Increased prenatal brain growth in a transgenic mouse model decreases cranial development: An expensive tissue hypothesis for the skull

Elisabeth K N López $^{\rm Corresp., \ 1}$, Matthew J Ravosa 2

¹ Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York City, New York, United States

² Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, Indiana, United States

Corresponding Author: Elisabeth K N López Email address: el95@nyu.edu

In vertebrates, it has been argued that the development and evolution of an enlarged brain requires an increased basal metabolic rate or a compensatory reduction in the resources devoted to the formation of other metabolically costly tissues, leading to a reduction in the size of such organs. While the latter scenario is indirectly supported by comparative data, especially in primates, this inherently ontogenetic phenomenon has not been addressed in a mechanistic framework.

Our experimental study investigates the relationship between brain growth and cranial development in ßcatenin transgenic mice with remarkably increased levels of prenatal neurogenesis. To evaluate associated changes in skull form and control for variation in maternal resources among mouse litters, we directly compare data from transgenic and wild-type littermates. Ossification patterns in the limbs and skull were also analyzed to control for within-subject variation in skeletal formation. Transgenic mice, with relatively larger brains, are characterized by a corresponding decrease in the degree of cranial ossification for a given age, in contrast to the presence of similar rates of postcranial ossification between transgenic and wild-type mice. This disparity is most pronounced in the neurocranial vault, which is supplied by a greater number of vessels in common with the brain than the facial skull.

Mice with relatively larger brains had a decrease in cranial ossification. As modern humans are more encephalized than living apes and most extinct hominids, our findings provide unique insights into hominid evolution, particularly the "expensive tissue hypothesis" regarding energetic tradeoffs during neural and cranial development.

Increased Prenatal Brain Growth in a Transgenic Mouse Model Decreases

Cranial Development: An Expensive Tissue Hypothesis for the Skull

Elisabeth K. N. López^a and Matthew J. Ravosa^b

- a. Department of Basic Science and Craniofacial Biology New York University College of Dentistry New York, NY USA
- b. Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology University of Notre Dame Notre Dame, Indiana USA

Corresponding author: Elisabeth K. N. López Email address: el95@nyu.edu

Key Words: encephalization; relative brain size; prenatal; transgenic; mouse

ABSTRACT

1

2

In vertebrates, it has been argued that the development and evolution of an enlarged brain requires an increased basal metabolic rate or a compensatory reduction in the resources devoted to the formation of other metabolically costly tissues, leading to a reduction in the size of such organs. While the latter scenario is indirectly supported by comparative data, especially in primates, this inherently ontogenetic phenomenon has not been addressed in a mechanistic framework.

9 Our experimental study investigates the relationship between brain growth and cranial 10 development in B-catenin transgenic mice with remarkably increased levels of prenatal 11 neurogenesis. To evaluate associated changes in skull form and control for variation in maternal 12 resources among mouse litters, we directly compare data from transgenic and wild-type littermates. Ossification patterns in the limbs and skull were also analyzed to control for within-13 14 subject variation in skeletal formation. Transgenic mice, with relatively larger brains, are 15 characterized by a corresponding decrease in the degree of cranial ossification for a given age, in 16 contrast to the presence of similar rates of postcranial ossification between transgenic and wild-17 type mice. This disparity is most pronounced in the neurocranial vault, which is supplied by a greater number of vessels in common with the brain than the facial skull. 18

Mice with relatively larger brains had a decrease in cranial ossification. As modern humans are more encephalized than living apes and most extinct hominids, our findings provide unique insights into hominid evolution, particularly the "expensive tissue hypothesis" regarding energetic tradeoffs during neural and cranial development.

23

4
 т.

INTRODUCTION

25

26 The growth and maintenance of a metabolically costly organ, such as the brain, cannot be 27 accomplished without a compensatory increase in resting metabolic rate, greater energy 28 investment during prenatal growth by the mother (in placental mammals), or a decrease in the 29 size and requirements of other "expensive" organ(s), including the digestive tract, musculature, 30 or fat stores. Interspecific studies of adult vertebrates have supported evidence of this last trend in mammals, birds, and fish (Martin, 1981; Aiello and Wheeler, 1995; Martin, 1996; Wrangham 31 32 et al., 1999; Aiello et al., 2001; Fish and Lockwood, 2003; Kaufman et al., 2003; Isler and van 33 Schaik, 2006a,b, 2009; Barrickman and Lin, 2010; Navarrete et al., 2011; Kotrschal et al., 2013; 34 Pontzer et al., 2014; Pontzer et al., 2016). For instance, the costs of increased encephalization in 35 primates and fish are offset via reduced gut mass (Kaufman et al., 2003), while birds experience 36 a trade-off between brain and locomotor muscle mass (Isler and van Schaik, 2006a). Notably, 37 fish populations that were selected for increased relative brain size developed smaller guts 38 (Kotrschal et al., 2013).

39 The energy demands of brain growth may also affect gestation length. Humans are born 40 with brains that are relatively smaller and less developed than other primate newborns (DeSilva 41 and Lesnik, 2006), and the length of the gestation period might be constrained by maternal 42 metabolic rate and energy supply (Dunsworth et al., 2012). In addition to gestation, growth in 43 childhood is also constrained by the energy demands of the brain. The brain's metabolic 44 requirements are exceptionally high during childhood, and increases in the amount of energy 45 used by the brain are linked to periods of slower growth in overall body size (Kuzawa et al. 46 2014).

