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Background. The consequences of past or future climate change have been studied in many physical

and biological systems, and their effects could change the ecology and spatial distribution of suitable

areas for a wide variety of organisms.

Methods. We analyzed the environmental and geographic space of the current suitable area and we

projected these conditions into Mid-Holocene and 2050 RCP8.5 scenarios. Through these projections, we

assessed and quantified whether climate change would affect the distribution and size of environmental

and geographic space for lizard species of the genus Teius.

Results. The potentially suitable geographic area for the Mid-Holocene decreased for T. oculatus (-

29.55%) and for T. teyou (-6.82%), but for T. suquiensis it was inferred as a larger suitable area (+26%).

For the future scenario all species showed a decrease in the potentially suitable area compared to the

present (T. oculatus = -9.30%, T. teyou = -0.79%, T. suquiensis = -37.58%). The first 3 PCA axes in the

environmental space explained more than 86% of the variation for each temporal scenario for all species.

The higher contribution for PC1-2 in Mid-Holocene and Present were mostly related to temperature and

for PC3 with altitude variables: and for the 2050 scenario were temperature for PC1, precipitation for PC2

and altitude-temperature for PC3. The hypervolumen distance for T. oculatus from the Present scenario

to Mid-Holocene = 67.80 and for 2050 = 309.10; for T. teyou to Mid-Holocene = 95.67 and for 2050 =

442.67; for T. suquiensis to Mid-Holocene = 275.57 and for 2050 = 248.07.

Discussion. These results suggest that current geographic space versus the other temporal forecast of

all Teius species, showed different specific magnitude changes in their potentially suitable areas. This

work illustrates how ectothermic organisms might have to face major changes in their environmental and

geographic space as a consequence of the effect of climate changes.
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ABSTRACT

Backgrngnd. The consequences of past or future climate change have been studied in many 

physical and biological systems, and their effects could change the ecology and spatial 

distribution of suitable areas for a wide variety of organisms.

Methnds. We analyzed the environmental and geographic space of the current suitable area and 

we projected these conditions into Mid-Holocene and 2050 RCP8.5 scenarios. Through these 

projections, we assessed and quantified whether climate change would affect the distribution and 

size of environmental and geographic space for lizard species of the genus Teius.

Resglts. The potentially suitable geographic area for the Mid-Holocene decreased for T. oculaous 

(-29.55%) and for T. oeyou (-6.82%), but for T. suquiensis it was inferred as a larger suitable area 

(+26%). For the future scenario all species showed a decrease in the potentially suitable area 

compared to the present (T. oculaous = -9.30%, T. oeyou = -0.79%, T. suquiensis = -37.58%). The 

first 3 PCA axes in the environmental space explained more than 86% of the variation for each 

temporal scenario for all species. The higher contribution for PC1-2 in Mid-Holocene and Present

were mostly related to temperature and for PC3 with altitude variables: and for the 2050 scenario 

were  temperature for PC1, precipitation for PC2 and altitude-temperature for PC3. The 

hypervolumen distance for T. oculaous from the Present scenario to Mid-Holocene = 67.80 and 

for 2050 = 309.10; for T. oeyou to Mid-Holocene = 95.67 and for 2050 = 442.67; for T. suquiensis

to Mid-Holocene = 275.57 and for 2050 = 248.07.

Discgssinn. These results suggest that current geographic space versus the other temporal 

forecast of all Teius species, showed different specific magnitude changes in their potentially 

suitable areas. This work illustrates how ectothermic organisms might have to face major changes

in their environmental and geographic space as a consequence of the effect of climate changes.

