish oil with plant based diet (PBD) (Boucher et al., 2011; Lazzarotto et al., 2015). 116 

However, few studies have investigated the effects of different diets on fish skin. Costa et al.(Costa 117 
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et al., 2013) showed image from a digital camera could be used to discriminate fish fed with organic 118 

and commercial diet. Segade et al. (Segade et al., 2015) studied the effect of different diets on 119 

seahorse body colour and their biochemical composition.   120 

Researchers have used different optical sensors for measuring and determining light interaction 121 

with fish skin. Colourimeters have been used to determine skin colour changes. These instruments, 122 

which usually provide readings in XYZ, RGB and CIE Lab colour space, allow accurate and 123 

reproducible measurements of the colour with no influence by the observed or 124 

surroundings(Clydesdale & Ahmed, 1978). For instance, Kalinowski et al. (Kalinowski et al., 125 

2007) used a tristimulus colourimeter to characterize skin colour parameters (CIE Lab) and 126 

intensity to determine the effect of esterified astaxanthin supplement in red colouration of red 127 

porgy. Yi et al.(Yi et al., 2014) used portable Minolta Chroma meter to show the effect of 128 

astaxanthin and xanthophylls as carotenoid sources on growth and skin colour of large yellow 129 

croaker. Pavlidis et al.(Pavlidis et al., 2006) used a portable spectrocolourimeter to measure the 3D 130 

characteristics and colour apperance (CIE L, a*, b*) of wild and farmed red skin Sparidae (Pagrus 131 

pagrus, Pagrus caeruleostictus, and Dentex gibbosus). They introduced a new index called Entire 132 

Colour Index (ECI) for exhibiting fish skin colour pattern. Some also used visible and Near infrared 133 

(Vis/NIR) spectroscopy to document the color changes on fish skin. Solberg et al. (Solberg et al., 134 

2003) and Folkestad et al.(Folkestad et al., 2008) demonstrate feasibility of NIR spectroscopy for 135 

determining fat in live and slaughtered Atlantic salmon (Salmo salar). Lin et al.(Lin et al., 2003) 136 

showed satisfactory application of Vis/NIR spectroscopy to detect bruises in pacific pink salmon 137 

(Oncorhynchus gorbuscha) through skin. Costa et al.(Costa et al., 2011)  used Vis/NIR 138 

spectroscopy of skin to differentiate the sea bass (Dicentrarchus labrax) with 87% accuracy at 48hr 139 

post-mortem quality cultured in tank from sea cage. Although fish skin colour described with 140 

proximal sensors is accurate, their use has been criticized due to small area measured by the 141 
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machine, and that aspects of the overall colours are lost (Mendoza & Aguilera, 2004). Also for 142 

accurate measurement, the surface colour should be quite uniform or homogenous and that may 143 

many locations on the sample must be measured to obtain the representative colour profile which 144 

sometimes are destructive(Yam & Papadakis, 2004).  145 

Researchers also used consumer grade cameras as a non-invasive tool for measuring skin colour 146 

parameters. Digital images from consumer-grade cameras can overcome the deficiencies of visual 147 

and instrumental techniques and offer an objective measurement of colour and other physical 148 

factors (Chen, Chao & Kim, 2002). Wallat et al. (Wallat, Lazur & Chapman, 2005) demonstrated 149 

how a compact true colour camera could be employed for objective measurement of the skin colour 150 

of live goldfish (Carassius auratus) and how this information was used to optimize the feeding 151 

scheme to develop the most desirable skin colour. Zatkova et al. (Zaťková et al., 2009) utilized a 152 

digital camera to estimate changes in skin colour of wels catfish (Silurus glanis). They showed the 153 

feasibility of digital cameras for monitoring skin colour changes due to diet alteration. Colihueque 154 

et al. (Colihueque et al., 2011)  developed a method for estimating skin colour, spottiness and 155 

darkness using consumer digital camera and digital image analysis for categorizing cultured 156 

rainbow trout (Oncorhynchus mykiss). Costa et al. (Costa et al., 2013) used digital camera to 157 

analyse skin colour to discriminate the effects of seabass fed organic or commercial diet. Moreover, 158 

Wade et al. (Wade et al., 2014)  used three different methods to measure prawn colour (two 159 

different colourimeter and colour quantification from digital images) to quantify whether any 160 

significant variation existed between the colours of farmed tiger prawns (P. monodon) from 161 

different ponds or from different farms. They successfully showed capability of both methods 162 

