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Accurate detection of target microbial species in metagenomic datasets from
environmental samples remains limited because the limit of detection of current methods
is typically inaccessible and the frequency of false-positives, resulting from inadequate
identification of regions of the genome that are either too highly conserved to be
diagnostic (e.g., rRNA genes) or prone to frequent horizontal genetic exchange (e.g.,
mobile elements) remains unknown. To overcome these limitations, we introduce imGLAD,
which aims to detect genomic sequences in metagenomic datasets. imGLAD achieves high
accuracy because it uses the sequence-discrete population concept for discriminating
between metagenomic reads originating from the target organism compared to reads from
co-occurring close relatives, masks regions of the genome that are not informative using
the MyTaxa engine, and models both the sequencing breadth and depth to determine
relative abundance and limit of detection. We validated imGLAD by analysing
metagenomic datasets derived from spinach leafs inoculated with the enteric pathogen
Escherichia coli 0157:H7 and showed that its limit of detection is comparable to that of
PCR-based approaches (~1 cell/gram).
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ABSTRACT

Accurate detection of target microbial species in metagenomic datasets from environmental samples
remains limited because the limit of detection of current methods is typically inaccessible and the
frequency of false-positives, resulting from inadequate identification of regions of the genome that are
either too highly conserved to be diagnostic (e.g., rRNA genes) or prone to frequent horizontal genetic
exchange (e.g., mobile elements) remains unknown. To overcome these limitations, we introduce
imGLAD, which aims to detect genomic sequences in metagenomic datasets. inGLAD achieves high
accuracy because it uses the sequence-discrete population concept for discriminating between
metagenomic reads originating from the target organism compared to reads from co-occurring close
relatives, masks regions of the genome that are not informative using the MyTaxa engine, and models
both the sequencing breadth and depth to determine relative abundance and limit of detection. We
validated imGLAD by analysing metagenomic datasets derived from spinach leafs inoculated with the
enteric pathogen Escherichia coli O157:H7 and showed that its limit of detection is comparable to that of

PCR-based approaches (~1 cell/gram).
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INTRODUCTION

Assessment of the minimum amount of sequencing required for accurate detection of target bacterial
species in a background of a complex microbial community remains challenging. This problem has
important practical applications in environmental and clinical surveillance studies. Detection limits vary
depending on the sequencing effort and technology (e.g., read length), and the complexity of the microbial
community sampled, and in most cases these parameters or their effects on the limit of detection remain
inaccessible. Experiments with increasing amounts of target DNA added to environmental samples have
been performed in the past to empirically establish detection limits [e.g., (1)]. However, a theoretical
framework to establish limit of detection based on bioinformatics analysis of metagenomics is still lacking.
Furthermore, such empirical approaches are typically computationally expensive, cumbersome, and

specific to the system tested.

Several methods to evaluate presence or absence of bacterial species based on best match or
Bayesian analysis of read mapping patterns against a reference collection of genome sequences such as
Pathoscope or Sigma (2,3) have been recently developed. Additionally, taxonomic profilers such as
MetaPhlAn (4,5) or MetaMLST (6) employ species- or strain-specific genetic markers to identify the
different members of the community. However, these approaches rely on Single Nucleotide Polymorphism
(SNPs) pattern differences against reference genes/genomes, which are difficult to robustly determine,
especially in cases of low abundance (i.e., not enough reads available to reliably call SNPs), and are
typically computationally intensive. Importantly, no available tool can detect organisms that are not part of
a reference genome database, and most tools are not easily adaptable to include new target genomes as
references (e.g., the tools require re-computation of the -typically large- training datasets or reference
database to include new target organisms). Further, it is not clear how most of these tools perform when
relatives of varying relatedness to the target organisms are co-occurring in the sample, as often is the

case of environmental samples, and whether or not strain-level resolution can be achieved.

Here, we present imGLAD (in-silico metagenomes for Genome Low-Abundance Detection), a new
algorithm that incorporates a training step and several computational optimizations in order to address the
abovementioned limitations. Application of imGLAD to metagenomes derived from samples of known
composition (mock) showed that it can reliably detect target organisms of interest in a background of

closely related co-occurring relatives and frequently outperforms other methods.
MATERIAL AND METHODS
Overview of the imGLAD pipeline

imGLAD assumes that reads of a metagenomic dataset originate at random from all regions of the
genome. Thus, the fraction of the genome that is recovered in the dataset (sequencing breadth) as well as