47 Perhaps nowhere has such an argument gained considerable traction than in the study of 48 human evolution, where the "expensive tissue hypothesis" has sought to explain the energetic 49 trade offs during growth associated with increased relative brain size (Aiello and Wheeler, 1995; 50 Aiello et al., 2001). Indeed, elevated levels of encephalization have long been posited to 51 underlie a suite of features unique to the hominid skull, such as a flexed basicranium, a globular 52 cranial vault, and a short orthognathic face (e.g., Ross and Ravosa, 1993; Ross and Henneberg, 53 1995; Enlow, 1996; Lieberman et al., 2004, 2008). Although these explanations are inherently 54 mechanistic in nature, prior analyses regarding the morphological and especially metabolic 55 correlates of greater encephalization have instead largely relied on comparative data, which can 56 only at best indirectly address such important and longstanding questions. More recent studies, 57 on the other hand, have directly measured the metabolic requirements of the brain and the total 58 energy expenditure of the body (Kuzawa et al., 2014; Pontzer et al., 2014, 2016). They suggest 59 that humans do, in fact, have a higher metabolic rate than expected for a primate of a similar 60 size. Moreover, decreases in the size of the gut and locomotor efficiency have allowed for 61 greater energy allocation to brain growth and maintenance, while minimizing increases in basal 62 metabolic rate and total energy expenditure (Pontzer et al., 2016).

Here, we directly examine the influence of elevated prenatal neural development in a
transgenic mouse model of encephalization (*Mus musculus*). Via targeted insertion of a
transgene encoding a degradation-resistant form of β-catenin into neuronal progenitor cells, βcatenin transgenic mice develop enlarged brains, especially the surface area of the cerebral
cortex, due to an increase in the number of proliferating neural precursor cells (Chenn and
Walsh, 2002, 2003). Comparison of these transgenic mice to wild-type littermates for measures

69	of brain and body size as well as ossification levels in the skull and forelimb yields unique data
70	regarding the prenatal correlates of increased encephalization.
71	
72	MATERIALS AND METHODS
73	
74	Samples
75	The transgenic mice used have a constituently activated ß-catenin protein expressed in their
76	central nervous system progenitor cells (Chenn and Walsh, 2002, 2003). An activated ß-catenin
77	protein in the developing central nervous system results in an increase in the number of neural
78	stem cells, ultimately resulting in a relatively larger brain among the transgenic mice. The use of
79	these animals was approved by the Institutional Animal Care and Use Committee (IACUC) of
80	Northwestern University.
81	This study examines wild-type and transgenic mice at E16.5, E17.5, and as neonates (P0).
82	Sample sizes in each age cohort are as follows: E16.5, 14 wild-type and 13 transgenic; E17.5, 9
83	wild-type and 2 transgenic; P0, 11 wild-type and 13 transgenic. Body mass and crown-rump
84	length were measured (to the nearest gram and millimeter, respectively), then the head and one
85	forelimb from each specimen were fixed in paraformaldehyde. The wild-type and transgenic
86	mice are otherwise genetically similar to their littermates. A subset of specimens was imaged
87	using microCT and MRI. See Table 1 for a list of all measurements obtained. The use of
88	littermate comparisons allows us to control for in utero variation in the effects of maternal
89	resources, whereas analyses of ossification data from the limbs and cranium for each specimen
90	allows us to evaluate within-individual variation in resource allocation.
91	

~	~
u	')
- 7	

Measuring Ossification

93 The forelimbs of 23 mice and the heads of 29 mice were imaged using a Scanco Medical 94 MicroCT 40 system. The amount of mineralized tissue in the skull and forelimb was recorded, as 95 was the length of the humerus. The total bone volume of the forelimb was measured as the 96 amount of mineralized tissue above the threshold value of 160 for E17.5 and P0 mice and 130 for 97 E16.5 mice; the total bone volume of the skull was measured as the amount of mineralized tissue 98 above the threshold value of 120. See López et al. (2008) for the determination of threshold 99 levels. The length of the humerus was measured from the microCT images in E17.5 and P0 mice 100 by measuring the length in the midline of the visible bone on the slice midway through the 101 humerus. There was not enough mineralized bone to accurately measure humeral length at 102 E16.5. 103 **Measuring Brain Size** 104 Heads of mice were imaged on a Bruker 14.1 T MR microimager. T2-weighted MR 105 images were obtained using a 3D rapid acquisition with relaxation-enhancement (RARE) pulse 106 sequence using the following parameters: TR/effective TE = 3000 ms/60 ms, 2 averages, RARE

107 factor (echo train length) = 8, field of view = 14 mm x 14 mm x 8 mm, and image matrix = 256 x

108 256 x150. This yielded a voxel size of 55 x 55 x 53 mm.

Brain volume was estimated by measuring the area of the brain in every sixth sagittal slice using the software program ImageJ, adding the areas, then multiplying by the distance between the slices (6 x 0.053 mm). Relative brain size was calculated relative to basicranial length.