(colourimeters and digital images) to characterize the prawns from different farms. Segade et al. 163 

(Segade et al., 2015) also showed the effect of diet on seahorse (Hippocampus hippocampus) body 164 

colour using images obtained from consumer-grade digital cameras. Consumer-grade cameras 165 
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provide the capability to rapidly scan both larger areas as well as smaller details but can only study 166 

colour in Visible (Vis) bands. Furthermore, all above mentioned studies have not described 167 

interaction of light in Near infrared (NIR) bands to show the chromatic changes on fish skin.  168 

Hyperspectral imagery (HSI) is an emerging technology that integrates both spectroscopy and 169 

imaging in a single system; it has potential to capture the subtle spectral difference under different 170 

physiological and pathological conditions. HSI is enabling simultaneous acquisition of spatial and 171 

spectral information from an object. The system has the ability to image the same scene in hundreds 172 

of contiguous narrow wavebands, from the visible to the short-wave infrared region of electro-173 

magnetic spectrum (400-2500 nm). In other words, HSI has higher spatial resolution than the 174 

multispectral image which are obtained by consumer grade digital cameras. The output of the 175 

hyperspectral imaging system is three-dimensional (3D) (spatial-spectral-spatial) and is referred to 176 

as spectral cube, data cube, spectral volume or simply hybercube. Hybercube consists of a large 177 

amount of information and can be used to analyse minor and/or subtle physical and chemical 178 

features in samples(ElMasry & Nakauchi, 2016). Hyperspectral Imaging (HSI) has been used to 179 

quantify many fish and fish products features such as fat distribution (ElMasry & Sun, 2010), 180 

texture (Wu, Sun & He, 2014), pH (He, Wu & Sun, 2012), tenderness (He, Wu & Sun, 2014) 181 

freshness (Sone et al., 2012) and moisture (He, Wu & Sun, 2013) with high significant prediction 182 

ability (r > 0.8). Fat and water content in fillets of multiple fish species, including Atlantic halibut, 183 

catfish, cod, saithe, macherel and herring were also measured using HSI (ElMasry & Wold, 2008). 184 

Potential of HSI to estimate lactic acid bacteria and microbial spoilage of fish products also has 185 

been assessed (He, Sun & Wu, 2014; Cheng & Sun, 2015). However, the feasibility of HSI to 186 

determine the impact of diet changes in live aquatic organisms has not been studied. Our hypothesis 187 

is that with a combination of spectra and image can provide more objective, reproducible and 188 

potentially automated method for determining diet-affected fish skin biochemical composition 189 
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compared to other methods. Therefore, the main aim of this study was to evaluate the feasibility of 190 

hyperspectral imagery to evaluate the influence of two different diets on fish skin. Another 191 

objective was to develop a new, robust, accurate and non-invasive protocol using hyperspectral 192 

imagery system and machine learning algorithms in analysing subtle spectral differences of diet-193 

affected characteristics. 194 

Materials and Method 195 

Fish and cultural condition  196 

The experimental groups were produced at INRA-PEIMA (Sizun, France). The fish population, 197 

contained 250 fish which were grown in six 5.4 m3 replicated tanks using in river water (13.4 – 198 

18.3 °C) until data acquisition. All 250 fish were tagged with passive integrated transponder (AEG-199 

Id, ISO FDXB) for individual identification. Experiments were designed in a split-block design 200 

with three replications for each diet; therefore, 125 fish were fed a commercial based diet (3 tanks) 201 

and 125 were fed a plant-based diet (3 tanks). After three weeks, 80 fish from each treatment were 202 

selected randomly for hyperspectral image acquisition. Mean body weight of fish receiving the 203 

commercial based diet (CBD) was 228.99g and the plant based diet (PBD) was 222.46g at time of 204 

data acquisition. All methods and protocols were carried out in accordance with the French law for 205 

animal experiment with authorisation of the French veterinary service under ethical approval No. 206 

