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Abstract 9 

Despite the large amount of accessible spatial information, the issue of estimating aboveground 10 

biomass through remote sensing, especially radar, remains a challenge in complex ecosystems 11 

such as tropical forests. One of the advantages of radar sensors is that of "crossing clouds" 12 

(capacity that does not have optical images like Landsat), facilitating their use in areas with 13 

permanent cloud cover. This work defines, from several studies conducted in tropical forests 14 

using ALOS PALSAR, which are the factors with the most influence on the signal of the radar. 15 

This can be useful in the development and/or improvement of methodologies to estimate 16 

aboveground biomass in tropical forests, combining field data and satellite imagery of radar. 17 
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 24 

Introduction 25 

In recent years, the estimation of aboveground biomass (AGB) through the combination of field 26 

data and remote sensing has been gaining ground, because it becomes an option that reduces 27 

costs, in addition to obtaining information in areas of difficult access (Koch 2013).  28 

Biomass is the total amount of plant material present in a specific area (Drake et al., 2003). The 29 

aerial component of the arboreal stratum represents one of the main stores of biomass and carbon 30 

(Quijano & Morales 2016). There are several methods to estimate AGB, being classified as 31 

destructive or direct (cut, dry and weigh the tree) and non-destructive or indirect (allometric 32 

equations) (Sola et al., 2012, Walker 2011). Allometric equations usually include three variables: 33 

diameter at breast height (DBH), tree height and wood density; through which we can obtain the 34 

ABG in the field. 35 

The estimation of AGB using remote sensing remains a challenge, especially in such complex 36 

ecosystems as tropical forests (Hamdan et al., 2014b). Research conducted by Avitabile et al. 37 

(2015), Baccini et al. (2012), Goetz et al. (2009) and Mitchard et al. (2013) using optical and / or 38 

radar images show different methods used for the estimation of AGB and carbon stocks by 39 

remote sensing in tropical forests around the world. They emphasize the ability of radar satellite 40 

images such as ALOS PALSAR to "pass through the clouds" (capacity with which optical images 41 

do not count as LANDSAT), this feature being very useful in tropical areas with permanent cloud 42 

cover. 43 

Although there is little information available that indicates exactly what climatic or biophysical 44 

factors affect the estimation of AGB in tropical forests at local scales; Studies such as those by 45 

Hamdan et al. (2014b), Sinha et al. (2015) and Espinoza-Mendoza (2016) provide valuable 46 
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information. Hamdan et al. (2014b) found in Malaysia, that the allometric equations have a great 47 

influence on the response of the sensor when estimating biomass. In addition, the size of the trees 48 

and the diametric groups also influenced the estimated biomass values by means of radar images. 49 

On the other hand, Espinoza-Mendoza (2016), found in the forest of Nicaragua, that the number 50 

of trees per hectare is a very important factor when correlating the backscattered value of the 51 

radar with the biomass estimated in the field. 52 

The present work aims to define, based on various studies in tropical forests, which factors are 53 

those that would have a greater influence when estimating biomass by radar images (especially 54 

ALOS PALSAR). It should be noted that in this research, factors referring to technical and 55 

structural aspects of the forest are mentioned, focusing more on the latter. Knowing these factors 56 

and the level of influence that hold, would be of great support in the development and / or 57 

improvement of methodologies for estimating ABG in tropical forests combining field data and 58 

remote sensing. 59 

 60 

Technical aspects of radar images: wavelength and polarization 61 

The frequency of the SAR radar is directly proportional to the depth of penetration of the wave, 62 

meaning that short waves can only penetrate the forest by a few centimeters while long waves 63 

can interact with the forest floor (Imhoff 1995). The L band is the least influenced by the 64 

environmental conditions, therefore, it obtains better information of the structural components of 65 

the forest by having a better interaction with the trunk and the branches, being the most adequate 66 

for estimating biomass (Ghasemi et al. 2011, Joshi et al 2015b, Luckman et al 1997, Yu and 67 