113

114

115	RESULTS
116	
117	Cranial Morphology
118	As would be expected from the action of the transgene, at all ages ß-catenin transgenic
119	mice had significantly larger brains than did their wild-type counterparts, both absolutely and
120	relative to basicranial length (Table 2). At each age, the average size of the brain in transgenic
121	mice was more than double that for wild-type mice (Table 2). In addition to enlarged brains,
122	transgenic mice also exhibited longer and wider cranial vaults, shorter and wider faces, and
123	longer cribriform plates as compared to wild-type mice. Their basicrania were more ventrally
124	flexed at the angle between the basisphenoid and basioccipital bones and where the cribriform
125	plate meets the rest of the cranial base (López et al., 2008; López, 2011). These findings mirror
126	those for interspecific comparisons of primates that vary in encephalization (e.g., Ross and
127	Ravosa, 1993).
128	Somatic and Postcranial Development
129	In contrast to the skull, ß-catenin transgenic mice were not significantly different from
130	wild-type littermates in body mass or crown-rump length at E16.5, E17.5, or P0 (Table 2, Figure
131	1). Wild-type and transgenic mice also had similar amounts of ossified bone in the forelimb and
132	did not differ in humerus length (Table 2, Figure 1). These results suggest that the presence of
133	the transgene had no effect on overall somatic development or postcranial ossification.
134	Cranial Ossification
135	Cranial ossification varied from litter to litter (Figure 2). At the three ages where wild-
136	type and transgenic mice were compared controlling for litter, transgenic mice always developed
137	reduced levels of ossification relative to their wild-type littermates. The wild-type and transgenic

138 mice showed similar patterns of variation by litter. The Spearman rank correlation for median 139 cranial ossification of wild-type and transgenic mice within each litter is r = 1, indicating that 140 ossification levels varied by litter identically in the two groups of mice. Furthermore, Levene's 141 tests of equality of variances showed that the wild-type and transgenic mice did not differ in the 142 variance of their cranial ossification at any age (E16.5: F = 0.40, p = 0.548; E17.5: not enough data to test; P0: F = 0.13, p = 0.728). Brain size varied in a similar way: the Spearman rank 143 144 correlation of median brain size in wild-type and transgenic mice (paired by litter) was also r = 1, 145 and the variances of wild-type and transgenic mice did not differ significantly (E16.5: F = 2.78, p 146 = 0.139; E17.5: F = 0.98, p = 0.427; P0: F = 0.94, p = 0.353). Interestingly, variation across 147 litters may be due to differences in maternal energy supply and investment in fetal growth, as 148 suggested in a recent comparative study of human altriciality (Dunsworth et al., 2012).

The difference in cranial ossification in wild-type and transgenic mice was particularly marked in newborns (Table 2). In general, transgenic mice exhibited lower ossification in the bones of the cranial vault, a slighter decrease in ossification of facial elements, and similar amounts of ossification of the basicranium as their wild-type littermates (Figure 3).

153 Controlling for age, partial correlations were calculated between cranial ossification and 154 brain size relative to basic anial length. The amount of cranial ossification was significantly 155 negatively correlated with relative brain size (r = -0.57, p = 0.008). Ossification in the forelimb was not correlated with relative brain size (r = 0.44, p = 0.171). The negative correlation of 156 157 cranial ossification and relative brain size contrasted with the positive (but non-significant) 158 correlation of post-cranial ossification and relative brain size suggests that the growth of the 159 brain might constrain cranial development, but that the effects of increased brain size are 160 confined to the cranial region.

161	DISCUSSION
162	
163	An Expensive Tissue Hypothesis for the Skull?
164	The "expensive-tissue hypothesis" (Aiello and Wheeler, 1995; Aiello et al., 2001) states
165	that the evolution of a more encephalized brain, a metabolically expensive organ, is compensated
166	by a reduction in size of the gut, and facilitated in humans via food processing and cooking. By
167	lessening overall somatic energetic demands via a disproportionately smaller gastrointestinal
168	tract, primates have evolved a relatively larger brain without a corresponding increase in basal
169	metabolic rate. Analyses of ß-catenin transgenic mice support such a mechanistic assertion
170	regarding ontogenetic increases in brain development occurring at the expense of other organs
171	and tissues.
172	On one hand, the transgene affecting prenatal neurogenesis does not appear to alter the
173	amount of nourishment available to prenatal mice, i.e., the mother does not over-express ß-
174	catenin and the transgene does not affect placental growth. Thus, one can infer that wild-type
175	and transgenic mice in the same litter receive similar maternal resources. This interpretation is
176	consistent with the presence, in age-controlled comparisons, of similar body sizes and rates of
177	forelimb ossification between transgenic and wild-type mice.
178	On the other hand, compared to age-matched wild-type forms, ß-catenin transgenic mice
179	develop much greater encephalization and markedly lower rates of craniofacial ossification. The
180	latter disparity characterizes bones of the cranial vault and, to a lesser extent, the facial skull
181	(e.g., newborns in Figure 3). It is tempting to contrast the reduced osteogenesis of the vault and
182	face, which occurs largely via intramembranous ossification, with the normal development of the

183 basicranium, which ossifies endochondrally, to embryological factors. However, there is no

184 evidence that the B-catenin transgene affects skeletal formation as its effects are confined to the 185 central nervous system (López, 2011). Moreover, although data on gut mass or postcranial 186 muscle mass are not available for these specimens, the lack of differences between transgenic 187 and wild-type mice in postcranial ossification and body size suggests that such tissues are 188 unaffected. In contrast, the fact that most nutrients to the brain, face and associated hard tissues 189 travel via branches of the common carotid artery suggests a phenomenon consistent with the 190 "expensive tissue hypothesis," whereby similar levels of finite cranial resources are differentially 191 allocated to neural, vs. skull, development in the transgenic mice.