the number of times each region is sequenced (sequencing depth), both depend on the abundance of the
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organism in the community. Highly conserved regions (e.g., rRNA and tRNA genes), as well as regions
resulting from recent horizontal gene transfer (e.g., transposase and integrase genes), can recruit reads
from other non-target genomes and misleadingly increase the value of sequencing depth (and hence,
estimated relative abundance) in some datasets depending on the gene composition of the organisms
present. To address this problem, we developed a framework to identify which fraction of a target genome
corresponds to reads that belong to the target and what fraction is the result of spurious matches. This
framework has two steps: initial training and subsequent prediction (Figure 1). Training set selection can
be automatic or user defined. The automatic training generates reads from a randomly selected number of
genomes (default is 200 genomes) from RefSeq (7), and builds in-silico-generated datasets of about 1
million reads each. Simulated reads from the target genome(s) are then generated in a similar way and
added to the former datasets in order to create the positive datasets with decreasing target abundances.
Reads from the target genome(s) are omitted for the construction of negative datasets. All other genomes
used to create the datasets are sampled in equal proportions (i.e., even richness). The user can also
choose the genomes to use to generate the training set (e.g., genomes previously known to co-occur in
the same environment). In this case, the construction of the training set will be performed based on these
genomes rather than the default genome collection from RefSeq. Simulated lllumina-like reads are
generated using ART-MountRainier (8) with default settings. Simulation of reads from additional
sequencing platforms is provided as an option. Reads from both positive and negative samples are then
recruited against the target genome sequence (reference) using BLAT (9) (or BLAST (10)). By default,
reads with identity higher than 95% and at least 90% of the read length aligned are selected to calculate
sequencing breadth and sequencing depth, after normalizing for the size of the dataset. This level of
identity has been shown to capture well the sequence-discrete populations recovered frequently in
metagenomes of natural habitats (11), although different user-defined cut-offs can be used as well.
Sequencing depth (SD) is calculated as the number of reads mapping to the genome (N) multiplied by the
read length (L) divided by the total length of the genome (G), and sequencing breadth (SB) is calculated

as the number of bases covered (B) divided by the total length of the genome as follows.

SD=L*N/G (1)

SB=B/G (2)

A logistic function is fitted to the resulting recruitment data that attempts to separate the positive from
the negative training datasets in terms of sequencing depth and sequencing breadth. The logistic function
is then used to estimate the probability of presence in the prediction step based on the sequencing depth
and/or breadth of the target genome in a query (unknown) metagenome (see also below). imGLAD
includes an additional, optional step in which MyTaxa (10) can be used to identify and mask the reference
genes that do not have robust phylogenetic signals at the species level due either to insufficient diversity
(high sequence conservation) or because of frequently undergoing horizontal gene transfer. This step, in

general, improves results for several datasets and genomes (see for instance Fig 4).
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Model training

The logistic model estimates the probability of presence based on two predictor variables, i.e., sequencing
breadth, or a combination of sequencing breadth and sequencing depth. Regression coefficients are
calculated for these variables as well as for an intercept term and thus, the final model estimates three
parameters, i.e., sequencing depth, breadth and intercept. These parameters are estimated via a training
set that consists of at least 200 simulated metagenome-like datasets. These datasets include 100
datasets with the target genome (positive samples), and 100 samples without this genome (negative

samples).
Construction of training datasets

For each dataset, BLAT (9) is employed to align the reads to the target genome sequence. Alternatively,
BLAST can be used to improve sensitivity at the expense of computational time (10). The resulting
alignments are used to calculate the sequencing depth and sequencing breadth of the target genome in
each dataset using the nucleotide cut-off mentioned above. Sequencing breadth is calculated as the
fraction of bases of the total genome sequence that recruit at least one read (equation 2 above). If the
genome consists of more than one contig (e.g., draft genomes), the length is assumed to be the sum of
the lengths of all contigs. Sequencing depth is calculated in an analogous way by counting the times that

each base of the reference genome sequence is covered by a read, on average (equation 1 above).

Sequencing breadth and depth are subsequently used to calculate the regression parameters of a
logistic model using log likelihood maximization via gradient, which modifies the parameters values until
the error is minimized. This approach calculates the optimal set of parameters by computing the error in
the training set (i.e., what sequencing breadth and/or depth values are observed for positive vs. negative
samples) and modifying the parameter accordingly to reduce the error until convergence is reached. Final
parameters of the model are estimated by default only based on sequencing breadth, as this variable was
found to be the most discriminating parameter for positive vs. negative samples (see also below).
However, an estimation including sequencing depth is also provided as an option in order to produce, in
addition to the probability of presence/absence, an accurate estimation of the abundance of the target

genome.
Probability estimation

Once the logistic model has been built, sequencing breadth can be used to reliably predict the probability
of presence of the target genome in any number of query metagenomes after the reads of the query have
been recruited against the target genome as described above for training datasets. The probability of

presence is estimated according to:

1
1—e

p=1- — (3)
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Where z is a linear function of the form B't, B represents the regression parameters and t is either a
vector composed of the sequencing depth (d) and sequencing breadth (b) or by default, a one-
dimensional variable corresponding to b. Based on the model parameters, it is possible to establish a
detection limit for the target genome in each metagenomic dataset analysed. This limit is defined as the
minimum fraction (sequencing breadth) that needs to be sampled in order to estimate a probability of
presence at 0.95. The result is displayed as a black solid line in a 2D plot of sequencing breadth and
sequencing depth (e.g., Figure 2). The sequencing depth value observed based on the read recruitment,
when corresponding to a probability value equal or higher to 0.95, is then used to estimate the relative
abundance of the organism in the sample. The sequencing depth corresponding to 0.95 probability then

provides the limit of detection in terms of relative abundance.
Filtering of conserved regions

To avoid spurious results from reads mapping on conserved or highly mobile regions of the (target)
genome, the user can create a filter for these regions using MyTaxa. This filter is created by predicting
genes in the target genome and determining their classification weight using MyTaxa. If the MyTaxa
classification score is at the bottom 5% or the gene is not scored (e.g., some hypothetical proteins), the
gene is removed from the genome and further analysis. The filtered version of the genome is

subsequently used for the model training and probability estimation steps.
Parameters of software used

MetaPhlAn V2 (5) was run with the default settings using Bowtie version 2.2.8 (13) for read mapping.
MetaMLST (6) was used with default settings. PathoScope 2.0 (3) was run with default settings, using the

same set of reference genomes that were used to build the training datasets for imGLAD.