Keywnrds: niche modeling, climate change, Mid-Holocene, 2050 scenario, reptiles, Teius.
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INTRODUCTION

The concept of ecological niche has long been considered to be an important factor in the species'

distribution range and was defined as a set of environmental conditions that maintains each taxon 

within a certain geographic range, modulated by physiological restrictions under which they can 

prosper (Grinnell, 1917; James et al., 1984). Numerous works studied this concept in recent 

decades from the theoretical point of view (Soberón & Peterson, 2005; Peterson et al., 2011) and 

in general they agree that it includes certain components and they are commonly summarized in 

the BAM diagram. The BAM framework (Soberón & Peterson, 2005) for a species includes a 

region with a suitable set of abiotic factors (A) and this represents the geographic expression of 

the fundamental niche (FN), a region with appropriate biotic interactions (B), a region 

"accessible" to colonization (M) and a region equivalent to the distribution of the species (P) 

which is the intersection of the three identified regions (P = A ∩ B ∩ M). The niche concept is 

commonly separated into two major classes: Grinnellian and Eltonian niches. The Grinnellian 

niche (Grinnell, 1917; Austin, 2002; Soberón, 2007) is defined mainly by abiotic and non-

interactive variables, while biotic interactions and resources define the Eltonian niche (Elton, 

1927; Vandermeer, 1972; Leibold, 1995). Usually, these concepts and theoretical frameworks are 

not taken into account by researchers that model species’ niches (Townsend Peterson & Soberón, 

2012).

In the past decades, a large number of scientists estimated spatial distributions by calculating

and quantifying "environmental" or "ecological" niches (Colwell & Rangel, 2009; Soberón & 

Nakamura, 2009), mostly through mechanistic and correlative models. The analysis of the niche 

through mechanistic models allows to evaluate a physiological limitation and to project it into the

geographic space (Sinervo et al., 2010), while the correlative models perform correlations 

between several variables and the distribution of the studied organism (Owens et al., 2013). Both 
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types of models have advantages and disadvantages, but correlative models can analyze habitat 

suitability considering several environmental variables together. Habitat suitability modeling can 

be subjected to spatial analysis such as area calculation (Di Marco et al., 2016), importance of 

variables in the geographic distribution (Marino et al., 2011) and interaction of the variables with 

each other (Hirzel & Le Lay, 2008).

The study of present habitat suitability is an effective method to infer the spatial interactions 

and shifts of organisms with past and future climate changes (Peterson et al., 2011). Niche 

modeling analysis is frequently used in research dealing with species distribution, and is applied 

to assess geographic ranges within different evolution scenarios (Wiens & Graham, 2005; 

Warren, Glor & Turelli, 2008); as a tool for biodiversity conservation (Hortal et al., 2015; Jones 

et al., 2016; Tulloch et al., 2016), or to predict distributions under diverse climate scenarios 

events (Barrows, 2011; Anderson, 2013). Given the evidence of impact of climate change on 

biodiversity and on the fate of species’ survivorship, there was an eruption of papers focused on 

this topic, and many scientists made simulation models and predictions based on the climate shift 

scenarios (Cane, 2005; Parker, 2010). Several resources, software and algorithms were produced 

in the last two decades to perform modeling and simulations (Thuiller et al., 2009; Di Cola et al., 

2017) using climatic layers (e.g., Lima-Ribeiro et al., 2015) to assess the effect of climate change 

on species’ distribution.

The abiotic factors can determine regional and local patterns by which communities of 

organisms are assembled, and the resulting degree of similarity or difference between localities 

with similar environments (Chase, 2003). Studies on changes of the potential suitable abiotic area

for a species, have been mostly focused on the geographic space and to a lesser extent in the 

environmental space (Soberón & Nakamura, 2009; Owens et al., 2013). Ectothermic organisms, 

and particularly reptiles are susceptible to climate changes (Sinervo et al., 2010; Böhm et al., 

2016). Lizards are an optimal study object to test the climate changes effects, since this group of 
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ectotherm organisms is highly susceptible to climate change (Kubisch et al., 2015) or habitat 

destruction, because of their reproductive strategies and low dispersal capacity (Zajitschek, 

Zajitschek & Clobert, 2012). Therefore, the analysis of displacement and contraction of the 

appropriate climatic-environmental areas for lizard species with little physiological adaptability is

a major research goal (Huey et al., 2012; Ceia-Hasse et al., 2014).