Saatchi 2016). 68 
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In the same way, the P band has a good correspondence with the biomass. Both long wavelengths 69 

can penetrate the canopy, dispersing the energy towards the woody components, being related to 70 

biophysical parameters of the trees (Sinha et al 2015, Yu and Saatchi 2016). On the other hand, 71 

the X band, is dispersed by the leaves and surface of the canopy, which is feasible to obtain 72 

access to the information of the upper layers of the trees. While the C band penetrates through the 73 

leaves being dispersed by small branches and elements of the intermediate canopy (Ghasemi et 74 

al., 2011). The signal of this last length, although it is true to some extent extends beyond the 75 

canopy, becomes attenuated when into contact with more closed canopies and with more 76 

structural components, so it works best only in coverage with low amount of biomass (Ghasemi 77 

et al., 2011), being less sensitive to the increase in forest volume than the L band (Puliainen et al., 78 

1999). 79 

On the other hand, the polarization of the signal is related to the direction of the electric field of 80 

the electromagnetic waves and depends on the interaction between the signals emitted and the 81 

reflective elements (Sinha et al., 2015). The radar signals are emitted in four polarization 82 

combinations: horizontal (HH), vertical (VV) or crossed (HV, VH) (Ghasemi et al., 2011). All 83 

these types of polarization will be influenced by the vertical and / or horizontal structure of the 84 

forests; so they will interact with different orientations and structures of their components. 85 

Several studies have shown the superiority of HV polarization over HH polarization, indicating 86 

that HV has a greater sensitivity with biomass, being less influenced by soil moisture and 87 

vegetation (Behera et al., 2016, Collins et al., 2009). Hamdan et al 2011, Michelakis et al 2015, 88 

Sandberg et al 2011, Van Zyl 1993). On the contrary, studies such as those of Wang et al. (1995) 89 

indicate that HH polarization can provide a good means of estimating biomass in coniferous 90 

forest. This polarization interacts in a better way with the trunk and biomass of the canopy 91 

(Beaudoin et al., 1994), presenting a direct surface-trunk relationship (Wang et al., 1995). 92 
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Finally, we consider that bands of long lengths such as L or P, with cross polarizations such as 93 

HV or VH, give better results than short wave bands such as C or X with simple polarizations HH 94 

or VV (Dobson et al., 1992; Le Toan et al. 1992). 95 

 96 

 97 

 98 

Alometry 99 

Allometry is one of the factors related to the most important forest parameters to be considered, 100 

probably well above the elaboration of the biomass model. The use of allometric equations that 101 

consider three basic parameters: diameter at breast height (DBH), tree height and wood density of 102 

the species, can give us more accurate estimates. 103 

In some cases, the presence of biases is unavoidable due to inaccuracies on measurement 104 

parameters on the field, we must consider evaluating the use of each of them (Keller et al., 2001, 105 

Ketterings et al., 2001). Whereby, it is key to consider the methodology used for its calculation. If 106 

we do not know the methodology, we doubt about this or observe data inconsistencies, such as 107 

the lack of use of specialized instruments to measure heights; we recommended use equations 108 

that only consider DBH, since our results could be over or underestimating the AGB and 109 

therefore the model results. 110 

We will consider that the use of local allometric equations for a particular type of forest or 111 

species can give us a more accurate estimate. But if this were not the case, generic equations like 112 

Chave et al. (2014b), Brown (1997) updated by Pearson et al. (2005), Feldpausch et al. (2006), 113 

among others, provide excellent estimates considering the indicated parameters (Table 1). 114 
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For example, Hamdan et al. (2014a) used five allometric equations, determining that the best 115 

correlation with the radar signal was the allometric equation of Kato et al. (1978). While 116 

Espinoza-Mendoza (2016) worked with Brown's equations (1997) updated by Pearson et al. 117 

(2005) developed for tropical forests and Chave et al. (2001); both equations only consider the 118 