Four tests were performed to assess specificity and sensitivity. In all cases, sensitivity was calculated
as the proportion of properly classified positive datasets among the total number of positive datasets.
Specificity was defined instead as the fraction of correctly identified negative datasets among all negative
datasets examined. For the first test, metagenomic datasets were created with similar parameters to the
training dataset of E. coli (i.e., 100 datasets from RefSeq genomes). These datasets were spiked with
seven different concentrations of the E. coli genome, ranging from 1% to 7%. In the second test, Human
Microbiome Project (HMP) metagenomes were spiked with reads from the E. coli ranging from 1% to 7%
relative abundance. 571 HMP datasets were used for each E. coli concentration. In the third test, the
datasets constructed in test 1 were spiked with reads from close relatives of E. col, i.e., Klebsiella (81%
ANI), Salmonella (82% ANI), and Escherichia fergusoni (92% ANI), at random concentrations for each
genome in addition to the E. coli reads. Finally, a test using close relatives, e.g., >95% ANI, was

performed in the HMP datasets in a similar way as described above for test #3.

Leaf inoculation experiments to test inGLAD
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Fifty grams of field grown spinach leaves were inoculated (spiked in) with cells of Escherichia coli
0157:H7 strain RM6067, a strain linked to the 2006 spinach-associated outbreak in the U.S.A (14). Three
serial dilutions were performed resulting in three inoculation concentrations: 80, 8 x 10° and 8 x 10° cells
per pellet, plus a control sample with no inoculated cells. Cells for inoculation were obtained from single
colonies that were grown overnight, and cell concentrations were determined by enumeration of colony
forming units (CFUs) on LB agar plates. Leaves were subsequently washed, the leaf wash was filtered to
remove plant debris, and leaf-associated microorganisms were pelleted by centrifugation at 10,000g for 10
min at 4°C. DNA extraction was performed using MoBio UltraClean Microbial DNA isolation kit according

to manufacturer’s instruction (MoBio).

DNA sequencing libraries were prepared using the lllumina Nextera XT DNA library prep kit according
to manufacturer’s recommendations, except that the protocol was terminated after isolation of cleaned
amplified double stranded libraries. Library concentrations were determined by fluorescent quantification
using a Qubit HS DNA kit and Qubit 2.0 fluorometer (ThermoFisher Scientific, formerly Life Technologies)
according to manufacturer's recommendations and libraries were run on a High Sensitivity DNA chip using
the Bioanalyzer 2100 instrument (Agilent) to determine average library insert sizes. An equimolar mixture
of the libraries (final loading concentration of 11 pM) was sequenced using a MiSeq reagent v3 kit for 600
cycles (2 x 300 bp paired end run) on an in-house lllumina MiSeq instrument (Georgia Institute of
Technology), running the MiSeq control software v2.4.0.4 (MCS). Adapter trimming and demultiplexing of
sequenced samples was carried out by the MCS. Additionally, we used metagenomic datasets inoculated

with Bacillus anthracis DNA, which were made available previously (1).
Availiability and dependencies of imGLAD

imGLAD is available through http://enve-omics.ce.gatech.edu/imGLAD/. Source code is available under

GNU General Public License v3.0 https://github.com/jccastrog/imGLAD. imGLAD execution requires BLAT

or BLAST to be installed, ART and the Python modules "scipy", "numpy",

"Bio".

screed", "statsmodels", and

RESULTS
Training set for E. coli and B. anthracis

We evaluated imGLAD's performance on training datasets with E. coli strain O157:H7 EC4115, a strain
almost genetically identical to RM6067 used in the spinach inoculation experiments, i.e., >99.9% average
nucleotide identity (or ANI), and B. anthracis strain Ames as target genomes. The datasets included
closely related species of the same genus with ANI around 95% or lower (Figure 1; see also below for
evaluation of the effect of relatedness of co-occurring genomes), which corresponds to the frequently used
standard for species demarcation (15) and encompass the sequence-discrete populations recovered
frequently in metagenomes of natural habitats (11). Although the predicted detection limit (from the training
step) varied slightly for each species, it was always possible to have confident detection (probability of

presence >99%) when sequencing breadth was about 0.03 (or 3% of the total genome) or more based on
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the training datasets used (Figure 2 & Table 1). The model for E. coli was able to accurately separate
positive from negative samples (probability of presence >95%) to a minimal value of sequencing breadth
of 0.01 (Figure 2A).

The logistic models from the training datasets were then applied to metagenomic datasets originating from
environmental samples, spiked-in with the target genome (see Materials and Methods for details).
Samples from spinach leaf surface spiked with different concentrations of E. coli strain O157:H7 cells
were sequenced at about 1-2 Gbp/sample on an lllumina Mi-Seq platform. Four different concentrations
were tested, three with different inoculum concentrations, 80, 8 x 10° and 8 x 10° target E. coli cells per
leaf microbiome that was recovered from 100g of spinach leaf material, and a negative control (no cells
were spiked in; although E. coli cells might have been present in the background leaf microbial community
in low concentrations). The model was able to detect the target E. coli genome in all samples, even as low
as 80 cells (Table 1). For the negative control, imGLAD provided values of sequencing breadth (0.007)
and sequencing depth (0.042) that were consistent with the values of negative samples in the training set,
i.e., the target genome was not present at the limit of detection of the approach (Figure 2A; p-value for
presence: 0.847, Table 1). The matching reads in this case probably originated from natural E. coli

populations present on the spinach leaves at low abundance or close relatives and/or spurious matches
(Suppl Fig 1).