In this study, we evaluated the potential effects of climate shifts projected for Mid-Holocene 

and 2050, in the lizard genus Teius using ecological niche modeling (ENM, sensu Townsend 

Peterson & Soberón, 2012), considering the two aspects of Hutchinson's duality: geographic and 

environmental spaces (sensu, Soberón & Nakamura, 2009). The geographic projection of present 

modeled distributions coupled with comparisons with ~6000 years ago conditions versus a future 

medium-term model of 35 years, could provide solid evidence of the niche's shift magnitude in 

asymmetric time ranges modulated by climate change. The objectives of this study for these taxa 

were i) to analyze and quantify the current available area with habitat suitability models, and 

assess potential spatial changes projecting these conditions onto two temporal scenarios: Mid-

Holocene (~6000 years ago) and the 8.5 Representative Concentration Pathway greenhouse gas 

concentration (RCP8.5) for 2050; and ii) evaluate changes in the environmental space through n-

dimensional hypervolume analysis for the three species, the overall genus, and the three 

scenarios.

MATERIALS AND METHODS

Stgdied species and lncalities data

The genus Teius include three species that geographically range from 40° S in Argentina to 

Uruguay, Paraguay, and the southeastern region of Brazil and Bolivia at 16°40’ S (Cacciali et al., 

2016b,a). These species are relatively large and robust (~144 mm. snout-vent), diurnal, 

carnivorous and oviparous (Cei, 1993). Within this genus, T. oculaous and T. oeyou present a wide 
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distribution in different environments in Argentina, Uruguay, Paraguay and Brazil (Cacciali et al.,

2016a). Teius suquiensis has a restricted distribution in central Argentina that partially overlaps 

with the other two taxa (Cabrera & Monguillot, 2007).

We used 1037 georeferenced presence records (T. oculaous = 581; T. suquiensis = 52; T. 

oeyou = 404) from 675 localities. We obtained this information from the herpetological collection 

of reptiles (LJAMM-CNP) from Instituto Patagónico para el Estudio de los Ecosistemas 

Continentales - Centro Nacional Patagónico - CONICET (Puerto Madryn, Chubut, Argentina). 

Collections acronyms and voucher specimens are cited in Cacciali et al. (2016a). Species 

sampling, observations and collecting events tend to be clustered around accessible areas and 

roads. This may overestimate modeling results by including localities that are not spatially 

independent and do not present environmental variation between them (Dormann et al., 2012). 

For records with no exact or available geographic locations, we only incorporated them when it 

was possible to assign approximate coordinates according to the detailed descriptions of locations

as they appear in the museums records and literature.

Climate and envirnnmental data

We modeled habitat suitability for each species through a selection from the 19 bio-climatic 

variables for current conditions (~1950-2000) and included an altitude variable from the data 

base WorldClim 1.4 - Global Climate (http://www.worldclim.org). We projected current modeled 

conditions to BCC-CSM1-1 bioclimatic layers (PMIP2, 2009) for the Mid-Holocene scenario 

(~6000 years ago) and ACCESS1-0 CMIP5 (2015) layers for modeling 2050 scenarios with 

RCP8.5 concentrations. The layers for these temporal scenarios were downscaled and calibrated 

(bias corrected) by their authors through a database using WorldClim 1.4 as baseline 'current' 

climate (WorldClim - Global Climate Data, 2015). All used layers had a resolution of 30 arc-

seconds (~1 km2). The IPCC performs simulations of the climate system response to increasing 

levels of greenhouse gases based on different assumptions about the size of the projected 
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population, technological developments and socio-economic trends. The RCP8.5 scenarios 

projected relatively large changes based on the most recent observations, which suggested that 

climate change would be more severe than expected (Meehl et al., 2007; Rahmstorf et al., 2007; 

Smith et al., 2009).

We estimated the accessible area (M; sensu Barve et al., 2011) considering ecological traits, 

environmental features and potential historical distribution to generate an extent for each taxon. 

