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ABSTRACT

Hoverflies (Diptera: Syrphidae) are among the most important pollinators, although they attract less
attention than bees. They are usually thought to be rather opportunistic flower visitors, although pre-
vious studied demonstrated that they show colour preferences and their nectar feeding is affected by
morphological constraints related to flower morphology. Despite the growing appreciation of hoverflies
and other non-bee insects as pollinators, there is a lack of community-wide studies of flower visitation by
syrphids. The aim of this paper is to provide a detailed analysis of flower visitation patterns in a species
rich community of syrphids in a Central European grassland and to evaluate how species traits shape
the structure of the plant-hoverfly flower visitation network. We found that different species varied in the
level of specialisation, and while some species visited a similar spectre of flowers, others partitioned
resources more strongly. There was a consistent difference in both specialisation and flower preferences
between three syrphid subfamilies. Eristalinae and Pipizinae were more specialised than Syrphinae.
Trait-based analyses showed that relative flower visitation i) increased with plant height, but most strongly
in Eristalinae; ii) increased with inflorescence size in small species from all three subfamilies, but was
independent of inflorescence size in large species of Eristalinae and Syrphinae; and iii) depended on
flower colour, but in a subfamily-specific way. Eristalinae showed the strongest flower colour preferences
for white flowers, Pipizinae visited mostly white and yellow flowers, while Syrphinae were less affected
by flower colour. Exploration of the structure of the plant-hoverfly flower visitation network showed that
the network was both modular and nested. We also found that there were almost no differences in
specialisation and relative visitation frequency between males and females. Overall, we showed that
flower visitation in syrphids was affected by phylogenetic relatedness, body size of syrphids and several
plant traits.

INTRODUCTION

Hoverflies (Diptera: Syrphidae) are one of the most abundant groups of flower visiting insects. Together
with other families of flies, their role in plant-pollinator interactions is often underappreciated (Inouye
et al., 2015). However, Diptera often make up a similar proportion of flower visitors as Hymenoptera
and are even the dominant group of pollinators in some habitats, e.g. in higher altitudes and latitudes
(Kanstrup and Olesen, 2000).

Hoverflies are important pollinators of many wild plants (Orford et al., 2015; Sakurai and Takahashi,
2017; Moquet et al., 2018), in some cases as important as bees (Forup et al., 2008), and bringing the most
pollen grains per visit to flowers of some plant species (King et al., 2013). They also play an important role
in pollination of numerous crops (Solomon and Kendall, 1970; Kendall et al., 1971; Ohsawa and Namai,
1987, 1988; Jauker and Wolters, 2008; Ssymank et al., 2008; Rader et al., 2009; Inouye et al., 2015;
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Rader et al., 2016). Hoverflies are thus an important group of pollinators not only from the perspective of
biodiversity conservation, but also for pollination of crops. The interest in the role of flies in general and
Syrphidae in particular as pollinators has been increasing (Ssymank et al., 2008; Lucas et al., 2018a,b).
However, our knowledge of their preferences for different flowers and their partitioning of floral resources
is still limited.

Adults of all known syrphid species feed almost exclusively on pollen and nectar or honeydew
(Rotheray and Gilbert, 2011) and are usually considered to be generalist flower visitors (Branquart and
Hemptinne, 2000; Lucas et al., 2018a). However, individual species cover a broad range from generalists
to species with strong preferences for a small number of plants (Branquart and Hemptinne, 2000; Colley
and Luna, 2000). Their flower preferences may, however, shift depending on local flower availability
and plant phenology (Cowgill et al., 1993; Colley and Luna, 2000), which can lead to changing levels of
generalisation during the season (Lucas et al., 2018b). Several studies reported that selectivity of some
hoverfly species depends on certain plant traits. Overall, hoverflies seem to visit mostly open bowl-shaped
flowers (Branquart and Hemptinne, 2000), where they feed on both nectar and pollen (Gilbert, 1981), but
some of them have relatively long proboscises which allow them to reach nectar even in flowers with
relatively long spurs (Gilbert, 1981; VlaSankov4 et al., 2017). In addition, inflorescence height also affects
flower visitation by some species (Gervasi and Schiestl, 2017; Klecka et al., 2017). It has been recently
demonstrated that selective flower visitation by hoverflies can exert a selection pressure strong enough to
cause rapid evolutionary shifts in multiple plant traits (Gervasi and Schiestl, 2017; Zu and Schiestl, 2017).
However, there are still very few studies focusing on flower visitation patterns of entire local assemblages
of syrphids.