The datasets made available by Be and colleagues consisted of a soil microbial community DNA sample
spiked with known quantities (genome equivalents) of DNA of B. anthracis strain Ames (Table 2), and
sequenced using the lllumina technology (1). A training set for B. anthracis was built in a similar way to the
E. coli set; however, genomes that belong to Bacillus cereus were excluded from the training dataset in
this case as they show ANI values higher than 95% to B. anthracis. Based on the training datasets, a
slightly higher limit of detection than the one for E. coli was obtained (probability of presence >95%), with
a minimum value of sequencing breadth of 0.039 (Figure 2B). Among the 6 samples tested, a significant
probability of presence (p > 99%) was obtained in samples with 100 (3.8% of the genome recovered),
1,000 (56.2%), 10* (98.3%), and 10° (99.9%) B. anthracis genomes. The samples with lower genome copy
number (1 and 10 genomes) were not identified as positive. Manual inspection of the number and position
of matching reads to the B. anthracis reference genome in the latter two datasets revealed about 2000
reads for the 10 genome copy dataset and about 4000 reads for the 1 genome copy dataset, i.e., more
reads were obtained with the lower abundance dataset, indicating spurious matches (each dataset was on
average 5.6 Gbp in size). Further, the reads were concentrated in a few regions of the genome (not
randomly distributed), which was indistinguishable from negative datasets (Table 2, Figure 2B, and Suppl
Fig 2). Thus, it appears that the B. anthracis genomes might not have been sequenced adequately in the
low copy number datasets. This interpretation is also consistent with estimates that 100 Gbp or more are
required to cover the complete genome diversity within typical soil microbial communities as described
previously (16) and the conclusions of the original study by Be and colleagues.

Comparison to other tools
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We compared the performance of inGLAD with other available platforms that can be used to identify the
taxa present in the sample. It should be pointed out, however, that these tools do not target a specific
organism/genome of interest but instead assess the total microbial community composition and thus, their
objective is slightly different than imGLAD's. Nonetheless, we were able to obtain meaningful results by
comparing imGLAD with popular tools for these purposes such as MetaPhlAn, MetaMLST, and
Pathoscope, which illustrated the advantages of imGLAD. In the E. coli and B. anthracis metagenomes
described above, imGLAD provided higher sensitivity than other tools, especially at low levels of
sequencing breadth. For instance, with 2% of the genome covered by sequencing reads in training
datasets, imGLAD can accurately classify as positive 95% of the datasets, whereas Pathoscope and
MetaPhlAn can classify only about 47% and 16% of the datasets, respectively. Only when sampling 7% of
the genome or more, did these tools yield similar results to imGLAD (Figure 3A). It should be noted that
7% is more than twice the genome breadth (i.e., 3% of the genome) that iImGLAD required to reach 100%
classification sensitivity. Comparisons against available tools that require higher target abundance to
make confident calls such as ConStrains (17) were not attempted as this would have been an unfair

comparison.

Additionally, we used a set of 571 metagenomic datasets of the HMP project (http://www.hmpdacc.org/), in
which different concentrations of E. coli (target organism) reads were spiked to further test the specificity
of imGLAD against a naturally occurring background community (as opposed to in-silico generated
datasets) (Figure 3B). The datasets were selected because they did not have any detectable amounts of
E. coli by any of the three tools to confound results. MetaPhlAn, which is optimized for human-associated
microbial communities, had better performance when tested against these HMP datasets relative to the E.
coli or B. anthracis datasets mentioned above. However, MetaPhlAn still required at least 5% of the
genome to be recovered in order to provide high confidence (positive) detection whereas imGLAD
achieved similar confidence with only 3% of the genome. Hence, iInGLAD's performance is superior,

especially in cases of low abundance of the target genome(s).

Improved detection was also observed in in-silico synthesized datasets that included close relatives (ANI
greater than 95% up to 98% compared to the target), although a larger fraction of the genome was
typically required in these cases (~7%) in order to achieve high specificity and sensitivity by imGLAD.
PathoScope and MetaPhlAn required an even higher fraction (at least 10%) of the target genome for
comparable specificity and sensitivity (Figure 3C; Suppl Fig 3 shows similar results but the background
metagenome was HMP instead of the in-silico synthesized datasets). In all cases high specificity (>97%)
was achieved by imGLAD, which resulted in a low false positive rate (i.e., <3%). In comparison, the other

three tools never reached higher than 90% specificity on the same four tests (Suppl Fig 4 & 5).
Filtering of conserved regions

In addition to creating a model using the whole genome, regions of the genome that provide a less reliable
phylogenetic signal (e.g., regions that are highly conserved or contain mobile elements; see Material and

Methods for details) can be identified by MyTaxa and removed/masked so that the prediction and/or the
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training steps can be repeated with the filtered genome for more accurate results. Filtering in general,
improved the detection limit because reads mapping on masked regions were not counted (Figure 4). For
instance, filtering lowered the minimum sequencing depth required for robust detection from 0.123 (no
filtering applied) to 0.061 (p-value < 0.05) in the training datasets for E. coli. The reduction in sequencing
breadth however was not as dramatic as sequencing depth (e.g., 0.014 to 0.009 for the same datasets).
The larger effect of filtering on sequencing depth than breadth was presumably attributable to the fact that
filtering typically removed only a small part of the target genome (i.e., <5% by default settings) that
recruited a disproportionally high number of reads encoding highly conserved or frequently transferred
genes. This interpretation is also consistent with the sigmoidal relationship between sequencing depth and
breadth, which tends to flatten at high values of sequencing depth and becomes linear at lower values