We initially considered the ecoregions as M, but many presence records were located on the edge 

of these regions, hence we defined M as a minimum convex polygon with an additional spatial 

buffer of 200 km for each species. Then, we used these extent sizes to clip the environmental 

layers and generated 5000 random points for each species, and we extracted the pixel values for 

each bio-climatic variable for both species from these random points and we used them to create 

a subset of variables. In order to obtain a representation of both types of climatic variables 

(Barbet-Massin & Jetz, 2014), we divided them in two groups: 1- precipitation and 2- 

temperature. We evaluated the number of variables to use implementing an initial Jackknife test 

(Pearson et al., 2006). Then, for each variable group we performed a Spearman correlation test 

(threshold selected > 0.75) to avoid collinearity (Debandi et al., 2012; Dormann et al., 2013; 

Kershaw et al., 2013) and additionally a selection criterion with biological significance for the 

studied species (Rissler & Apodaca, 2007; Debandi et al., 2012; Cacciali et al., 2016a) related to 

the active months period. We performed all correlation analysis with Ggally 1.0.1 R package 

(Schloerke et al., 2016).

Ecnlngical niche mndels (ENM)

We generated correlative models of ENM using MaxEnt (3.3.3k version; 2016) algorithm, which 

seeks maximum entropy density (Merow, Smith & Silander, 2013) through a robust estimation 

requiring only presence records (Phillips, Anderson & Schapire, 2006; Phillips & Dudík, 2008; 

Elith et al., 2011) and supports a low number of localities (Pearson et al., 2007; van Proosdij et 
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al., 2016). With this software, we calculated the relationship between the current presence of each

species and environmental variables, and projected them into the a past and future scenarios. We 

ran MaxEnt using the selected subset for each species of bio-climatic and altitude variables with 

the default configurations, except for: 10 replicates, 1000 Maximum iterations, “10 percentile 

training presence logistic threshold” as selected threshold for each average model.

We evaluated the ENMs performance with true skill statistic (TSS) for model’s replicates 

(Allouche, Tsoar & Kadmon, 2006; Lobo, Jiménez-Valverde & Real, 2008) and Area Under the 

Receiver Operator Curve (further abbreviated to AUC; Phillips, Anderson & Schapire, 2006; 

Elith et al., 2011) for the averaged models. TSS takes into account both omission and commission

errors and success as a result of random guessing, hence this evaluation model is not affected by 

prevalence and also is not affected by the size of the validation set (Allouche, Tsoar & Kadmon, 

2006). The TSS values ranges from −1 to +1, where +1 indicates perfect agreement and values of 

zero or less indicate a performance no better than random (Allouche, Tsoar & Kadmon, 2006). 

We considered these values as TSS model performance indicators: < 0.05 – 0.05 no agreement, 

0.06 - 0.39 = poor, 0.40 - 0.55 = fair, 0.56 - 0.70 = good, 0.71 - 0.85 = very good, 0.86 - 0.99 = 

excellent, 0.99 - 1 = perfect (following Monserud & Leemans, 1992). The AUC is a measure of 

rank-correlation and high AUC values indicates that sites with high predicted suitability values 

tend to be areas of known presence and locations, whereas a model with lower prediction values 

tend to be areas where the species is not known to be present (absent or a random point). An AUC

score of 0.5 means that the model is as good as a random guess. We considered AUC range 

values to interpret model performance sensu Araújo et al. (2005): excellent ≥ 0.90; good ≥ 0.80; 

fair ≥ 0.70; poor ≥ 0.60; fail ≤ 0.50. Finally, we created binary maps based on the selected 

threshold on the current average models and projected them to onto the Mid-Holocene and 2050 

RCP8.5 scenarios.

Gengraphic space, spatial analyses and pntential effects nn adeqgate areas
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We used the suitable habitat from the final output models to quantified the area for each species 

and scenario. From these surfaces, we calculated impact metric to estimate specific distribution 

changes of predicted suitable areas and the exposure to climate change per species and the overall

genus. We analyzed the relative exposure to climate change (Recc) between the current surface 

models (Cm) versus past (Pm) and future models (Fm) as: Recc = (Pm * 100 / Cm) – 100 and 

Recc = (Fm * 100 / Cm) – 100 respectively. Thus, high negative relative exposure values indicate

that a species decreases the suitable area in that scenario, whereas higher positive values indicate 

an increase of the suitable area. The estimation and comparison of areas to estimate changes in 

the different modeling scenarios is a widely implemented method in ENM (e.g., Nori et al., 2013;