Entire plant-flower visitor networks are characterised by distinct structural features related to biological
constraints on interspecific interactions. Most plant-flower visitor networks are strongly nested (Bascompte
et al., 2003), modular (Olesen et al., 2007), or both nested and modular at the same time (Fortuna et al.,
2010). Modules pack species connected by numerous interactions, at least in some cases based on trait
complementarity between the interacting partners (Olesen et al., 2007; Carstensen et al., 2016; Dormann
et al., 2017). On the other hand, nested structure means that specialised insects tend to interact with plants
also visited by more generalised insects and vice versa. In this case, mutual specialisation is rare, which
has a stabilising effect on the structure of plant-flower visitor networks (Burgos et al., 2007; Bastolla
et al., 2009).

The aim of this paper is to advance our understanding of flower visitation by hoverflies by a thorough
analysis of flower visitation in a species-rich community of plants in a Central European grassland.
Specifically, we tested whether different species exhibit various levels of specialisation, whether there
are consistent differences between species from three hoverfly subfamilies, and whether males and
females of individual species have distinct preferences for flowers. We also tested whether plant species
traits, such as inflorescence height, size, and flower colour affect flower visitation by hoverflies from
different subfamilies and of different body sizes. Finally, we explored the structural features of the entire
plant-hoverfly network.

METHODS

We conducted sampling of plant-flower visitor interactions in a small area (ca 2km?) in the southern
part of the Czech Republic (Fig. 1) between the northern edge of the city of Cesky Krumlov and nearby
villages Vy$ny and Lazec in June-August 2015. We gathered observations from eight small (<1ha),
flower-rich grassland patches partly surrounded by shrubs and trees between 48°49°29.5”N, 14°18°59.5”E
in the South, 48°49°42.6”N, 14°19°24.4”E in the East, and 48°50°7.0”N, 14°15°36.5”E in the North-West.
Geographic coordinates of each sample are included in Supplementary Table 1. The study area was
relatively dry, partly calcareous. The patches where we sampled were only extensively managed, partly by
occasional grazing by cows or sheep, partly by infrequent mowing. Among the most abundant flowering
plants were Centaurea scabiosa, Galium mollugo, Galium verum, Agrimonia eupatoria, and Daucus
carota. Sampling was conducted on public land and did not involve any protected species. For this reason,
we did not need to obtain any permits for this project.

We sampled flower-visiting insects by transect walks and collected all visitors to flowers of all
herbaceous flowering plants except grasses, although some syrphids are known to feed on pollen of
grasses and sedges (Ssymank and Gilbert, 1993). We sampled six short (10 m long and 1 m wide)
transects in each pacth during multiple visits between 25 June and 1 August 2015. We walked along the
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Table 1. The list of species of Syrphidae collected during this study. The number of observations
and the number of plant species visited is provided for each species and sex together with mean body

length for each species.

No. of observations

Total
Eristalinae
Cheilosia proxima 1
Cheilosia ruficollis 2
Chrysogaster basalis 1
Chrysogaster coemiteriorum 3
Chrysogaster solstitialis 32
Eristalinus sepulchralis 1
Eristalis arbustorum 16
Eristalis horticola 2
Eristalis intricaria 1
Eristalis nemorum 56
Eristalis pertinax 2
Eristalis similis 1
Eristalis tenax 10
Helophilus pendulus 3
Myathropa florea 5
Neoascia podagrica 4
Orthonevra nobilis 2
Rhingia campestris 11
Rhingia rostrata 2
Sericomyia bombiformis 2
Sericomyia silentis 11
Sphegina sp 1
Syritta pipiens 124
Volucella bombylans 4
Volucella pellucens 2
Pipizinae
Heringia pubescens 1
Pipiza noctiluca 5
Pipizella annulata 4
Pipizella viduata 80
Syrphinae
Chrysotoxum bicinctum 4
Chrysotoxum cautum 4
Chrysotoxum fasciatum 1
Chrysotoxum vernale 1
Chrysotoxum verralli 1
Didea alneti 4
Epistrophe grossulariae 1
Episyrphus balteatus 194
Eupeodes bucculatus 4
Lapposyrphus lapponicus 68
Melanostoma mellinum 18
Melanostoma scalare 1
Meliscaeva cinctella 1
Paragus haemorrhous 3
Parasyrphus lineolus 4
Platycheirus albimanus 6
Scaeva dignota 2
Scaeva pyrastri 4
Scaeva selenitica 13
Sphaerophoria scripta 236
Syrphus ribesii 32
Syrphus torvus 158
Syrphus vitripennis 44
Xanthogramma pedissequum 1
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9.55
6.84
8.56
7.95
7.39
7.46
10.53
11.90
12.33
11.90
13.98
14.21
14.52
12.12
12.09
4.83
5.35
8.79
7.31
15.55
14.75
6.54
7.86
13.07
14.68