192 There is evidence from the clinical literature to support this assertion regarding the nature 193 of cranial variation between wild-type and transgenic mice. In developing humans as well as 194 mammal experimental models, individuals with compromised vasculature, and correspondingly 195 reduced nutrient flow, experience underdeveloped craniofacial structures (Robinson et al., 1987; 196 Escobar and Liechty, 1998). In the case of the highly encephalized mice, as all observed skeletal 197 differences during ontogeny are restricted to the head, the presence of relatively smaller bony 198 elements can be used to infer ontogenetic reductions in resource allocation. Therefore, in order 199 to develop an enlarged brain in the presence of a finite energy supply, differentially greater 200 resources are diverted for the process of neurogenesis, with corresponding decreases in nutrient 201 levels supplied to developing hard tissues of the cranial vault and facial skull.

We found that both wild-type and transgenic mice showed identical patterns of variation in brain size and ossification across litters, suggesting differences in maternal investment in entire litters of mice. It is noteworthy that constraints on maternal investment can affect fetal growth, birth size, and even health during adulthood (Barker, 1997; Gluckman and Hanson, 2004; Dunsworth et al., 2012).

207 Although much attention has been devoted to the link between maternal resources and 208 brain size and relative gut size and encephalization, increased demands of a growing brain may 209 likewise constrain the formation of cranial elements. This alternative mechanism of achieving an 210 energetic trade off between increased prenatal brain growth and the rate of cranial ossification 211 might result in heterochronic alterations in patterns of skull development among sister taxa. 212 Indeed, subtle osteogenic changes during prenatal development, when the majority of brain 213 growth occurs, can greatly affect adult cranial form. For instance, morphological differences, 214 even between close relatives such as modern humans and Neanderthals, appear to arise very 215 early in ontogeny (Ponce de Leon and Zollikofer, 2001; Ackermann and Krovitz, 2002; Bastir et al., 2007). 216

217 An alternative explanation for the decrease in cranial ossification may be changes in the 218 tissue interactions that are normally found in the developing head. Cranial development in 219 mammals is governed by a complex set of tissue interactions among the brain, dura mater, and 220 surrounding bones (Greenwald et al., 2000; Opperman, 2000; Warren and Longaker, 2001; Jiang 221 et al., 2002; Spector et al., 2002; Fong et al., 2003; Ravosa et al., 2016; Franks et al., 2017). If brain expansion in the transgenic mice similarly affects the growth of the dura mater, changes in 222 223 dural mechanobiology could in turn alter skull ontogeny. However, as load-induced dura 224 signalling appears to be largely pro-osteogenic (Spector et al., 2002; Fong et al., 2003), the 225 'expensive tissue hypothesis' remains the best mechanism to explain the lower rate of cranial 226 ossification observed in our encephalized transgenic mice.

227

228

^	2	n
L	L	9

CONCLUSIONS

230

231	It has long been argued that the growth and maintenance of an enlarged brain requires
232	some compensatory mechanism on the part of an organism such as an increased resting
233	metabolic rate, increased maternal investment, or a decrease in the size of other metabolically
234	expensive organs/tissues (Martin, 1981; Aiello and Wheeler, 1995; Martin, 1996; Wrangham et
235	al., 1999; Aiello et al., 2001; Fish and Lockwood, 2003; Kaufman et al., 2003; Isler and van
236	Schaik, 2006a,b, 2009; Barrickman and Lin, 2010; Navarrete et al., 2011; Kotrschal et al., 2013;
237	Pontzer et al., 2014; Pontzer et al., 2016). Support for such arguments regarding somatic
238	resource allocation have been substantiated by comparative and experimental data, but little
239	evidence related to prenatal development. Using a transgenic mouse model of neurogenesis, we
240	were able to address the issue of energetic trade offs more directly, demonstrating a causal link
241	between decreased cranial ossification and greater encephalization. This disparity between wild-
242	type and transgenic mice suggests that, if other life history parameters are held constant,
243	development of a metabolically costly structure such as the brain may occur at the expense of the
244	formation of other craniofacial structures. We also demonstrated the presence of maternal
245	effects on variation in brain size and ossification across litters, which is of great significance for
246	studies that emphasize such factors (Martin, 1996; Dunsworth 2012). In light of these results, it
247	would be interesting to examine other animal models of altered brain size (e.g., the
248	megencephaly mouse; Donahue et al., 1996) to determine if cranial ossification is similarly
249	changed in those animals.
250	While mice commentive studies have successful that the mouth of the cost mintertinel