Nori, Carrasco & Leynaud, 2014; Bonino et al., 2015; Rubio-Salcedo et al., 2016). This might be 

interpreted as a rigid and conservative estimate of changes from the predicted suitable areas, 

since we did not considered areas of recolonization after a potential disappearance of suitable 

environment. Given that there is almost no published literature on the spatial ecology of these 

species, our analyzes were based on the assumption that none of these lizards would be able to 

disperse to new potentially suitable areas within the time period of the model. These assumptions 

were considered due to lack of ecological information on its dispersal ability and adaptability to 

all the bio-climatic variables considered in the models. These kind of assumptions are commonly 

associated with forecasting modeling niche techniques (Araújo & Pearson, 2005; Elith & 

Leathwick, 2009).

We performed all spatial analyses and maps with “raster 2.5-2” (Hijmans, 2015b), “maptools

0.8-39” (Bivand & Lewin-Koh, 2016), “sp 1.2-2” (Pebesma & Bivand, 2016), “rgdal 1.1-7” 

(Bivand, Keitt & Rowlingson, 2016), “geosphere 1.5-1” (Hijmans, 2015a), “rgeos 0.3-17” 

(Bivand & Rundel, 2016) R packages.

Envirnnmental space and n - dimensinnal hypervnlgmes

We evaluated changes in the environmental space for each of the species considering 

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26560v1 | CC BY 4.0 Open Access | rec: 22 Feb 2018, publ: 22 Feb 2018



visualization results and metrics between the n - dimensional hypervolumes obtained from the 

geographic suitable outcome area for each of the model's scenarios. The environmental space 

state is a complex system that involves interactions for more than two variables and can be 

described as an n - dimensional cloud of points or an n - dimensional hypervolume (Soberón, 

Osorio-Olvera & Peterson, 2017). If these environmental space conditions are disturbed, it might 

lead these variables to take other values and to produce a different n - dimensional hypervolume; 

hence the comparison of two or more hypervolumes could provide an assessment of the 

magnitude of changes that the ecosystem suffered, such as shifts from the initial state (Blonder et 

al., 2014). In order to do this, we followed the “framework to study ecosystem stability in face of 

environmental changes using n - dimensional hypervolumes” (sensu, Barros et al., 2016). Within 

this framework, we calculated two metrics to made hypervolumes comparisons: 1- the proportion

of overlap between pre and post perturbation hypervolumes will reflect overall differences 

between the two corresponding states, 2- the distance between the centroids of the pre and post 

perturbation hypervolumes will reflect how much mean values of the ecosystem components 

have departed from their pre perturbation levels (changes in mean values) and 3- the contribution 

of the variables to each retained component.

To accomplish these analyses, we randomly sampled points (= number of localities * 10) 

from each of the species' suitable area, and we used these random points to extract the 

information from the sum of the individual layers employed in MaxEnt for each taxon. Then, all 

this environmental information for each species was compiled and we performed a Principal 

Component Analysis (PCA) per scenario, to quantify the ecological multivariate space from the 

variables that determine the geographic models, and explore how these spaces interacted among 

the three taxa through time. To improve the visualization of the points, we incorporated gridded 

ellipses including 95% of the observations for each factor level. We used "The Scree Test” and 

“Proportion of Variance Accounted For” criteria and components that explain a minimum of 
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~10% of the variation (O’Rourke & Hatcher, 2013), to decide how many PCA axes we had to 

consider for this analysis. For these given dimensions, we evaluated the variables’ contributions 

with the function “fviz_contrib”. This function calculates any row/column with a contribution 

above the reference threshold, under which it could be considered as an important variable in 

contributing to the n - dimensions taken into account (see, Kassambara & Mundt, 2017). We 

compared the hypervolumes implementing the algorithm “hypervolume_distance” which 

calculates the Euclidean distance between two hypervolumes centroids (see, Blonder, 2015).

We performed all environmental space analyses with “FactoMineR 1.34” (Lê, Josse & Husson, 

2008), “factoextra 1.0.4.999” (Kassambara & Mundt, 2017), “hypervolume 1.4.1” (Blonder, 

2015), “car 2.1-4” (Fox & Weisberg, 2011), “ade4 1.7-5” (Dray & Dufour, 2007), “rgl 0.96.0” 

(Adler & Murdoch, 2017) R packages.