5.74
8.94
6.67
5.62

10.54
13.41
12.26
12.77
11.72
12.45
13.01
9.79
8.85
10.20
6.74
8.26
9.17
5.46
9.23
7.19
12.06
13.09
13.75
8.89
11.14
10.77
10.23
12.07

Head width (mm)

2.90
2.30
2.68
2.86
2.39
2.97
3.73
4.53
442
4.12
4.52
4.85
5.30
3.96
4.20
1.31
1.71
3.04
2.44
4.99
5.10
1.34
1.97
4.84
5.25

2.00
2.51
2.14
1.79

3.32
4.48
4.15
3.93
3.79
3.65
3.87
2.63
2.76
3.03
1.82
2.02
2.54
1.71
2.80
2.11
3.61
5.37
4.11
2.04
3.43
3.42
3.16
3.39

317

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26516v2 | CC BY 4.0 Open Access | rec: 5 Nov 2018, publ: 5 Nov 2018



*Prague

\ A 0 oAT
Figure 1. The location of the study area. The study was conducted in the southern part of the Czech

Republic, the location of the study area is shown in the inset by a blue circle. The map was plotted using
the rworldmap package in R (South, 2011).

transect slowly and captured all flower visiting insects from all flowers. Sampling was carried out during
sunny days with no rain between 08:00 and 17:00 hours. We designed this sampling strategy to gather
standardised quantitative data on flower visitation representative of the local plant community. In this
paper, we focus on hoverflies (Diptera: Syrphidae), which were among the most abundant groups of flower
visiting insects in the study area. All collected individuals were killed by ethyl-acetate, transported to the
lab, pinned, and identified using keys of van Veen (2010) and Speight and Sarthou (2014) to the species
level. Identification of hoverflies of the genus Pipizella and a few damaged specimens of Platycheirus
was verified by DNA barcoding using the 5’ region of the COI gene. We also identified the sex of all
individuals. Several individuals per species were photographed using a stereomicroscope Olympus SZX7
and a DSLR camera Canon 700D controlled from a computer by digiCamControl software. We measured
body length, thorax width, and head width of at least 8 individuals, or all individuals in species where
less individuals were collected, using the Fiji distribution (Schindelin et al., 2012) of ImageJ (Rueden
et al., 2017) and a plugin Microscope Measurement Tools. All specimens are deposited in Jan Klecka’s
collection at the Institute of Entomology, Biology Centre of the Czech Academy of Sciences.

We measured a set of three traits of all plant species visited by hoverflies to test their effect on
flower visitation (Supplementary Table 4). Specifically, we measured plant height (the height of the top
flower above ground), inflorescence size (the largest distance between any two open flowers within an
inflorescence), and classified flower colour into four categories (blue, purple, white, and yellow), similarly
to previous studies (Haslett, 1989a). We conducted plant trait measurements in several locations across
the study area for each species, measuring at least 10 plant individuals in each sampled patch, with the
exception of very rare species.