(18). Hence, filtering with MyTaxa is recommended, in general.
Effect of relatedness of co-occurring genomes and strain-level resolution

When building the training set, the user is able to add any non-target genomes that could be relevant for
optimizing detection of the target genome such as genomes that are known to be present and relatively
abundant in the sample or closely related species that should not contribute positive signal (i.e., reads
mapping on shared regions of the genome). In general, iImGLAD's sequencing breadth and/or depth for
positive detection (i.e., the detection limit) was expected to be higher with higher relatedness of the non-
target genomes in the training set to the target genome. For instance, we tested three different training
sets that included relatives at different levels of ANI to the target genome, i.e., 95-98% (within species
resolution), 90-95% (resolution between closely related species), and 80-90% (resolution between
moderately related species). Consistent with our expectations, higher sequencing depth and breadth were
required for robust detection when relatives showing 95-98% ANI to the target co-occurred in the training
dataset compared to relatives showing 90% or 80% ANI. This is due to the fact that more conserved
and/or identical regions are present in the genome of the former relative to the latter. In fact, when co-
occurring relatives were members of different species than the target species (i.e., show <95% ANI),
imGLAD's limit of detection was very similar to that of the training datasets without close relatives, i.e., 3%
of the genome needed to be recovered for confident detection in most cases. When genomes of the same
species were present (i.e., show 95-98% ANI), at least 10-12% of the genome was required, depending on
the exact genomes considered and their relatedness (Figure 5). Furthermore, as the relatedness
increased, the contribution of the sequencing depth metric became less important. In fact, in some training
datasets where close relatives with high identity to the target genome (95% ANI or higher) were present
and in relative high abundance, the estimated parameters showed high variation during the training step
and resulted, for instance, in a positive slope between sequencing breadth and depth, which was not
reliable for estimating relative abundance and detection limit (Figure 5, black dotted and dashed line). In
such cases, iImGLAD can be customized to perform a cross-validation analysis in order to derive more
robust parameters. Under this configuration, imGLAD generates a 10-fold larger training dataset, which is

subsequently divided into ten subsets. Each subset is used independently to fit the model parameters.
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The mean value for each parameter is taken as the consensus value and used to establish the relative

abundance and detection limit (Figure 5, grey dotted and dashed line).

In summary, gene-content differences among the target genome and the co-occurring, non-target close
relatives become increasingly more important for robust detection in cases where the non-target
genome(s) show increasing genetic relatedness to the target. Strain-level resolution was achievable by
imGLAD in such cases, and the resolving power decreased with smaller gene-content differences
between target and non-target genomes. Hence, training with close relatives, and possibly cross-
validation analysis, are important for more stringent results, especially in cases that the close relatives are

known or highly anticipated to co-occur in the same samples with the target organism.
DISCUSSION

We presented imGLAD, a novel algorithm that utilizes a logistic model-based learning approach for
accurate detection of target bacterial species in complex metagenomes, and for establishing detection
limits in a target species- and microbial community-specific manner. By building and analysing training
datasets with decreasing abundances of spiked-in reads originating from the target genome, imGLAD
allows for highly reliable calls, while reducing the number of false positives (Figure 2). Further, and
contrary to available tools, imGLAD allows for reliable estimation of the detection limit of the metagenomic
sequencing effort applied based on the training datasets of decreasing target genome abundance and a
linear combination of both genome sequencing depth and genome sequencing breadth, or only
sequencing breadth. The degree of sequence conservation of the genes of the target genome and their
extent of horizontal gene transfer are also taken into account in estimating the limit of detection, which
represents a substantial advantage over existing tools in minimizing false-positive calls. The results using
both simulated datasets (e.g., Figure 2) as well as experimental metagenomes (Tables 1 and 2)
highlighted these advantages of imGLAD. However imGLAD is not designed to detect all species present
in a sample. Thus, it differs from taxonomic profiling software, and is computationally more expensive, due
to the training step, if the goal is to detect more than a couple of targets. Rather, the goal of iInGLAD is to
provide highly accurate detection of specific, user-provided target species (e.g., pathogens), including
newly sequenced genomes. Further, imGLAD's logistic model, while computationally demanding to create
(e.g., building in-silico training datasets), need to be built only once and can subsequently be used
multiple times, such as with different metagenomes. This way, inGLAD could be used to detect several

target organisms in an environmental sample (by building a model for each target).