RESULTS

ENM, spatial analyses and pntential tempnral shifts in sgitable areas

Considering the bio-climatic correlation analysis outcome, we selected altitude and these 

environmental variables for each species: Teius oculaous: bio1 (annual mean temperature), bio3 

(Isothermality = (bio2 / bio7 * 100), bio5 (maximum temperature of warmest month), bio7 

(temperature annual range = bio5–bio6), bio9 (mean temperature of driest quarter), bio17 

(precipitation of driest quarter), bio18 (precipitation of warmest quarter); T. suquiensis: bio2 

(mean diurnal range = (mean of monthly (maximum temp – minimum temp)), bio3, bio4 

(temperature seasonality = (standard deviation*100)), bio5, bio6 (minimum temperature of 

coldest month), bio15 (precipitation of seasonality = (coefficient of variation)), bio18; T. oeyou: 

bio2, bio3, bio4, bio5, bio15, bio17, bio18. The replicates performance through TSS indicated 

models fitted above “fair” or “good”, with relatively high values for most of the replicates in the 

three species (Fig. S.1, supporting information). The average test AUC for replicate runs for 
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Teius oculaous was 0.763 (± 0.028 SD), 0.922 (± 0.043 SD) for T. suquiensis, and 0.797 (± 0.028 

SD) for T. oeyou.

The suitable climate area in Present scenario was 748,911.98 km2 for Teius oculaous, 

104,209.16 km2 for T. suquiensis and 926,690.31 km2 for T. oeyou (Fig. 1). The Recc for T. 

oculaous Mid-Holocene scenario suitable area showed a reduction of 29.5 % and 9.30 % for 2050

RCP8.5 (Fig. 1); but T. oeyou Recc presented a moderate decrease in both past and future 

scenarios with a reduction of 6.82 % and 0.79 % respectively (Table 1, Fig. 1). The Mid-

Holocene models Recc for T. suquiensis indicated a 26 % higher suitable area than the Present 

scenario and a reduction of 37.58 % for 2050 RCP8.5 (Table 1, Fig. 1). All species did not show 

future considerable differences in changes of latitude or longitude (Fig. 1). The relative exposure 

to climate change (Recc) for different scenarios and suitable area shifts for Teius are detailed in 

Table 1.

Envirnnmental space

We observed changes in the environmental space for all the studied species. Principal component 

analysis indicated that most of the hypervolumes variation could be explained by the first three 

components for the 3 studied scenarios. The first three axes accounted for all scenarios a variance

over 86% of the variation for each temporal scenario (Table 2). The variables that most 

contributed in Mid-Holocene and Present were BIO6, BIO7 and BIO 4 for PC1; BIO17, BIO1, 

BIO15 and BIO5 for PC2; and BIO3, BIO5, and altitude for PC3. For the 2050 scenario the 

variables with higher contribution for PC1 were BIO7, BIO9, BIO4, BIO6; for PC2 BIO, BIO17, 

BIO15; and altitude, BIO5 for PC3 (Fig. 2). The hypervolumen distance for T. oculaous from the 

Present scenario to the Mid-Holocene = 67.80 and to the 2050 = 309.10; for T. oeyou to the Mid-

Holocene = 95.67 and for the 2050 = 442.67; and for T. suquiensis to the Mid-Holocene = 275.57

and to the 2050 = 248.07. These changes in the ellipses for each of the analyzed angles (Fig. 3), 

were moderate between the Mid-Holocene and the Present scenario. On the other hand, the 
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ellipses of the Present and 2050 scenarios showed considerable changes between them, especially

for T. oeyou and T. suquiensis (Fig. 3).