For data analysis, we pooled observations from the entire study area, because most sampled patches
were close to each other (<1 km apart), well within dispersal range of most hoverflies (Rader et al., 2011;
Moquet et al., 2018). We performed all analyses in R 3.2.3 (R Core Team, 2015). We visualised the
structure of plant-hoverfly flower visitation network using the package bipartite 2.08 (Dormann et al.,
2009; Dormann, 2011). To measure specialisation of individual species, we calculated the specialisation
index d’ according to Bliithgen et al. (2006). We used generalised linear models (GLM) for most statistical
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analyses, either with a Poisson distribution with overdispersion (quasipoisson), a Binomial distribution
with overdispersion (quasibinomial), or Normal distribution depending on the properties of the response
variable. We used non-metric multidimensional scaling implemented in vegan 2.4-4 package for R
(Oksanen et al., 2017) to visualise diet overlap between syrphid species. Diet overlap was calculated using
Pianka’s overlap index (Pianka, 1973) using the plant-hoverfly flower visitation matrix (Supplementary
Table 2) to estimate pairwise diet overlap values between all pairs of hoverfly species. We performed the
diet overlap analysis using EcoSimR 0.1.0 package for R (Gotelli et al., 2015). Finally, we performed
analyses of modularity and nestedness of the plant-hoverfly flower visitation network using the package
bipartite 2.08 for R (Dormann et al., 2009; Dormann, 2011).
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Figure 2. Flower visitation network of plants and hoverflies. Hoverflies are displayed in the upper
row with blue boxes. The width of the boxes is proportional to the number of individuals observed. Plants
are displayed in the lower row as green boxes whose width is proportional to the number of flower visits
observed. The width of the connecting lines is proportional to the number of interactions observed
between each plant-syrphid pair. The most abundant species are named, all species are identified by
numbers - see Supplementary Table 2 for legend.

RESULTS

We observed 1194 interactions between a total of 53 species of syrphids from three subfamilies (Eristalinae,
Pipizinae, and Syrphinae) and 57 plant species from 20 families (Table 1). The network of plant-syrphid
flower visiting interactions is shown in Fig. 2, raw data are available in Supplementary Tables 1 and 2.
The number of plant species visited by individual syrphid species increased with the number of
observations linearly on a log-log scale (£ 49 = 986.49,P < 1% 10°) and differed significantly between
subfamilies, with Syrphinae visiting more plant species than Eristalinae and Pipizinae after accounting for
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Figure 3. The level of resource specialisation of hoverflies. (A.) The number of plant species visited
depended on the number of observations. Variation around the regression line shows that species below
the line were more specialised than expected and species above the line were more generalised. (B.)
Syrphinae were more generalised than Eristalinae and Pipizinae (mean, quartiles, and range shown).

the number of observations (F> 49 = 4.32, P = 0.0187; Fig. 3A.). Species from the subfamily Syrphinae
were more generalised than the other two subfamilies also according to our calculation of a specialisation
index d’ (F»,16 = 3.733,P = 0.0467; Fig. 3B.), which was restricted to species with at least five observa-
tions. Body length had no effect on the number of plant species visited (F} 47 = 0.47,P = 0.4986), nor on
the value of the specialisation index d’ (Fj ;5 = 1.44, P = 0.2484). The same results were obtained using
head width and thorax width as alternative measures of body size. Comparison of the specialisation index
d' revealed no consistent differences in specialisation between males and females (linear mixed effects
model with species as a random factor; 9612 =0.93,P =0.3362) (Table 2).

Table 2. Values of the specialisation index d’ of male and female syrphids. Larger values of the d’
index correspond to more specialised flower visitation. Species where one or both sexes had <5
observations were excluded from the analysis.

Specialisation (d’)

Species Females Males
Chrysogaster solstitialis 0.43 0.41
Episyrphus balteatus 0.27 0.26
Eristalis arbustorum 0.29 0.28
Eristalis nemorum 0.27 0.26
Lapposyrphus lapponicus 0.17 0.23
Melanostoma mellinum 0.25 0.17
Pipizella viduata 0.27 0.28
Sericomyia silentis 0.34 0.29
Sphaerophoria scripta 0.13 0.17
Syritta pipiens 0.23 0.27
Syrphus ribesii 0.17 0.23
Syrphus torvus 0.16 0.26
Syrphus vitripennis 0.12 0.17

There was a clear differentiation between Syrphinae and Eristalinae in their flower preferences based
on nonmetric multidimensional scaling (NMDS) with values of pairwise diet overlap between all pairs of
species of syrhids (Fig. 4). Values of Pianka’s overlap index of individual syrphid species pairs ranged
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from 0 to 0.988 (mean = 0.338, Supplementary Table 3), i.e. from completely different to almost identical
pattern of visitation of flowers of individual plant species. We included only syrphid species with at least
five observations in this analysis. The only two species of Pipizinae included in the analysis did not cluster
together, unlike the other two subfamilies (Fig. 4). Additional insight into differences between the three
subfamilies can be gained from a comparison of visitation frequency on plants from different families
shown in Fig. 5.
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Figure 4. Results of nonmetric multidimensional scaling (NMDS) show differences in flower
preferences in Syrphinae and Eristalinae. NMDS analysis was run with a matrix of dissimilarities of
the relative frequency of flower visitation on different plants by individual species of syrphids. The
position of individual species in the plot corresponds to the center of the species label.