While prior comparative studies have suggested that the growth of the gastrointestinaltract has been offset so as to favor an enlarged brain, ontogenetic analyses herein provide

252	evidence about the existence of additional such mechanisms. Moreover, these findings highlight
253	a novel alternative means of achieving such an energetic exchange during growth, with
254	significant implications for understanding reduced prenatal rates of ossification in cranial
255	elements. Although it may be the case that gut size has decreased to accommodate an
256	encephalized brain in primates, our study indicates that there are multiple biological solutions to
257	facilitate the development and evolution of a metabolically expensive tissue such as the brain.
258	
259	ACKNOWLEDGMENTS
260	
261	We thank A. Chenn and M. Taketo for access to specimens, S. Stock for the use of a Scanco
262	MicroCT, and P.N. Venkatasubramanian and A. Wyrwicz for help with MRI experiments.
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	

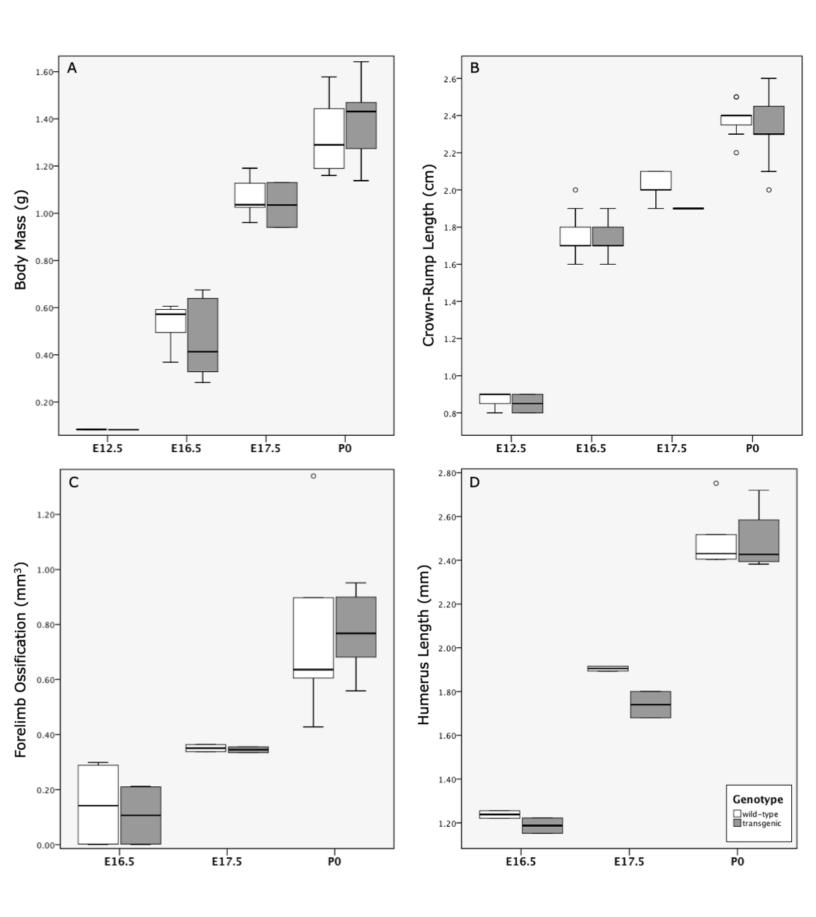
274	REFERENCES
275	
276	Ackermann RR, Krovitz GE. 2002. Common patterns of facial ontogeny in the hominid lineage.
277	The Anatomical Record 269:142-147.
278	Aiello LC, Wheeler P. 1995. The expensive-tissue hypothesis: the brain and the digestive system
279	in human and primate evolution. Current Anthropology 36:199-221.
280	Aiello LC, Bates N, Joffe T. 2001. In defence of the expensive tissue hypothesis. In: Falk D,
281	Gibson KR, eds. Evolutionary Anatomy of the Primate Cerebral Cortex. Cambridge:
282	Cambridge University Press, 57-78.
283	Barker DJ. 1997. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13:807-
284	813.
285	Barrickman NL, Lin MJ. 2010. Encephalization, expensive tissues, and energetics: An
286	examination of the relative costs of brain size in strepsirrhines. American Journal of
287	Physical Anthropology 143:579-590.
288	Bastir M, O'Higgins P, Rosas A. 2007. Facial ontogeny in Neanderthals and modern humans.
289	The Proceedings of the Royal Society B - Biological Sciences 274:1125-1132.
290	Chenn A, Walsh CA. 2002. Regulation of cerebral cortical size by control of cell cycle exit in
291	neural precursors. Science 297:365-369.
292	Chenn A, Walsh CA. 2003. Increased neuronal production, enlarged forebrains and
293	cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cerebral
294	<i>Cortex</i> 13:599-606.
295	DeSilva J, Lesnik J. 2006. Chimpanzee neonatal brain size: Implications for brain growth in
296	Homo erectus. Journal of Human Evolution 51:207-212.

