Peer Preprints

1	Sponge and coral communities of potential mineral resources in the deep-sea:
2	an overview
3	
4	Tina Molodtsova ¹ , Christopher Kelley ² , Lénaick Menot ³ , Les Watling ⁴
5	
6	¹ P.P. Shirshov Institute of Oceanology RAS; 36 Nakhimovsky prospect, Moscow 117997,
7	Russia; tina@ocean.ru
8	² Hawaii Undersea Research Laboratory, School of Ocean and Earth Science and Technology,
9	University of Hawaii at Manoa, Honolulu, HI 96822, USA
10	³ Laboratoire Environnement Profond, Ifremer, Centre de Bretagne, 29280 Plouzané, France
11	⁴ Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
12	
13	Depletion of commercially valuable minerals on land and increased need of such resources for
14	modern electronics and manufacturing is attracting more and more attention to deep-sea mineral
15	deposits such as cobalt crusts, manganese nodules, phosphorites, polymetallic sulfides and even
16	deep-sea ooze. In a few years we expect intensive exploitation in the deep-sea. Being suspension-
17	feeders, corals and sponges associated with hard substrata in potential mining sites would be
18	adversely impacted by deep-sea mining. Deep-sea corals and sponges are characterized by
19	extremely slow growth rates and, as can be seen from fishery impacts, they may take decades to
20	centuries to restore. At the same time, they serve as a substrate, shelter and food for a number of
21	associated deep-sea organisms, thus increasing the cumulative impact of their loss. We
22	summarize here the available data on coral and sponge communities of solid deep-sea ore
23	deposits and possible mechanisms driving their diversity.
24	
25	Keywords: deep sea, corals, sponges, mineral resources, mining
26	
27	Short Description: An overview of coral and sponge communities inhabiting solid deep-sea ore

28 deposits