A distinguishing strength of imGLAD is the detection of low abundance target genomes. Current tools
for metagenomic profiling use specific markers or SNP patterns to identify and classify the species present
in the sample [e.g., (4)]. However, at low levels of abundance, these markers may not be found, and SNPs
cannot be called, and in some cases, the SNPs are called incorrectly such as in the case of MetaMLST
(6), which requires high abundances (above 2X) to make confident calls and thus, performed poorly in the
tests we conducted compared to other tools or imGLAD (e.g., Fig 3). Our approach is not focused on a

particular region of the genome, but instead takes into account the whole genomic context. This provides
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higher recall while preserving precision (Figure 3 & Suppl Fig 4). Further, methods based on read
assignment depend on the comprehensiveness of their reference database and do not provide high
precision when challenged with samples containing closely-related species (3). Accordingly, the tools
evaluated here provided high false positive rates in such cases (Suppl Fig 4 & 5), which can be
concerning, for instance, in pathogen surveillance studies and environmental samples, where closely
related strains of the same species may co-occur. iImGLAD can provide reliable prediction even in such
cases, although at the expense of a lower detection limit, assuming the close relatives are known and
available and, hence, can be used as part of the training step as exemplified in the E. coli case above.
However, if the query metagenome(s) include relatively abundant, non-target genomes more related to the
target genome than any of the genomes used to construct the training datasets, then the predictions of
imGLAD (or other tools) might not be highly accurate. In such cases, the user needs to recover the
genome sequences of the relatives from the metagenome(s) using genome binning techniques, if the
representative sequences are not available otherwise, in order to include them in the training dataset. The
results presented here (e.g., Figure 3A & Figure 5) provide a quantitative picture of this issue and its

consequences on the accuracy of InGLAD as well as other tools.

Electrochemical immunoassays have shown promise in detecting pathogens such as B. anthracis or
their toxins, and can sometimes offer strain-level resolution. The limit of detection of these techniques can,
in some cases, be ~1pg/ml (19), which is below the limit of detection of imGLAD (56 pg/miI-560 pg/ml
corresponding to 10-100 cells, respectively) based on the E. coli spike in experiment on spinach and
current best practices for metagenomic sequencing and the samples analysed here. Thus, immunoassays
and culture-based approaches are still more sensitive than metagenomics, at least for highly complex
metagenomes such as those of soils (but probably not as much for food and agricultural samples, the
human gut or habitats of similar complexity), and could be used in combination with tools like imGLAD for
more reliable and comprehensive results. A key advantage of imGLAD is that it has high specificity, which
sometimes cannot be achieved by immunoassays or culture-based approaches. It should be noted that
imGLAD might be able to offer resolution within species as well, e.g., by including in the training dataset
genomes that are members of the same species but show sequence divergence from the target genome
higher than that of the sequencing errors (e.g., 99% ANI or less, assuming a sequencing error of <1%)
and/or have substantial gene content differences (which can be captured by the sequencing breadth
parameter). Sub-species resolution can also be obtained by analysing the reads identified by imGLAD as
representing the target genome in the query metagenome for their SNP pattern against a collection of

genomes related to the target genome, using -for instance- the PathoScope approach (3).

A key advantage of imGLAD is that the training step is easily customizable; thus, the algorithm can be
optimized to evaluate samples of different microbial community complexity and co-occurring relatives of
varied genetic similarity to the target organism as well as different target genomes. For instance, more
complex communities can be simulated in the training step by including a higher number of different
genomes in the training datasets (200 genomes by default) and/or with different species abundance

distributions, e.g., power law as opposed to equal abundances (default setting). We have also found that
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training datasets with 200 genomes work well for most natural communities of medium-to-high complexity
while increasing the number of genomes only marginally increased the specificity or sensitivity of iImGLAD
(Suppl Fig 6 & 7), in general, especially given the extra computational time required. Specifically, our
assessment showed that if the richness of the targeted microbial community (i.e., number of 95% ANI
defined species or clusters) is within one order of magnitude of the number of genomes used in the
training (i.e., 1 through 2000 species, for 200 genomes in the training datasets), the estimated imGLAD
models are robust. Hence, the default number of genomes (n=200) should work for most microbial
communities, and smaller number of genomes could be used for less complex communities (e.g., n=100).
Moreover, analysing the target metagenome with profiling tools such as MethaPlan and MyTaxa (5,12) in
advance can provide the end user with pertinent information on the taxonomic composition of the target
community. This information can guide the selection of the genomes used for the training datasets so that
close relatives, when present in the metagenome, can be included for more robust results (e.g., Figure. 5).
Further, imGLAD allows one to include new target genomes, including draft assemblies, in the training
datasets, with little effort, which may be important for practical applications. Thus, the training step of
imGLAD can be optimized with specific microbial communities or habitats in mind such as the human gut
and provide comparable, if not better results than tools that are already optimized for these communities.
In contrast, most tools available require time and CPU-intensive updates of their reference databases to
include new targets. Similarly, iImGLAD can be easily optimized for different sequencing technologies as
long as the training datasets are produced with reads simulating these technologies. This flexibility of
imGLAD is an important advantage because the tenet "one approach fits all" does not apply well in the
case of microbial detection in environmental samples, which are typically characterized by different
degrees of microbial community complexity and co-occurring (non-target) relatives and are often

sequenced based on different strategies nowadays.
CONCLUSIONS

The decreasing costs of sequencing as well as technological improvements in sequencing throughput
and read length make it possible to use metagenomics to track specific bacterial populations in time series
data or monitor the presence of pathogens in clinical or environmental samples. As studies with a focus on
metagenomic datasets continue to increase, the need for fast, reliable and flexible bioinformatics analysis
tools to detect and characterize target populations will also continue to grow, particularly in cases where
isolation is not possible or is expensive. iINGLAD represents an effective way to accomplish this objective
and to robustly evaluate the limitations of the underlying sequencing technology or effort. imGLAD's
default settings should work for most target microbial communities and genomes, and the results
presented here represent a guide for further optimization depending on the specific goals of the study and
the samples analysed. Therefore, we anticipate that imGLAD will find applications across the fields of

clinical and environmental microbiology.