 mouse mutation of chromosome 6 that causes hypertrophy of the brain. <i>Mammalian</i> <i>Genome</i> 7:871-876. Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. 2012. Metabolic hypothes human altriciality. <i>Proceedings of the National Academy of Sciences USA</i> 109:15212 15216. Enlow DH. 1996. <i>Handbook of Facial Growth</i>. 2nd Edition. Philadelphia: Saunders. Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria 		
 <i>Genome</i> 7:871-876. Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. 2012. Metabolic hypothes: human altriciality. <i>Proceedings of the National Academy of Sciences USA</i> 109:15212 15216. Enlow DH. 1996. <i>Handbook of Facial Growth</i>. 2nd Edition. Philadelphia: Saunders. Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	297	Donahue LR, Cook SA, Johnson KR, Bronson RT, Davisson MT. 1996. Megencephaly: a new
 Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. 2012. Metabolic hypothes human altriciality. <i>Proceedings of the National Academy of Sciences USA</i> 109:15212 15216. Enlow DH. 1996. <i>Handbook of Facial Growth</i>. 2nd Edition. Philadelphia: Saunders. Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surgeres</i> 	298	mouse mutation of chromosome 6 that causes hypertrophy of the brain. Mammalian
 human altriciality. <i>Proceedings of the National Academy of Sciences USA</i> 109:15212 15216. Enlow DH. 1996. <i>Handbook of Facial Growth</i>. 2nd Edition. Philadelphia: Saunders. Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria 	299	Genome 7:871-876.
 15216. Enlow DH. 1996. <i>Handbook of Facial Growth</i>. 2nd Edition. Philadelphia: Saunders. Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surgers</i> 	300	Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. 2012. Metabolic hypothesis for
 Enlow DH. 1996. <i>Handbook of Facial Growth.</i> 2nd Edition. Philadelphia: Saunders. Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surger</i> 	301	human altriciality. Proceedings of the National Academy of Sciences USA 109:15212-
 Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surger</i> 	302	15216.
 anomalies: a fetal lamb model. <i>Journal of Craniofacial Genetics and Developmental</i> <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surger</i> 	303	Enlow DH. 1996. Handbook of Facial Growth. 2nd Edition. Philadelphia: Saunders.
 <i>Biology</i> 18:159-163. Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surger</i> 	304	Escobar LF, Liechty EA. 1998. Late gestational vascular disruptions inducing craniofacial
 Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. <i>American</i> <i>Journal of Physical Anthropology</i> 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	305	anomalies: a fetal lamb model. Journal of Craniofacial Genetics and Developmental
 Journal of Physical Anthropology 120:171-181. Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	306	<i>Biology</i> 18:159-163.
 Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longa MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	307	Fish JL, Lockwood CA. 2003. Dietary constraints on encephalization in primates. American
 MT. 2003. Mechanical strain affects dura mater biological processes: implications fo immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	308	Journal of Physical Anthropology 120:171-181.
 immature calvarial healing. <i>Plastic and Reconstructive Surgery</i> 112:1312-1327. Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	309	Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan, CM, Carter DR, Longaker
 Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	310	MT. 2003. Mechanical strain affects dura mater biological processes: implications for
 hierarchical perspective on dietary plasticity in mammals. <i>Zoology</i> 124:30-41. Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	311	immature calvarial healing. Plastic and Reconstructive Surgery 112:1312-1327.
 Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences. <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	312	Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. 2017. Intracranial and
 <i>Seminars in Fetal and Neonatal Medicine</i> 9:419-425. Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	313	hierarchical perspective on dietary plasticity in mammals. Zoology 124:30-41.
 Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS, Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	314	Gluckman PD, Hanson MA. 2004. Maternal constraint of fetal growth and its consequences.
 Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvaria bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i> 	315	Seminars in Fetal and Neonatal Medicine 9:419-425.
bone induction: immature versus mature dura mater. <i>Plastic and Reconstructive Surg</i>	316	Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, Luchs JS,
	317	Paccione MF, Gittes GK, Longaker MT. 2000. Biomolecular mechanisms of calvarial
319 105:1382-1392.	318	bone induction: immature versus mature dura mater. Plastic and Reconstructive Surgery
	319	105:1382-1392.

320	Isler K, van Schaik C. 2006a. Costs of encephalization: the energy trade-off hypothesis tested on
321	birds. Journal of Human Evolution 51:228-243.
322	Isler K, van Schaik CP. 2006b. Metabolic costs of brain size evolution. Biological Letters 2:557-
323	560.
324	Isler K, van Schaik CP. 2009. The expensive brain: a framework for explaining evolutionary
325	changes in brain size. Journal of Human Evolution 57:392-400.
326	Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. 2002. Tissue origins and
327	interactions in the mammalian skull vault. Developmental Biology 241:106-116.
328	Kaufman JA, Hladik CM, Pasquet P. 2003. On the expensive-tissue hypothesis: independent
329	support from highly encephalized fish. Current Anthropology 44:705-707.
330	Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S,
331	Maklakov AA, Kolm N. 2013. Artificial selection on relative brain size in the guppy
332	reveals costs and benefits of evolving a larger brain. Current Biology 23:168-171.
333	Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, Wildman DE,
334	Sherwood CC, Leonard WR, Lange N. 2014. Metabolic costs and evolutionary
335	implications of human brain development. Proceedings of the National Academy of
336	Sciences USA 111:13010-13015.
337	Lieberman DE, McBratney BM, Krovitz G. 2002. The evolution and development of cranial
338	form in Homo sapiens. Proceedings of the National Academy of Sciences USA 99:1134-
339	1139.
340	Lieberman DE, Krovitz GE, McBratney-Owen B. 2004. Testing hypotheses about tinkering in
341	the fossil record: the case of the human skull. Journal of Experimental Zoology 302:284-
342	301.