There were only minor differences in preferences for flowers of different plant species between
males and females. Comparison of the frequency of flower visits of males and females on individual
plant species revealed a significant difference only in Eristalis nemorum () test for contingency tables;
x% =21.76,P = 0.0048; P estimated by 10000 Monte Carlo simulations). Males of Eristalis nemorum
visited mostly Daucus carota, while females visited mostly Centaurea scabiosa and Achillea millefolium
(Supplementary File 1). Other abundant species showed only minor differences in flower visitation, but
the number of observations was low in many cases (Supplementary File 1); species with <10 observations
per sex were not included in these analyses.

Relative visitation rate of plants by individual syrphid species significantly increased with plant height,
but with a different slope in syrphids from different subfamilies and different size classes (Figure 6A.,
Table 3). The effect of inflorescence size also differed between small and large syrphids and between
species from different subfamilies (Figure 6B., Table 3). Specifically, relative visitation increased with
inflorescence size in small syrphids from all three subfamilies, but was independent of inflorescence size
in large syrphids (Figure 6B.). Flower colour also had a significant effect on visitation by syrphids, but
this effect varied between the three syrphid subfamilies (Figure 6C.-E., Table 3). Eristalinae visited mostly
white flowers (Figure 6C.), Pipizinae had a similar visitation rate to yellow and white flowers (Figure 6D.),
while Syrphinae showed only minor differences in visitation of flowers of different colours (Figure 6E.).
When we look at the syrphid community as a whole, plants with yellow and white flowers were overall
most frequently visited, with 37.7% of visits to yellow flowers and 31.3% to white flowers. Purple flowers
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received 26.1% visits, while blue flowers received only 4.9% of visits. In contrast to subfamily, syrphid
size class did not affect the dependence of visitation on flower colour (flower colour x syrphid size class
interaction, F = 1.27,P = 0.2825; Table 3).

Analysis of the structure of the plant-syrphid flower visitation network showed that the network
was both modular and nested at the same time. Modularity analysis detected four modules, with most
Eristalinae clustered in one module, while Syrphinae dominated two other modules, and the most
generalised species, Sphaerophoria scripta, was grouped together with Pipizella viduata (Fig. 7). The
association between syrphid subfamilies and the four network modules was statistically significant
according to a x? test for contingency tables (y> = 16.92,P = 0.0069 based on 9999 Monte Carlo
simulations). Syrphid species in different modules did not differ in body length (GLM, F = 1.48,P =
0.2592) and head width (GLM, F = 2.66,P = 0.0861). In plants, the only trait significantly related to
module membership was plant height (GLM, F = 6.57,P = 0.0015). Plants in modules 1 and 4 were on
average taller (mean height 69 and 62 cm) than those in modules 2 and 3 (mean height 41 and 39 cm,
respectively). On the other hand, plants in different modules did not differ in inflorescence size (GLM,
F =1.55,P = 0.2217) and colour (x? test for contingency tables, y> = 11.43, P = 0.2563 based on 9999
Monte Carlo simulations).

The network was not only modular, but also nested (Fig. 8). Nestedness index was significantly
different from the null model (NODF = 29.18, P < 0.007, based on 999 simulations). However, com-
parison of nestedness calculated for syrphids and plants separately showed that only the syrphids had
significantly nested pattern of interactions (NODF = 19.04, P < 0.001), while the pattern for plants was
not significantly different from the null model (NODF = 37.93,P = 0.329).