DISCUSSION

We found strong support for Grinnellian niche shifts in the past and future scenarios for Teius 

species. The geographic space from an ENM does not exclusively underlie on abiotic variables 

and, on the contrary there are several factors that determine it (Peterson et al., 2005; Soberón & 

Peterson, 2005). Despite this, the Grinnellian niche is a good approach to study the relationship 

between climatic changes and areas suitable for the species’ presence without introducing biases 

of non-climatic aspects (Larson, Olden & Usio, 2010; Chalghaf et al., 2016). Our results, in 

congruence with other published works related to climate change in lizards (Ballesteros-Barrera, 

MartÍnez-Meyer & Gadsden, 2007; Kaliontzopoulou et al., 2008; Winck, Almeida-Santos & 

Rocha, 2014) and amphibians (Lemes, Melo & Loyola, 2014; Zank et al., 2014; Vasconcelos & 

Do Nascimento, 2016), showed a general tendency toward a higher potentially adequate habitat 

in the past scenario (Fontanella et al., 2012; Sillero & Carretero, 2013; Breitman et al., 2015) and 

a reduction for the future (Araújo, Thuiller & Pearson, 2006; Bonino et al., 2015; Minoli & Avila,

2017).

Although the studied genus inhabits environments from a wide geographic space, our 

findings supported the hypothesis that the suitable area changes as the result of exposure to 

climate change (Vera-Escalona et al., 2012; Minoli & Avila, 2017). Comparing the spatial 

forecasts among the studied species, T. oeyou and T. oculaous showed less reduction of their 

potential future area than T. suquiensis, which presented high Recc values resulting in a major 

reduction of the potential future area. In addition, these findings support the theoretical 

framework which states that each species has its own niche area (Medina, Ponssa & Aráoz, 2016)

and magnitude of response to potential changes in their Grinnellian niche (Colwell & Rangel, 
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2009; Soberón & Nakamura, 2009). Although the differences between the results may be due to 

possible sampling bias (Syfert, Smith & Coomes, 2013), the distribution employed here is the 

complete currently known for the genus.

Spatial barriers in reptiles (Sahlean et al., 2014) and potential changes in the distribution of 

suitable areas and their inter-species overlaps (Barbosa et al., 2012), have been extensively 

documented and related to hypotheses about hybridization events as a consequence of this 

phenomenon (Engler et al., 2013; Ahmadzadeh et al., 2013). The most important finding in the 

geographic context, were the changes in the potential suitable habitat of the T. suquiensis, which 

currently has a broader distribution range. This parthenogenetic species showed significantely 

changes in both  geographically and ecological space with a noticeable tendency towards the 

reduction of adequate area through temporal scenarios (Fig. 1, Fig. 3, see supplementary files). 

Our results support that this species showed the greatest decrease of potentially suitable areas for 

the future, and even the suitable northern sector for the present model would disappear in the 

future scenario. The unisexual  species could arise from hybrid individuals and they are from a 

recent origen, perhaps within ten thousands of years (Moritz et al., 1992). The unisexual species 

would be expected to have a shorter persistence than sexual species, and to colonize and occupy 

ecotone habitats more quickly compared with their sexual relatives (Pough et al., 2015). 

Moreover, potential contractions for the species’s suitable areas should be taken with great 

attention as there are multiple factors (e.g., anthropic changes, such as oil extraction, cultivated 

soils, dams, desertification) that could play a decisive role increase the effects to materialize these

shifts (Bastos, Araújo & Silva, 2005; Nori et al., 2013). We consider that new field surveys are 

needed because this is one of the sectors that would be lost in the 2050 scenarios.

The limited knowledge of these species’ dispersion or fossil records combined with the great

fragmentation and degradation of the environments they inhabit (Pelegrin et al., 2009, 2013; 

Pelegrin & Bucher, 2012), leads us to think that some of the suitable climate spaces predicted in 
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our results for temporal scenarios remains uncertain whether they can be occupied or not (Araújo 

& New, 2007; Colwell & Rangel, 2009). Despite this, past or future impacts of climate change 

keep a moderate uncertainty level being influenced by interactions and effects of biotic, abiotic, 

and dispersal considerations (Townsend Peterson, Papeş & Soberón, 2016), the robustness of the 

models presented here were supported by the definition of the segment (i.e., Grinnelian) of the 

niche studied (Soberón, Osorio-Olvera & Peterson, 2017) and by the use of open algorithms 

which explains in detail their calculations (Phillips et al., 2017). These constraints of employed 

models could be mitigated and provide accurate forecasts of the lost-gain of the suitable 

geographic and climate spaces with a good sample of species presences and correct 

methodological choices, which increase the certainty of the predictions (Radosavljevic & 

Anderson, 2014).