AVAILABILITY

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26515v1 | CCO Open Access | rec: 13 Feb 2018, publ: 13 Feb 2018




431
432

433

434
435

436

437

imGLAD is open source software available in the GitHub repository

(https://github.com/jccastrog/imGLAD).
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FIGURE LEGENDS

Figure 1. Schematic representation of inGLAD's pipeline. inGLAD has two main components. The
first part (training) consists of a learning procedure, in which a set of in-silico generated datasets are fitted
through a logistic model that aims to separate positive from negative datasets. For this, a database of 200
genomes is used to generate the simulated lllumina reads of these datasets. Reads simulated from the
target genome are then incorporated into half of the simulated datasets. The resulting datasets are
marked as positive for training while the other half is marked as negative. Sequencing depth and breadth
of the target (reference) genome are calculated for each dataset. A logistic function is then fitted to the
data to separate positive from negative examples. The regression parameters are stored for further use.
The second part (estimation) consists of estimating the sequencing breadth and/or depth values of the
target genome provided by the (recruited) reads of the experimental metagenomes, and comparison of the

derived sequencing depth and breadth values to those of the logistic function from the training step.

Figure 2. Identification of target genomes in metagenomic datasets with imGLAD. Positive datasets
(crosses) are separated form negative datasets (dots) through a logistic function (solid line) based on in-
silico training datasets. (A) Datasets with reads of E. coli are separated form negative datasets. (B)
Datasets with reads of B. anthracis are separated form negative datasets. Red asterisks denote the
position of the experimental metagenomes (remaining dots represent in-silico generated datasets). Note

the differences in scale on the x-axes between positive and negative datasets.

Figure 3. Performance of imGLAD in comparison to Pathoscope, MetaPhlAn and MetaMLST. (A)
in-silico synthesized datasets from 200 RefSeq genomes were spiked with E. coli EC11 reads at different
abundances (reflected by sequencing breadth, x-axes) to test the sensitivity of iImGLAD (y-axes), i.e., the
proportion of properly classified positive datasets among the total number of positive datasets. (B) Similar
comparisons based on 571 datasets from the HMP project, which did not contain any E. coli signal and
were spiked with different concentrations of E. coli EC11 reads. (C) imGLAD was evaluated in the same
datasets as in panel A but this time the datasets included, in addition to the RefSeq genomes, 10 E. coli
genomes with ANI ranging between 95-98% to the target E. coli EC11 genome spiked in at the same
concentration (i.e., 0.3X). Note that as sequencing breadth increases the sensitivity of the prediction is
higher for all tools tested, with the exception of MetaMLST that requires at least 2X sequencing depth for
robust detection (see text for details). However, imnGLAD can effectively classify samples at 100%
sensitivity (as positive samples in this case) with a sequencing breadth as low as 0.03 (i.e., 3% of the
target genome recovered) or less, whereas the other tools show lower sensitivity at these levels in all

cases evaluated.

Figure 4. Effect of filtering of less informative genes by MyTaxa on minimum sequencing breadth
and depth. Genome regions of the E. coli target genome were classified by MyTaxa, and regions with low
scores (bottom 5%) or no scores because the corresponding genes were not indexed by MyTaxa were
excluded from further analysis (filtered genome). Note that detection limit for the filtered genome (dashed

line) is lower than the unfiltered genome (solid line).
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Figure 5. Detection limits when co-occurring relatives are present. Negative and positive examples
were constructed using default inGLAD settings except that closely related (non-target) genomes to the
target genome at three levels of ANI, i.e., 95-98% (dotted and dashed line), 90-95% (dashed line), and 80-
90% (solid line) were included in the datasets. 20 genomes of relatives were used at each ANI level, e.g.,
20 E. coli genomes showing between 95 and 98% ANI to the target E. coli O157-H7 strain were used in
the first set. Note that as relatedness increases, the fraction of the genome required for making a
confident decision also increases since negative datasets (that include the relatives) have higher values of
sequencing depth, which causes the decision line to have even a positive slope for the 95-98% ANI set
and thus, the estimated detection limit to not be reliable. In the latter case, the detection limit should be
calculated based on a cross-validation approach (grey lines; see text for details), which can provide more
reliable estimates of model parameters and thus, relative abundance and detection limit. For relatives
showing ANI lower than 95% identity to the target, cross-validation was not necessary (e.g., grey and

black lines coincided).
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Figure 1(on next page)

Schematic representation of imGLAD's pipeline.

imGLAD has two main components. The first part (training) consists of a learning procedure,
in which a set of in-silico generated datasets are fitted through a logistic model that aims to
separate positive from negative datasets. For this, a database of 200 genomes is used to
generate the simulated lllumina reads of these datasets. Reads simulated from the target
genome are then incorporated into half of the simulated datasets. The resulting datasets are
marked as positive for training while the other half is marked as negative. Sequencing depth
and breadth of the target (reference) genome are calculated for each dataset. A logistic
function is then fitted to the data to separate positive from negative examples. The
regression parameters are stored for further use. The second part (estimation) consists of
estimating the sequencing breadth and/or depth values of the target genome provided by
the (recruited) reads of the experimental metagenomes, and comparison of the derived

sequencing depth and breadth values to those of the logistic function from the training step.
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Figure 2 (on next page)

Identification of target genomes in metagenomic datasets with imGLAD.