Table 3. The effect of species traits on flower visitation by syrphids. Results of a GLM testing the
dependence of relative visitation rate on species traits. Significance of all interaction terms in the model is

shown.
Model term df F P
Logo(plant height) x syrphid subfamily 2 432 0.0136
Logio(plant height) x syrphid size class 1 458 0.0325
Logo(inflorescence size) x syrphid subfamily 2 3.12 0.0444
Logo(inflorescence size) x syrphid size class 1 7.30  0.0070
Flower colour x syrphid subfamily 6 4.12 0.0004
Flower colour x syrphid size class 3 127 0.2825

DISCUSSION

Flower visitation by Syrphidae was characterised by a variable degree of specialisation at the species
level. Syrphids have been traditionally considered to be generalised flower visitors (Branquart and
Hemptinne, 2000; Lucas et al., 2018a). We showed that not only different species fell in different positions
along a gradient from more specialised to truly generalised flower visitors, but that there were also
significant differences in average specialisation between the three syrphid subfamilies. The pattern of
higher specialisation of Eristalinae and Pipizinae compared to the more generalised Syrphinae was clear,
although our observations included only four species of Pipizinae. The values of the specialization index
d’ ranged from 0.12 to 0.43, which is similar to previous studies based on flower visitation of hoveflies
(Weiner et al., 2011, 2014), but higher than reported in a recent study by Lucas et al. (2018a), who reported
lower values of d’ based on DNA metabarcoding of pollen in 11 species of hoverflies. Still, all species
we studied are fairly generalised compared to values of d’ reported for various other pollinators (Weiner
et al., 2011, 2014; Benadi et al., 2014).

We also found pronounced differences in relative flower preferences both at a coarse level between
subfamilies, and at a finer level between species. Results of the NMDS showed that Eristalinae and
Syrphinae were separated in the diagram, but also that species from the same genus clustered together,
e.g. the three species of each of the genera Eristalis and Syrphus (Fig. 4). Values of pairwise overlap in
flower visitation were as high as 0.98 in Eristalis arbustorum and Chrysogaster solstitialis (the maximum
possible value is 1.0), and the three species of the genus Syrphus had overlap values between 0.83 and
0.88, which suggests that they had almost identical pattern of flower visitation. On the other hand, many
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917
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26516v2 | CC BY 4.0 Open Access | rec: 5 Nov 2018, publ: 5 Nov 2018



o o i
S ] Syrphid subfamily and size class
o ) Small
S S — Eristalinae
Pipizinae
8 8 | Syrphinae
IS oS Large
= = Eristalinae
8 = Syrphinae
o o
< <
= <
o o
(8] o
o o
S o
2 8 S|
o = B ; S : : :
- 10 12 14 1.8 20 1.0 1.5 2.0
o . .
= Logio(Plant height (cm)) Logio(Inflorescence size (mm))
i}
@
> . . e .
) C. Eristalinae D. Pipizinae E. Syrphinae
Z 8 8 g
© P P P
[}
o
< < <
<A < A =
o o o
(50 @ 50
S S A o
o o o .|.
8 | 8 | T |8 [ T 1
o o o
5 i 5 T | 5 1
o o o
‘ ; 1
8. gl 1 1 8
= T T T T = T T T T = T T T T
blue purple white yellow blue purple white yellow blue purple white yellow

Flower colour

Figure 6. The effect of species traits on flower visitation by Syrphidae. A. Taller plants were visited
more frequently by syrphids with a slope dependent on their body size and subfamily. B. Small syrphids
visited more often plants with large inflorescences, while visitation by large syrphids was not affected by
inflorescence size. C.-E. Flower colour affected visitation by the three subfamilies of syrphids differently.

1017

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26516v2 | CC BY 4.0 Open Access | rec: 5 Nov 2018, publ: 5 Nov 2018