B29-777-02. 207 

Diets and feeding controls 208 

Diets were manufactured at the INRA NUMEA facility of Donzacq (France). The ingredient and 209 

analysis composition is given in Table 1. CBD contained fishmeal and fish oil as protein and lipid 210 

source respectively.  PBD is contained mixture of wheat gluten, extruded peas, corn gluten meal, 211 

soybean meal and white lupin as protein sources; and combination of palm seed, rapeseed and 212 

linseed oil, rich in saturated, mono-unsaturated and n-3 poly-unsaturated   fatty acids, respectively, 213 
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as lipid source. A mineral and a vitamin premix equally were added into both diets. Both diets 214 

fulfilled the known nutrient requirement of rainbow trout as explained by Geurden et al.(Geurden 215 

et al., 2013). 216 

 217 

Table 1: The Ingredient of commercial based diet (CBD) and plant based diet (PBD) 218 
Ingredients  CBD PBD 
Fish Oil  11.8 - 
Plant oil blend*  - 11.4 
Fish meal 42.4 - 
Soybean Meal 12.0 12.0 
Pea 17.1 12.5 
Wheat 9.6 4.0 
Lupin flour - 5.0 
Wheat gluten - 17.0 
Corn gluten  - 17.0 
Fababean protein concentration  - 10.0 
Dicalcium Phosphate  - 3.0 
Soy lecithin powder - 2.0 
Additive (vitamin, mineral, preservative) 4.5 4.5 

 *Palm seed, rapeseed and liveseed oil 219 

Image acquisition  220 

A push-broom, line-scanning reflectance hyperspectral imaging system was used to acquire the 221 

hyperspectral images of rainbow trout in a dark room to avoid the interference due to stray light 222 

and to get pure spectral reflectance. This system includes a high-performance CCD camera 223 

(Photonfocus 1312 CL) along with focus lens, a spectrograph (Specim V10E, Spectral Imaging 224 

Ltd., Oulu, Finland) attached to the camera acquire hyperspectral images in the wavelength range 225 

of 393-1009 nm, an illumination source (150 W halogen lamp attached to a fibre optic line light 226 

positioned at an angle of 45 degree to the moving table to reduce the shadowing effects), a moving 227 

table and a computer system equipped with an image acquisition software (SpectralScanner, DV 228 

optics).   229 
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To acquire the spectral and spatial information, each rainbow trout was placed on the sample 230 

loading device and they conveyed to the camera field of view (FoV) of camera with adjusted speed 231 

(1.6 mm/s) and exposure time (10 s) to be scanned line by line. The procedure was controlled and 232 

implemented by image acquisition software (Specim Lumo software, Spectral Imaging Ltd., Oulu, 233 

Finland). The raw hyperspectral image for each sample consisted of several congruent images 234 

representing intensities at 784 wavelength bands from 393 to 1009 nm. Due to the low signal-to-235 

noise rate at the two ends of the spectral ranges, only the wavelength ranging from 400 to1000 nm 236 

wavelength were used. Totally, 160 hyperspectral images were created, recorded, stored in raw 237 

format before being processed.  Before measurement, each fish mildly anesthetized with 238 

Benzocaine to reduce the movement and minimize the stress. The surface of each rainbow trout 239 

also was wiped with piece of tissue paper to remove extra water on skin before data acquisition. 240 

Hyperspectral image calibration  241 

In order to eliminate the influences from the bright and dark response, the acquired hyperspectral 242 

images were corrected based on the methods described by Wu et al. (Wu, Sun & He, 2012). Dark 243 

reference images (~ 0 % reflectance) were obtained by closing the shutter and the white reference 244 

images (~99.9% reflectance) were acquired by collecting a spectral image from a uniform white 245 

calibration tile, afterward, reflectance hyperspectral image was calculated using Equation (1).   246 

𝐼" =
$%&'%
(%&'%

                (1) 247 

 where I is the corrected hyperspectral image, R is the raw hyperspectral image, W is the white 248 

reference image and D is the dark reference image as well as i is the pixel index, i.e. i = 1,2,3, …, 249 

n and n is the total number of pixels, which was then used as a basis for subsequent hyperspectral 250 

image extraction and spectral data analysis.  251 
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Region of Interest (ROI) corresponding to image of sample identified and the spectra of ROI were 252 

extracted and exported as a matrix (X), where the rows of this matrix represent the number of 253 

samples and the columns represent the number of variables (764 wavelengths). The reflectance 254 

spectrum from the ROI was computed by averaging the spectral value of all pixels in the ROI for 255 

each sample using the Environment for Visualizing Images software (ENVI 5.3, Harris geospeatial 256 

solutions, FL, USA). 257 

Spectral data analysis  258 

Spectral pre-processing  259 

Spectral pre-processing which used for correcting light scattering in reflectance measurement and 260 