DBH parameter. In the case of Espinoza-Mendoza (2016) no significant statistical differences 119 

were found between both equations, so it was decided to use the Brown equation (1997) updated 120 

by Pearson et al. (2005). 121 

 122 

Aspects of the forest structure: density, heterogeneity, diameter groups and 123 

types of dispersion in forests. 124 

There are studies using remote radar sensors that have estimated biomass in tropical forests. Most 125 

of these have been carried out in coniferous forests and pine savannas, justifying that the sensor 126 

cannot be used in dense tropical forests or in forests with biomass greater than 100 Mg ha-1 127 

(Mermoz et al., 2014b; Mitchard et al., 2009; Woodhouse et al., 2012). Therefore, it is considered 128 

that the density and structural complexity of some forest types can have a great influence on the L 129 

band of ALOS PALSAR (Michelakis et al., 2015). The work carried out by Espinoza-Mendoza 130 

(2016), pioneer in Nicaragua, and one of the first in Central America to discuss the role of the 131 

factors that impact on the estimation of biomass with radar in broadleaf and coniferous forests, 132 

found a big difference in correlating both types of forest with the radar signal. The study showed 133 

that the coniferous forest correlated quite well (n = 40, rρ = 0.64, pvalue <0.0001), while the 134 

broadleaf forest obtained a low correlation, which only improved when considering> 80ind per 135 

plot of 0.5ha (160 ind / ha) (n = 34, rρ = 0.60, pvalue <0.0002). 136 
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Observing these results, we consider that the structure of both forests would be one of the causes. 137 

This can be supported by Michelakis et al. (2015) who mention that, sometimes, the weak 138 

relationships between the backscatter coefficient and biomass are due to the structural variation 139 

of the canopy and the number of trees present in the plots. Therefore, we will discuss the 140 

behavior of the radar signal separately for coniferous forests and broadleaf forests. 141 

A coniferous forest is structurally less complex than a broadleaved forest (Figure 2). The areas 142 

where these forests are located are more open, with low canopy cover and the presence of 143 

clearings and/or gaps in the terrain. Therefore, at lower complexity, the radar signal should be 144 

dispersed more homogeneously without the influence of a variety of dispersing elements. 145 

 146 

We can consider that, in a coniferous forest, the type of dominant dispersion would be double 147 

bounce (Figure 4), because, when there is exposed soil, the signal is emitted towards the ground, 148 

bounces off the trunk and then disperses towards the radar, improving the sensitivity of this 149 

(Hensley et al., 2014). In addition, in some areas, coniferous forests are not very dense, so the L 150 

band would have a positive contribution (Yu and Saatchi 2016). 151 

Wang et al. (1995) indicate that the largest amount of biomass of a conifer tree is stored in its 152 

trunk. So, it can indeed that to exists double bounce dispersion with surface-trunk interaction, the 153 

radar signal would be collecting direct information of the component with higher biomass 154 

(trunk). On the other hand, the volumetric dispersion (Figure 4) in this type of forest is very 155 

small, which would not contribute significantly in the results of the correlation. 156 

The homogeneity present in coniferous forests is not a main feature of a tropical broadleaved 157 

forest, since in this last case exists a diversity of species, considered as heterogeneous forests 158 

(Figure 3). The high variability in its components: trunks, branches, leaf shapes, heights, 159 
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densities, fruits and/or seeds, various moisture contents, among others, will have a positive or 160 

negative influence on the radar response. 161 

The type of dispersion present in broadleaved forests varies (Figure 4). The volumetric dispersion 162 

encourages direct backscattering of both the soil, trunk and crown (De Miguel and Gutiérrez 163 

2000, Watanabe et al., 2006). If our broad-leaved forest were homogeneous, it is very likely that 164 

there are no marked differences between correlations with sparse and dense forests, as was the 165 

Espinoza-Mendoza study (2016), but this is not the case. Therefore, it is necessary to consider a 166 

distinction in radar response in sparse broadleaf forests and dense broadleaved forests.  167 