species had very small values of overlap (Supplementary Table 3); i.e. they visited a distinct set of plants.
This is noteworthy in relation to ongoing debates about mechanisms of species coexistence. Conflicting
theoretical explanations of species coexistence showed that species can coexist only if they are sufficiently
different according to classic theory of limiting similarity (Hardin, 1960; MacArthur and Levins, 1967),
or alternatively if they are sufficiently similar as proposed by Hubbell’s neutral theory (Hubbell, 2001).
An emerging consensus is that both explanations are correct, i.e. that species can coexist if they are either
sufficiently different or sufficiently similar (Scheffer and van Nes, 2006; Sakavara et al., 2018; Scheffer
et al., 2018). Indeed, there are examples of closely related coexisting species with different trophic niches,
as well as examples where they have a very similar niche (Goulson et al., 2008). In our case, we observed
local coexistence of some closely related species with very high diet overlaps, which is consistent with
the argument that similar species can coexist. However, caution is needed because our observations are
integrated over an area of ca 2km? and a time span of more than one month. Hence, diet overlap as
estimated by our flower visitation data is only one of multiple factors affecting the hoverfly community.
Coexistence may be also facilitated by differences in microhabitat choice leading to small-scale spatial
structuring of the community (Janovsky et al., 2013) or differences in timing of activity during the day
(Gilbert, 1980). More data would be needed to address these issues.
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Figure 7. Modules detected in the plant-syrphid flower visitation network. Results of modularity
analysis restricted to syrphid and plant species with at least 5 observations. Syrphidae are displayed in
rows and plants in columns. The blue rectangles show observed interactions with more frequent
interactions shown by darker colour. The three syrphid subfamilies are distinguished by coloured circles
next to the species names (see legend). Modules are numbered as 1-4 from the top-left to the bottom-right.

Trait-based analysis of relative visitation rate of flowers by individual syrphid species showed that
syrphid subfamilies differed in flower colour preferences. Eristalinae appeared to prefer white flowers,
while Syrphinae were relatively indiscriminate in the colour of flowers they visited (Fig. 6). Previous
studies conducted with a smaller number of species found that hoverflies visit mostly white or yellow
flowers (Haslett, 1989a; Sutherland et al., 1999), with some exceptions, such as Rhingia campestris with
a preference for blue flowers (Haslett, 1989a). Our results demonstrating differences between subfamilies
are in line with a previous observation that out of a group of six species, Episyrphus balteatus from the
subfamily Syrphinae was the least selective species towards flower colour, while several species from the
subfamily Eristalinae were more selective (Haslett, 1989a). There is not enough known about the visual

1117
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26516v2 | CC BY 4.0 Open Access | rec: 5 Nov 2018, publ: 5 Nov 2018




system of different species, but it is likely that interspecific differences in visitation of flowers of different
colours represent foraging preferences rather than differences in the visual system which seems to be
quite uniform among Diptera (Lunau, 2014). The dominant flower colour represents probably a relatively
long-range visual signal, while other cues may be used when the hoverfly approaches the flower (Lunau
and Wacht, 1994). Further research is needed to explore the role of subtler differences in flower colour
than we considered here, in particular the role of UV reflectance, which we did not measure.

Based on our results, Eristalinae and Pipizinae showed a stronger response to all plant traits, i.e.
flower colour, plant height and inflorescence size, compared to Syrphinae. Taken together, these results
highlight the differences in average specialisation level between the generalised Syrphinae on one side
and more specialised Eristalinae and Pipizinae on the other side. Interestingly, Moquet et al. (2018)
found that they could split hoverflies of Belgian heathlands according to an analysis of several life-history
and ecological traits into two distinct groups roughly corresponding to the two dominant subfamilies,
Eristalinae and Syrphinae. Our detailed analysis of flower visitation provides additional evidence of
ecological differences between the syrphid subfamilies.

Apart from phylogenetic relatedness at the subfamily level, we found body size to be an important
trait modifying the responses of syrphid relative visitation rate to selected plant traits. Flower colour
was related mostly to phylogenetic relatedness, while plant height and inflorescence size were related
also to syrphid body size. Small syrphids preferred large inflorescences, which may be advantageous
because they contain a large amount of resources clustered in one place (Akter et al., 2017). Another trait
that has been evaluated previously is the relationship between corolla depth and proboscis length. Some
previous studies showed a positive correlation between the average depths of flowers and proboscis length
or length/width ratio in bees (Stang et al., 2006, 2009) as well as hoverflies (Gilbert, 1981; Branquart
and Hemptinne, 2000). We did not test this relationship mostly because we did not distinguish nectar
and pollen feeding. Even species with a short proboscis are regularly visiting long-spurred flowers to
feed on pollen and can even lick nectar at the entrance to the spur without being able to reach deep
inside (Vlasankova et al., 2017). Proper analysis of a morphological fit between the flowers and flower
visitors would thus require a more detailed data on mechanisms of feeding by individual species and on
morphology of both the insects and the flowers.