NOT PEER-REVIEWED

343	López E. 2011. The influence of relative brain size on cranial morphology in a mouse model of
344	encephalization. Ph.D Disseration. Evanston, IL: Northwestern University.
345	López EK, Stock SR, Chenn A, Taketo M, Ravosa MJ. 2008. A novel transgenic mouse model
346	for fetal encephalization and craniofacial development. Integrative and Comparative
347	<i>Biology</i> 48:360-372.
348	Martin RD. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature
349	293:57-60.
350	Martin RD. 1996. Scaling of the mammalian brain: the maternal energy hypothesis. Physiology
351	11:149-156.
352	Navarrete A, van Schaik CP, Isler K. 2011. Energetics and the evolution of human brain size.
353	Nature 480:91-93.
354	Opperman LA. 2000. Cranial sutures as intramembranous bone growth sites. Developmental
355	Dynamics 219:472-485.
356	Ponce de Leon MS, Zollikofer CP. 2001. Neanderthal cranial ontogeny and its implications for
357	late hominid diversity. Nature 412:534-538.
358	Pontzer H, Brown MH, Raichlen DA, Dunsworth H, Hare B, Walker K, Luke A, Dugas LR,
359	Durazo-Arvizu R, Schoeller D, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV,
360	Thompson ME, Shumaker RW, Ross SR. 2016. Metabolic acceleration and the evolution
361	of human brain size and life history. Nature 533:390-392.
362	Pontzer H, Raichlen DA, Gordon AD, Schroepfer-Walker KK, Hare B, O'Neill MC, Muldoon
363	KM, Dunsworth HM, Wood BM, Isler K, Burkart J, Irwin M, Shumaker RW, Lonsdorf
364	EV, Ross SR. 2014. Primate energy expenditure and life history. Proceedings of the
365	National Academy of Sciences USA 111:1433-1437.


NOT PEER-REVIEWED

366	Ravosa MJ, Menegaz RA, Scott JE, Daegling DJ, McAbee KR. 2016. Limitations of a
367	morphological criterion of adaptive inference in the fossil record. Biological Reviews
368	91:883-898.
369	Robinson LK, Hoyme HE, Edwards DK, Jones KL. 1987. Vascular pathogenesis of unilateral
370	craniofacial defects. Journal of Pediatrics 111:236-239.
371	Ross C, Henneberg, M. 1995. Basicranial flexion, relative brain size, and facial kyphosis in
372	Homo sapiens and some fossil hominids. American Journal of Physical Anthropology
373	98:575-593.
374	Ross CF, Ravosa MJ. 1993. Basicranial flexion, relative brain size, and facial kyphosis in
375	nonhuman primates. American Journal of Physical Anthropology 91:305-324.
376	Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Crisera FE, Mehrara BJ, Longaker MT
377	2002. Co-culture of osteoblasts with immature dural cells causes an increased rate of
378	osteoblast differentiation. Plastic and Reconstructive Surgery 109:631-642.
379	Warren SM, Longaker MT. 2001. The pathogenesis of craniosynostosis in the fetus. Yonsei
380	Medical Journal 42:646-659.
381	Wrangham RW, Jones JH, Laden G, Pilbeam D, Conklin-Brittain N (1999) The raw and the
382	stolen: cooking and the ecology of human origins. Current Anthropology 40:567-594.

Figure 1(on next page)

Comparisons of measures of somatic growth and postcranial development.