data enhancement by reducing/removing physical phenomena before data is used in classifier.  The 261 

most widely used spectral pre-processing methods can be commonly divided into three groups, 262 

namely smoothing, baseline removal, and scaling (Gholizadeh et al., 2015). The first category is 263 

smoothing such as Savitzky-Golay (SG) which is used for noise reduction; the second category is 264 

baseline removal such as the first derivative (FD) and second derivative (SD) which is used for 265 

correcting background signals or baseline that is far away from zero level. Multiplicative scatter 266 

correction (MSC) is also another popular transformation method used to remove the scatter effects 267 

on spectral data.  Another group is range scaling, this method is applicable when the total intensity 268 

in the spectra is sample-dependent, and samples need to be scaled in such a way that intensities can 269 

be compared. Standard normal variate (SNV) is one of the popular pre-processing method which 270 

centring and scaling each individual spectrum for correcting the multiplicative interferences of 271 

light scatter (Duckworth). Six forms of spectra pre-processing were used in this study to remove 272 

the non-constituent-related effects in spectra data and to develop optimal classifier model. The six 273 

forms were SG smoothing with second order polynomial fit and 11 smoothing points, the FD and 274 

SD transformation, MSC and SNV. 275 
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Classifier 276 

After pre-treatment, Support vector machine (SVM) as a classifier was employed to develop the 277 

classification models for discriminating two different diets.  SVM uses kernel function to map input 278 

x into a high-dimensional feature space ф(x) by constructs an optimal hyperplane to separate the 279 

two kinds of data points from two classes(Duan, Keerthi & Poo, 2003) . SVM employs the lagrange 280 

multiplier to compute the partial differentiation of each feature to acquire the optimal solution. 281 

Consider a given training set of N data points, {𝑥+, 𝑦+}+/01 with input data, which is an n-282 

dimensional data vector (𝑥+ ∈ 𝑅1) , and output, which is the one-dimensional vector 283 

space(𝑦+ ∈ 𝑟); SVM create the classifier as shown in Equation (2). 284 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼+𝑦+ψ(𝑥, 𝑥+) + 𝑏1
+/0 ]              (2) 285 

where 𝛼+are positive real constants and b is a real constant. For this study, SVM with linear kernel 286 

which can be showed in Equation (3) was used.  287 

ψ(𝑥, 𝑥+) = 	𝑥+D𝑥           (3) 288 

The classifier is constructed as Equation (4). 289 

𝑦+[𝑤D	ф(𝑥+) + 𝑏] ≥ 1	, 𝑘 = 1,… . , 𝑁              (4) 290 

where ф(.) is a nonlinear function which maps the input space into a higher dimensional space. 291 

Further details can be found in Vapnik(Vapnik & Vapnik, 1998). R package Caret  (Kuhn, 292 

2008)used for SVM classification model. 293 

Selection of feature wavelengths 294 

Some studies used the most relevant and informative wavelengths instead of full wavelengths to 295 

optimize the data analysis and reduce the cost of computation(Xu, Riccioli & Sun, 2017). 296 

Therefore, the genetic algorithm (GA) was used to identify and select the most important and 297 

informative wavelengths in addition to full range of wavelengths. GA, as one of the popular feature 298 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26562v1 | CC BY 4.0 Open Access | rec: 22 Feb 2018, publ: 22 Feb 2018



 13 

selection method, is a random search method which utilizes non-local and probabilistic process 299 

based on the principal of natural genetic selection systems(Leardi, Seasholtz & Pell, 2002) .In other 300 

words, GA aimed to reach the global optimum for a problem by shifting the best individuals in the 301 

population using mutation and cross-over operations. Basically, GA’s process can be summarized 302 

into five steps; 1/ coding all variables 2/ initiation of population 3/ evaluation of the responses 4/ 303 

reproductions 5/ mutations(Leardi & Gonzalez, 1998). More details of GA can be found in Murthy 304 

and Chowdhury(Murthy & Chowdhury, 1996). The parameters adopted in this study were mainly 305 

related to population size of each generation (20), number of iteration (100), deletion group (5), 306 

crossover probability (0.8) and mutation probabilities (0.1). R package Caret(Kuhn, 2008) used for 307 

GA implementation. All the parameters and conditions were taken from previous studies(Li et al., 308 