The double bounce type dispersion could occur in a sparse or very sparse broadleaved forest, due 168 

to the existence of voids in the ground with exposed soil. If we consider some of these forests 169 

thin as forests in early successional stages, according to Mermoz et al. (2014b) biomass would be 170 

overestimated. 171 

In dense broadleaved forests, volumetric dispersion will predominate, which will obtain 172 

information of all the components present in the middle and lower layers of the canopy, the signal 173 

would be attenuated when reaching the ground due to the density of this forest (Joshi et al., 174 

2015a). Linked to this, very dense broadleaved forests are usually mature forests, where the radar 175 

signal has a better correspondence than in younger forests (Mermoz et al., 2014a). 176 

The diametric groups also fulfill an important factor to achieve a good correlation between the 177 

biomass estimated in the field and the backscatter coefficient. For example, the study by Hamdan 178 

et al. (2014b) showed that the DAP > 30 cm obtained a better correspondence with the radar 179 

signal in Malaysian forests. These forests are dominated by dipterocárpeos of low lands, present 180 

in areas dedicated to the production of wood with logging activities since the '70s. Espinoza-181 

Mendoza (2016) found that when considering the biomass of individuals> 10cm, the best 182 

correlation was obtained for broadleaf and coniferous forests throughout seven municipalities in 183 
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the central and northeastern region of Nicaragua, in areas where hypothetically a forest transition 184 

would be occurring (Table 2). 185 

Through figure 5 we could explain some factors such as the diametric groups: (a) it would 186 

represent a very dense broad-leaved forest (without gaps in the ground) that considers tree 187 

biomass with DBH> 10cm, with great variability in heights and components. The radar signal in 188 

this type of forest would be dispersed volumetrically attenuating as the canopy penetrates towards 189 

layers closer to the ground, (b) represents a dense broadleaved forest including biomass of 190 

individuals with DBH> 30cm, as in (a) the heights and components have some degree of 191 

variability. maintaining a good correlation, (c) represents a broadleaved forest considering only 192 

the biomass of individuals with DBH> 50cm, in which not only a volumetric dispersion can be 193 

generated, but also a double bounce dispersion. It is observed in table 2 that the correlation 194 

decreases significantly. Finally (d) represents a broadleaf forest where only the biomass of trees 195 

with DBH> 70cm is considered, probably high-altitude trees, indicating that there is no 196 

correlation with the radar signal (Table 2), and that the signal interacts strongly with the 197 

components of middle and lower layers, demonstrating for this case that it is not the larger trees 198 

that influence the radar signal. 199 

 200 

Saturation level 201 

One of the biggest problems with radar images is the saturation of the signal. Ghasemi et al. 202 

(2011) consider that the radar signal in complex tropical forests in L and P bands saturates around 203 

100 Mg ha-1. Contradictory, Le Toan et al. (2011); Saatchi et al. (2011) and Sandberg et al. 204 

(2011) consider that the P band would be saturating from 300 Mg ha-1. In areas considered 205 

simple structure and where there are between 1 and 2 species, saturation may occur around 250 206 
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Mg ha-1. On the other hand, Watanabe et al. (2006) indicate that the saturation level for a single 207 

conifer species using the HH polarization was 200 Mg ha-1, whereas if a variety of species 208 

(heterogeneous forest) is included, the saturation can vary depending on the polarization: VV = 209 