Network modularity (Olesen et al., 2007) partly reflected these patterns, because we found that the
plant-hoverfly flower visitation network could be partitioned into four modules, which were significantly
different in the proportion of the three subfamilies of Syrphidae. Plants were grouped partly according
to their height. The two modules containing Eristalinae had plants on average 50% taller then the other
two modules, which fits well with results of our analyses of the relationship between species traits and
visitation (see Fig. 6). Hence, modularity of the network was related to phylogeny (syrphids) and species
traits (plants) as expected based on previous studies on plant-pollinator networks (Carstensen et al., 2016;
Dormann et al., 2017). However, our more detailed analyses on the role of species traits for flower
visitation also identified relationships which were not reflected in the modular pattern, e.g. the role of
flower colour and syrphid body size. This is likely because the modularity analysis turns quantitative data
on flower visitation into categorical data (membership in modules), which leads to the loss of information.

Nestedness analysis showed that the syrphid flower visitation was significantly nested, i.e. that
more specialised species visited mostly flowers of plants which were a subset of those visited by more
generalised species, which is a typical pattern in plant-flower visitor networks (Bascompte et al., 2003;
Fortuna et al., 2010). However, nestedness of the plants did not differ from the null model, so the
nestedness pattern was asymmetric. This is likely because the plants were visited by a range of other
insects, not only hoverflies, so the network we analysed was incomplete from the plants’ point of view.

Despite the patterns we found at the interspecific level, we detected very little differences in flower
visitation by males and females of species sufficiently abundant to allow such comparison. Both the level
of specialisation and the relative visitation rates to individual plant species were very similar in males
and females in most cases. Similarly, Lucas et al. (2018b) found no effect of sex on individual-level
specialisation in several Eristalis species and Sutherland et al. (1999) found that males and females of
Episyrphus balteatus showed very similar flower colour preferences. However, we did not distinguish
nectar and pollen consumption during our observations, so we cannot rule out a possible difference
between sexes in pollen vs. nectar feeding. Indeed, several previous studies reported that females of
hoverflies feed on pollen more frequently than males (Gilbert, 1981; Haslett, 1989b; Hickman et al.,
1995), probably because proteins from pollen are necessary for egg development. Males thus often feed
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Figure 8. The plant-hoverfly flower visitation network was significantly nested. Syrphidae are
displayed in rows and plants in columns. The blue rectangles show observed interactions.
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less on pollen and more on nectar which serves mostly as a source of energy for their active lifestyle,
because they are usually more active than females and spend a large amount of time by hovering (Haslett,
1989b). However, no significant difference in pollen consumption between males and females was found
in a few other species, so the generality of this patterns is unclear (Irvin et al., 1999).

We should point out that our data have some limitations. First, we observed flower visitation by
syrphids over an area of ca 2km? over a period of over 5 weeks. Species interactions can vary both in
time and space depending on phenology and small-scale spatial distribution of both plants and flower
visitors. We do not have enough data to explore such variation here, but it is an important avenue for
future research (Carstensen et al., 2016; Spiesman and Gratton, 2016; Tylianakis and Morris, 2017).
Second, the spatial and temporal scale of observations prevented us from collecting detailed information
about the abundance of individual plants and their value as sources of nectar and pollen. Including such
information would be necessary for a more mechanistic analysis of resource use by flower visitors (Hicks
et al., 2016). Third, we restricted our attention to insect-pollinated plants. However, some syrphids can
feed also on pollen of wind-pollinated plants either by visiting flowers of grasses, sedges, trees, etc., or by
eating pollen accumulated on the surface of leaves (Ssymank and Gilbert, 1993; Saunders, 2017). Better
understanding of this phenomenon, as well as possible use of other food sources, will be important to
achieve better understanding of foraging biology of hoverflies.

In conclusion, we found that hoverflies in a typical central European grassland varied in their use of
floral resources depending on their relatedness (differences in flower visitation between subfamilies) and
body size. We identified three plant traits which could partly explain differences in visitation by different
hoverfly species: plant height, inflorescence size, and flower colour. However, there is still a range of
questions to be addressed by future studies, such as whether differences in flower visitation stem from
active choice by the foraging hoverflies and whether they could be explained mechanistically, e.g. using
optimal foraging theory.
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