2011; Feng & Sun, 2013).  309 

Evaluation of the classification models  310 

Validation is an important component to test the learning status of the model. The dataset from 160 311 

hyperspectral for rainbow trout was divided into training set (80% of total samples) used to develop 312 

the classifier models and a validation set (20% of total samples) used to assess the prediction 313 

accuracy of each model. The training set was used for fitting models, and the validation set was 314 

performed by random stratified sampling. Afterward, classifier was evaluated through the analysis 315 

of correct classification rate (CCR, %) and Cohen’s Kappa coefficient in the validation set. CCR 316 

and Cohen’s Kappa coefficient was calculated by the equation 5 and 6 respectively.  317 

𝐶𝐶𝑅 =	1N
1O
	× 	100	%        (5) 318 

where N1 is number of corrected estimation of samples and N0 is the total number of samples  319 

𝐾 = TU(V)&TU(W)
0&TU	(W)

       (6) 320 

where Pr(a) us observed agreement and Pr(e) is probability of random agreement.  321 
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Furthermore, sensitivity and specificity which can be obtained using Equation (7) and (8) 322 

respectively, were used to evaluate the classification model as well(Amigo, Babamoradi & 323 

Elcoroaristizabal, 2015). 324 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 D\
D\]^1

         (7) 325 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 = 	 D1
^\]D1

              (8) 326 

where TP and TN are true positive and true negative respectively; and FN and FP are false negative 327 

and false positive respectively. 328 

Additionally, the area under the Receiver Operator Characteristics (ROC) curve (AUC), known as 329 

a global measures of classifier performance, were calculated for comparing overall performance of 330 

all different classification schemes (Bradley, 1997). R package pROC (Robin et al., 2011)used in 331 

this study to create ROC curves. Figure 1 shows the schematic of methodology used in this study. 332 

 333 

Figure 1: Schematic diagram of hyperspectral data analysis in this study 334 
 335 
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Results and Discussion 336 

The Vis/NIR hyperspectral imaging for the two diets were similar but had differences in reflectance 337 

intensity in the range from 450- 750 nm and 900- 1000 nm (Figure 2). It can be seen that the mean 338 

reflectance values of PBD are higher than CBD in most part of visible bands (450 – 750 nm), but 339 

the mean reflectance values of CBD are higher than PBD in NIR bands (900 -1000 nm). This 340 

implied that different diets have induced significant alterations to fish skin in a way that can be 341 

detected by spectral information. The differences between spectra might be mainly associated with 342 

how the different types of lipids, influence the absorption and deposition of carotenoids. In other 343 

words, oils contain different amounts of stanol and sterols which interfere with the uptake of 344 

carotenoids (Nguyen, 1999; Kalinowski et al., 2005; Choubert, Mendes-Pinto & Morais, 2006).  345 

 346 

Figure 2: The mean Vis/NIR spectral reflectance of rainbow trout skin for commercial based diet 347 
(CBD) and plant based diet (PBD) 348 

 349 

In order to establish a robust classification model and explore the influence of spectral sampling 350 

interval on the classification accuracy, different pre-processing algorithms were performed. Figure 351 

3 shows raw and pre-processed spectra for all samples.   352 

 353 
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Figure 3: representative Vis/NIR Spectra of fish skin raw and different pre-processing methods; 354 
SG: Savitzky-golay (b), FD: 1st Derivative (c), SD: 2nd Derivative (d), SNV: Standard normal 355 

variate (e), and MSC: multiplicative scatter correction (f).   356 
 357 
Classification model using full wavelengths  358 

The performances of classification models were evaluated by the CCR, Kappa coefficient, 359 

Sensitivity and Specificity. Table 2 shows the average CCRs for testing set with six spectral pre-360 

processing techniques based on the whole spectral range. When the raw and pre-processed spectra 361 

were used to build the classification models, CCRs ranged between 0.740 and 0.871. After 362 

application of SD, classification accuracy decreased compare to classification using spectra without 363 

pre-processing, however, application of SG, FD, SNV and MSC improved the classification 364 

compared to raw spectra.  Thus, spectral pre-processing of SD was not helpful and to some extend 365 
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reduce the accuracy of classification, but other pre-processing treatments were improved the 366 

performance of classifier for full range of wavelengths. The best performance for classification 367 

with the highest CCR of 0.871 and Kappa coefficient of 0.740 achieved when smoothing solely 368 