Positive datasets (crosses) are separated form negative datasets (dots) through a logistic
function (solid line) based on in-silico training datasets. (A) Datasets with reads of E. coli are
separated form negative datasets. (B) Datasets with reads of B. anthracis are separated form
negative datasets. Red asterisks denote the position of the experimental metagenomes
(remaining dots represent in-silico generated datasets). Note the differences in scale on the

x-axes between positive and negative datasets.
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Figure 3(on next page)

Performance of imGLAD in comparison to Pathoscope, MetaPhlAn and MetaMLST.

(A) in-silico synthesized datasets from 200 RefSeq genomes were spiked with E. coli EC11
reads at different abundances (reflected by sequencing breadth, x-axes) to test the
sensitivity of imGLAD (y-axes), i.e., the proportion of properly classified positive datasets
among the total number of positive datasets. (B) Similar comparisons based on 571 datasets
from the HMP project, which did not contain any E. coli signal and were spiked with different
concentrations of E. coli EC11 reads. (C) imGLAD was evaluated in the same datasets as in
panel A but this time the datasets included, in addition to the RefSeq genomes, 10 E. coli
genomes with ANI ranging between 95-98% to the target E. coli EC11 genome spiked in at
the same concentration (i.e., 0.3X). Note that as sequencing breadth increases the sensitivity
of the prediction is higher for all tools tested, with the exception of MetaMLST that requires at
least 2X sequencing depth for robust detection (see text for details). However, imGLAD can
effectively classify samples at 100% sensitivity (as positive samples in this case) with a
sequencing breadth as low as 0.03 (i.e., 3% of the target genome recovered) or less,

whereas the other tools show lower sensitivity at these levels in all cases evaluated.
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Figure 4 (on next page)

Effect of filtering of less informative genes by MyTaxa on minimum sequencing breadth
and depth.

Genome regions of the E. coli target genome were classified by MyTaxa, and regions with low
scores (bottom 5%) or no scores because the corresponding genes were not indexed by
MyTaxa were excluded from further analysis (filtered genome). Note that detection limit for

the filtered genome (dashed line) is lower than the unfiltered genome (solid line).
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Figure 5(on next page)

Detection limits when co-occurring relatives are present.

Negative and positive examples were constructed using default imGLAD settings except that
closely related (non-target) genomes to the target genome at three levels of ANI, i.e., 95-
98% (dotted and dashed line), 90-95% (dashed line), and 80-90% (solid line) were included in
the datasets. 20 genomes of relatives were used at each ANI level, e.g., 20 E. coli genomes
showing between 95 and 98% ANI to the target E. coli 0157-H7 strain were used in the first
set. Note that as relatedness increases, the fraction of the genome required for making a
confident decision also increases since negative datasets (that include the relatives) have
higher values of sequencing depth, which causes the decision line to have even a positive
slope for the 95-98% ANI set and thus, the estimated detection limit to not be reliable. In the
latter case, the detection limit should be calculated based on a cross-validation approach
(grey lines; see text for details), which can provide more reliable estimates of model
parameters and thus, relative abundance and detection limit. For relatives showing ANI lower
than 95% identity to the target, cross-validation was not necessary (e.g., grey and black lines

coincided).
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Table 1(on next page)

Samples inoculated with different cell concentrations of E. coli (1** column) were
classified by imGLAD as present/positive or absent/negative.

The calculated breadth of the E. coli reference genome recovered (2™ column) and the
sequencing depth (3 column) as well as the derived probability of presence (4™ column) are
shown. All samples were found positive for presence of E. coli (p-value = 0.004) except the

control sample without inoculated E. coli cells.
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Table 1. Samples inoculated with different cell concentrations of E. coli (1% column) were

classified by imGLAD as present/positive or absent/negative.

Sample Sequencing Sequencing depth  E. coli presence
breadth (p-value)
Control 0.007 0.042 0.847
80 Cells 0.239 0.262 0.004
8 x 10° Cells 0.463 0.639 7.1 X10*
8 x 10° Cells 0.993 3.683 1X10°

The calculated breadth of the E. coli reference genome recovered (2™ column) and the sequencing
depth (3™ column) as well as the derived probability of presence (4" column) are shown. All samples
were found positive for presence of E. coli (p-value = 0.004) except the control sample without
inoculated E. coli cells.
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Table 2(on next page)

Soil samples inoculated with different copies of B. anthracis strain Ames genomic DNA
(1** column) were classified by imGLAD as present/positive or absent/negative.

The calculated breadth of the B. anthracis reference genome recovered (2" column) and the
sequencing depth (3 column) as well as the derived probability of presence (4™ column) are
shown. Samples with a number of genome higher or equal to 100 genomes were classified as
positive samples. Samples with 1 and 10 genomic copies were indistinguishable from the

negative samples of the training set.
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Table 2. Soil samples inoculated with different copies of B. anthracis strain Ames genomic

DNA (1% column) were classified by imGLAD as present/positive or absent/negative.

Sample Sequencing breadth Sequencing depth B. anthracis presence
(p-value)
1 Genome 1.56 X 107 20x10° 0.999
10 Genome 0.001 0.003 0.998
100 Genome 0.039 0.128 0.002
10° Genome 0.562 0.732 1.4X10°
10* Genome 0.983 1.563 0
10° Genome 0.999 4.34 0

The calculated breadth of the B. anthracis reference genome recovered (2™ column) and the
sequencing depth (3™ column) as well as the derived probability of presence (4™ column) are shown.
Samples with a number of genome higher or equal to 100 genomes were classified as positive

samples. Samples with 1 and 10 genomic copies were indistinguishable from the negative samples of
the training set.
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