50 tn / ha, HH = 100 tn / ha and HV => 100 tn / ha. As noted, there are different levels of 210 

saturation, which will depend to a large extent on the type of polarization used, wavelengths, 211 

types and structures of forests and number of species (Figure 6). 212 

 213 

Masking forest and no forest areas  214 

This factor, although it is true, does not directly influence to the developing model, but, it can 215 

have a strong impact when is considered as an external resource. Many areas considered forest 216 

may not be so in reality, due to land cover and land use maps are elaborated with different 217 

methodologies. Morton et al. (2014) consider that these external resources would cause an impact 218 

on the estimated biomass values. Therefore to mitigate to some extent this kind of source of error, 219 

we can use a visual review of the plots from which the data were obtained. Supported by tools 220 

such as Google Earth, field technical files used at the time of the information gathering of the 221 

plots, forest maps and/or high resolution multispectral images that correspond to the dates close 222 

to the data collection. 223 

 224 

Conclusions 225 

1. To estimate biomass in tropical forests using remote radar sensors, the structural characteristics 226 

of these should be considered. Because the radar signal, especially the L and P bands act directly 227 

with the vegetation components present in these forests. 228 
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2. Specific equations should be developed for each type of forest. If in a landscape we have: 229 

broadleaf forest, coniferous forest, riverside forest and mangrove forest, the best method to obtain 230 

good results will be the development of specific models for each type of forest, considering its 231 

structural components. 232 

3. Generic methodologies, can cause considerable variations in the ABG, by not considering 233 

forest parameters related to local areas. 234 

4. Generate more information related to the factors that affect the estimation of biomass in 235 

tropical forests using remote radar sensors is key to know how the structure of tropical forests, 236 

which is highly complex, affects the different bands, polarizations and scattered signals for the 237 

components of the forest. 238 

5. Analyzing and comparing the multitemporal behavior of the radar signal between tropical 239 

forests and agroforestry systems in the tropics, is key to generating information related to forest 240 

transitions processes. 241 

 242 
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 412 

 413 

Figure 1: Wavelengths. The arrows indicate the penetration capacity of the X, C and L bands 414 

through the canopy (Jensen 2000). 415 

 416 

Table 1: Diversity of allometric equations to be considered for the estimation of biomass using 417 

data taken in the field (Own elaboration). 418 

 419 
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 420 

 421 

(a) (b) 

  

 422 

Figure 2: Sketch of mature coniferous forests. A dense and homogeneous (a) profile is observed, 423 

representing a coniferous forest in which a specie predominates. While (b) shows a forest of 424 

conifers with multiple strata, with different stages of growth, less dense than (a), with greater 425 

variability in heights and where 2 or 3 species of pine would predominate. Even so, it is observed 426 

that their structures have a greater homogeneity than a broadleaved forest. 427 

 428 
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 429 

 430 

 431 

Figure 3: Louman (2001). The scheme shows the idealized profile of a wet forest premontane 432 

transition to tropical (Holdridge and Grenke 1971). There is a variety of heights, trunk forms, 433 

canopy, branches and each number represent a different species. 434 

 435 

 436 

 437 

Figure 4: Different types of dispersion present in a forest (Piwowar, 1997) (1) Diffuse dispersion 438 

from the surface (2) and (3) Direct dispersion of various components of the vegetation (4) Double 439 

dispersion rebound of the soil interaction - vegetation (5) Corner reflection between trunk and 440 

surface (6) Direct backscattering of the upper layer of the canopy (7) Volumetric dispersion from 441 
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within the canopy (8) Diffuse dispersion from the surface (9) Shadows caused by parts of the 442 

forest canopy or other parts of the canopy and / or the surface. 443 

 444 

Table 2: Correlations between the biomass present in different diametric groups and the radar 445 

signal (Espinoza-Mendoza 2016). 446 

 447 

 448 

 449 

Figure 5: Forest structure and biomass (Espinoza-Mendoza 2016). 450 
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(c) 

 462 

Figure 6: Different levels of saturation. Biomass estimated in field vs HV. a: Baghdadi et al. 463 

(2015) around 60 Mg ha-1 in eucalyptus plantations in Brazil in HV polarization; b: Thumaty et 464 

al. (2016), greater than 150 Mg ha-1 in HV polarization in deciduous forests in India; c: 465 

Espinoza-Mendoza (2016), around 130 Mg ha-1 in Nicaraguan forests. 466 
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