used as pre-processing method for full wavelength.  369 

Classification model using selected wavelengths 370 

In this study, GA was used to select the most effective wavelengths after different pre-processing 371 

methods. The CCR and Kappa coefficient for validation set was 0.709 and 0.417 when no spectral 372 

pre-treatment used for selected wavelengths (Table 2). After using the spectral pre-processing 373 

algorithms, CCR range was between 0.709 and 0.838, thus FD, SD and MSC were not improved 374 

the classification performance, but SG and SNV improved the accuracy of classification for 375 

validation set in compare to spectra without pre-treatment. The highest CCR and Kappa coefficient 376 

for validation set was 0.838 and 0.679 respectively, achieved when selected wavelengths classified 377 

using SVM coupled with Standard normal variate. 378 

Classification models using the selected wavelengths showed decline in CCRs to correspondence 379 

full range of wavelengths except pre-processed spectra using SNV which improved the accuracy. 380 

In other words, GA is suitable for selecting the most informative and important wavelengths for 381 

differentiate the diet based on fish skin, however, it does not improve the accuracy of classification.  382 

The ROC curves also showed on Figure 4. The red dot on the figures denotes the best threshold 383 

obtained which is the closest point to the top corner where the true positive rate equals one, and the 384 

false positive rate of zero (Ariana, Guyer & Shrestha, 2006). Furthermore, AUC as an index for 385 

showing the quality of classifiers (Liu, Sun & Zeng, 2014) mentioned. AUC of one is considered 386 

as a perfect classifier, while 0.5 would be a random classifier. Based on the AUC comparison, the 387 

classification performance for full range of wavelengths was slightly better than the classification 388 
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performance for selected wavelengths. AUC based on the full wavelengths coupled with SNV as 389 

pre-treatment is the highest (0.933).  390 

 391 
Table 2: Model performance for identification of different diet on validation set 392 

method Full wavelengths Selected wavelengths 
Number* CCR Sensitivity Specificity Kappa Number* CCR Sensitivity Specificity Kappa 

Raw-SVM 764 0.741 0.687 0.800 0.485 340 0.709 0.666 0.750 0.417 
SG-SVM 764 0.871 0.875 0.866 0.741 350 0.830 0.866 0.812 0.670 
FD-SVM 764 0.806 0.812 0.800 0.612 242 0.709 0.666 0.750 0.417 
SD-SVM 764 0.730 0.750 0.733 0.483 363 0.709 0.733 0.687 0.420 
SNV-SVM 764 0.774 0.750 0.800 0.548 318 0.838 0.933 0.750 0.679 
MSC-SVM 764 0.838 0.875 0.800 0.676 218 0.677 0.800 0.562 0.359 

 *Number of wavelengths 393 

 394 
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Figure 4: ROC curves obtained for the test set of all developed models 395 
This study developed a rapid, non-invasive and automate system to discriminate a dietary effect on 396 

live rainbow trout non-invasively and rapidly. Overall, classification models established from full 397 

wavelengths and selected wavelengths showed the good performance when SG used as pre-398 

treatment of spectra. Although selecting feature wavelength did not improve the accuracy of 399 

classification, but it did provide the same accuracy as full wavelengths. The selected optimal 400 

wavelengths would be useful to develop a multispectral imaging system, simplifying the data 401 

handle in the high dimension of HIS and more suitable for industrial on-line application. In a brief 402 

conclusion, results of this study will contribute a novel and accurate method to compare with 403 

current available approaches for categorizing the external appearance of live rainbow trout, 404 

particularly with the goal of studying impact of different diets on fish external appearance. In other 405 
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words, the skin pigmentation in farmed rainbow trout has commercial value because high visual 406 

impact on the consumers and affects marketing prospects(Kause et al., 2003), therefore, the 407 

introduced system in this study can provide more objective, accurate, fast tools for determining 408 

impact of different diets on external appearance of rainbow trout. Furthermore, it can be used in 409 

implementation of European union regulation (EC 178/2002) on traceability of food and feed, food 410 

and feed producing animals, and substances intended to be incorporated into food and feed by 411 

providing diet information based on fish skin. Further studies should be carried out to not only 412 

improve the classification accuracy using different machine learning algorithms but also increasing 413 

classification power for online evaluation of fish skin at industrial scale. Furthermore, impact of 414 

different nutrient deficiency can be investigated using HIS in future studies.  415 
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