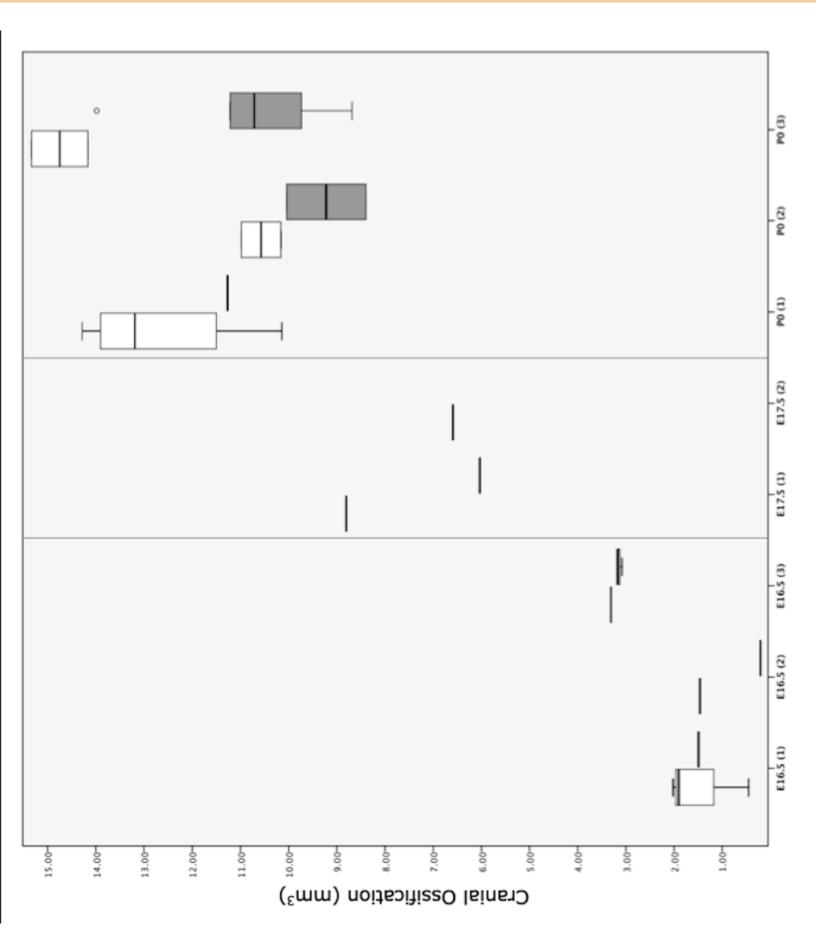

Box plots show distributions of somatic growth measures for wild-type and transgenic mice at various ages. Outliers (values more than one and a half times the interquartile range above the third quartile or below the first quartile) are indicated by open circles. (A) Body mass, (B) Crown-rump length, (C) Forelimb ossification, (D) Humerus length.

Figure 2(on next page)

Comparisons of cranial ossification by litter.


Box plots show distributions of somatic growth measures for wild-type and transgenic mice at various ages, separated by litter. Each litter had at least one mouse from each group, except the second E17.5 litter, which only provided data for a wild-type mouse. Within each litter, left = wild-type, right = transgenic.

Figure 3

Comparisons of cranial ossification in newborn mice.

These are typical examples of microCT images of wild-type and transgenic newborn mice. Images display mineralized tissue above the threshold value of 120. Left = wild-type, right = transgenic.

Table 1(on next page)

Measures of skeletal size and development.

wt = wild-type mice; tg = transgenic mice

1

Variable	Description	Sample Size		
body mass (g)	measured to nearest g	E16.5: 11 wt, 13 tg; E17.5: 9 wt, 2 tg; P0: 11 wt, 13 tg		
crown-rump length (cm)	measured to nearest mm	E16.5: 14 wt, 13 tg; E17.5: 9 wt, 2 tg; P0: 11 wt, 11 tg		
forelimb ossification (mm ³)	amount of mineralized tissue in forelimb above threshold level of 160 (E17.5, P0) or 130 (E16.5); see Lopez et al. 2008 for the determination of threshold levels	E16.5: 4 wt, 4 tg; E17.5: 2 wt, 2 tg; P0: 6 wt, 5 tg		
humeral length (mm)	length of humerus along center of bony shaft	E16.5: 2 wt, 2 tg; E17.5: 2 wt, 2 tg; P0: 6 wt, 4 tg		
cranial ossification (mm ³)	amount of mineralized tissue in skull above 120	E16.5: 5 wt, 5 tg; E17.5: 2 wt, 1 tg; P0: 8 wt, 8 tg		

2

3

Table 2(on next page)

Comparisons of cranial and postcranial size and development.

wt = wild-type mice; tg = transgenic mice

1

	E16.5 [mean, (SD), N]			E17.5 [mean, (SD), N]			P0 [mean, (SD), N]		
	wt	tg	p- value	wt	tg	p- value	wt	tg	p- value
	0.53	0.47		1.07	1.04		1.33	1.39	
body mass (g)	(0.08)	(0.16)	0.543	(0.07)	(0.13)	0.637	(0.16)	(0.15)	0.297
	11	13		9	2		11	13	
crown-rump	1.74	1.73	0.795	2.02	1.90	0.080	2.38	2.35	0.563
length (cm)	(0.12)	(0.09)		(0.08)	(0.00)		(0.09)	(0.19)	
lengui (em)	14	13		9	2		11	11	
forelimb	0.15	0.11	0.386	0.35	0.34	0.439	0.76	0.77	0.465
ossification (mm ³)	(0.17)	(0.12)		(0.02)	(0.01)		(0.32)	(0.16)	
	4	4		2	2		6	5	
humeral length	1.24	1.19		1.90	1.74		2.49	2.49	
(mm)	(0.02)	02) (0.05) 0.439	(0.02)	(0.08)	0.121	(0.14)	(0.16)	0.748	
(11111)	2	2		2	2		6	4	
brain volume	46.27	123.50		63.05	174.59 1	0.180	97.57	219.84	0.002
(mm ³)	(8.83)	(40.98)		(28.78)			(15.26)	(30.65)	
(6	3		3			7	7	
brain volume1/3/	1.06	1.30	0.025	0.93	1.39	9 0.180	0.97	1.23	0.002
cranial base length	(0.07)	(0.08)		(0.12)	1.57		(0.03)	(0.08)	
erannar ouse rengtir	5	3		3			7	7	
cranial	1.83	2.23	0.754	7.70	6.04		12.68	10.50	0.046
ossification (mm ³)	(1.03)	(1.34)		(1.56)	1	0.221	(2.01)	(1.76)	
	5	5		2			8	8	