CONCLUSIONS

In the last two decades several authors have done review works of ENM concepts (Soberón & 

Nakamura, 2009; Rangel & Loyola, 2012; Townsend Peterson & Soberón, 2012; McInerny & 

Etienne, 2012a,b,c), advantages and disadvantages of correlative, mechanistic and process-

oriented models (Rangel & Loyola, 2012). Moreover, some authors propose blurry boundaries 

among these approaches (Dormann et al., 2012), and consider that these three approaches do 

overlap and interconnect (e.g., correlational niche estimates being used in process-oriented 

approaches). The additional advantages of using correlative models that we have implemented is 

to analyze a wider range of dimensions that define the niche the study object, but the biggest 

disadvantage is not being able to evaluate physiological thresholds as mechanistic models 

(Townsend Peterson, Papeş & Soberón, 2016). Until present, there have been numerous 

publications that used ENM as a tool to predict temporal changes in the distribution of suitable 

environments in the geographic space and projected them onto another scenarios (Schwartz, 

2012; Lemes, Melo & Loyola, 2014; Ruete & Leynaud, 2015; Jones et al., 2016; Allen & 
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Lendemer, 2016). However, the future challenge in these studies should be to perform methods or

analyses with very detailed explanations in order to be repeatable in both geographical and 

ecological space to also obtain quantified results on how and how much the climate change 

affects species’ distribution.

The information provided in this work highlights the importance of potential distribution in 

the geographic and ecological spaces as tools to better understand the processes linked to recent 

species contractions and expansions at the regional and local context. The information provided 

here also allows adding testable data for the use of some species as proxies for climatic changes 

in the past and in the future. Moreover, understanding the processes that are behind this kind of 

phenomenon in such a wide area of South America, is essential to understand biota changes 

through time in this subcontinent.
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Figure 1

Area models for suitability habitat from the averaged replications output.

Teius oculatus in blue, T. suquiensis in red, T. teyou in green and all the genus. Projection:

WGS84, coordinate system: EPSG 4326. Crosses represent localities from each species.
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Figure 2

Barplot of variables contribution for the multivariate environmental space

Reference: dashed line corresponds to the expected value if the contribution where uniform

between the considered dimensions.
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Figure 3

Changes of the environmental space in a multivariate context from the Teius studied

scenarios

References: A) environmental space in a 0° degree view; B) environmental space in a 37°

degree view; C) environmental space in a 74° degree view; D) environmental space in a 111°

degree view. Colors: blue: T. oculatus; green: T. teyou and red: T. suquiensis.
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Table 1(on next page)

Spatial analysis performed on output models for each time scenario.

References: % relative exposure to climate change (Recc) from present area.
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Area (km2)

Scenarios Teius % T. oculatus % T. suquiensis % T. teyou %

Mid-Holocene 1,7174,23.23 -12.48 748,911.98 -29.55 104,209.16 26.00 926,690.31 -6.82

Present 1,962,427.11 - 1,063,106.79 - 82,708.09 - 994,568.05 -

2050 1,892,090.42 -3.58 964,195.47 -9.30 51,624.04 -37.58 986,697.77 -0.79
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Table 2(on next page)

Analysis of the environmental space.

Principal Component Analysis of the environmental space for each temporal scenario.
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Holocene

Axis Eigenvalue Variance % Cumulative Variance %

PC 1 5.62 46.80 46.80

PC 2 3.62 30.20 77.00

PC 3 1.11 9.21 86.21

Present

Axis Eigenvalue Variance % Cumulative Variance %

PC 1 6.10 50.84 50.84

PC 2 3.16 26.34 77.18

PC 3 1.24 10.36 87.55

Future

Axis Eigenvalue Variance % Cumulative Variance %

PC 1 6.13 51.07 51.07

PC 2 3.19 26.59 77.66

PC 3 1.15 9.56 87.23
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