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Accurate detection of target microbial species in metagenomic datasets from

environmental samples remains limited because the limit of detection of current methods

is typically inaccessible and the frequency of false-positives, resulting from inadequate

identification of regions of the genome that are either too highly conserved to be

diagnostic (e.g., rRNA genes) or prone to frequent horizontal genetic exchange (e.g.,

mobile elements) remains unknown. To overcome these limitations, we introduce imGLAD,

which aims to detect genomic sequences in metagenomic datasets. imGLAD achieves high

accuracy because it uses the sequence-discrete population concept for discriminating

between metagenomic reads originating from the target organism compared to reads from

co-occurring close relatives, masks regions of the genome that are not informative using

the MyTaxa engine, and models both the sequencing breadth and depth to determine

relative abundance and limit of detection. We validated imGLAD by analysing

metagenomic datasets derived from spinach leafs inoculated with the enteric pathogen

Escherichia coli O157:H7 and showed that its limit of detection is comparable to that of

PCR-based approaches (~1 cell/gram).
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ABSTRACT

Accurate  detection  of  target  microbial  species  in  metagenomic  datasets  from environmental  samples

remains  limited  because  the  limit  of  detection  of  current  methods  is  typically  inaccessible  and  the

frequency of false-positives, resulting from inadequate identification of regions of the genome that are

either too highly conserved to be diagnostic (e.g., rRNA genes) or prone to frequent horizontal genetic

exchange  (e.g.,  mobile  elements)  remains  unknown.  To  overcome  these  limitations,  we  introduce

imGLAD, which aims to detect genomic sequences in metagenomic datasets.  imGLAD achieves high

accuracy  because  it  uses  the  sequence-discrete  population  concept  for  discriminating  between

metagenomic  reads originating from the  target  organism compared  to  reads  from co-occurring close

relatives, masks regions of the genome that are not informative using the MyTaxa engine, and models

both  the  sequencing  breadth  and  depth  to  determine  relative  abundance  and  limit  of  detection.  We

validated imGLAD by analysing metagenomic datasets derived from spinach leafs inoculated with the

enteric pathogen Escherichia coli O157:H7 and showed that its limit of detection is comparable to that of

PCR-based approaches (~1 cell/gram).
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INTRODUCTION

Assessment of  the minimum amount of  sequencing required for accurate detection of target  bacterial

species  in  a  background  of  a  complex  microbial  community  remains  challenging.  This  problem  has

important practical applications in environmental and  clinical  surveillance studies. Detection limits vary

depending on the sequencing effort and technology (e.g., read length), and the complexity of the microbial

community sampled, and in most cases these parameters or their effects on the limit of detection remain

inaccessible. Experiments with increasing amounts of target DNA added to environmental samples have

been performed in  the past  to  empirically  establish detection limits  [e.g.,  (1)].  However, a theoretical

framework to establish limit of detection based on bioinformatics analysis of metagenomics is still lacking.

Furthermore,  such  empirical  approaches  are  typically  computationally  expensive,  cumbersome,  and

specific to the system tested.

Several  methods  to  evaluate  presence  or  absence  of  bacterial  species  based  on  best  match  or

Bayesian analysis of read mapping patterns against a reference collection of genome sequences such as

Pathoscope  or  Sigma  (2,3)  have  been  recently  developed.  Additionally,  taxonomic  profilers  such  as

MetaPhlAn (4,5)  or  MetaMLST (6)  employ  species-  or  strain-specific  genetic  markers  to  identify  the

different members of the community. However, these approaches rely on Single Nucleotide Polymorphism

(SNPs) pattern differences against reference genes/genomes, which are difficult to robustly determine,

especially in cases of low abundance (i.e., not enough reads available to reliably call SNPs), and are

typically computationally intensive. Importantly, no available tool can detect organisms that are not part of

a reference genome database, and most tools are not easily adaptable to include new target genomes as

references (e.g.,  the tools require re-computation of the -typically large- training datasets or reference

database to include new target organisms). Further, it is not clear how most of these tools perform when

relatives of varying relatedness to the target organisms are co-occurring in the sample, as often is the

case of environmental samples, and whether or not strain-level resolution can be achieved.

Here,  we present imGLAD (in-silico metagenomes for  Genome  Low-Abundance  Detection),  a new

algorithm that incorporates a training step and several computational optimizations in order to address the

abovementioned limitations.  Application of  imGLAD to  metagenomes derived from samples of  known

composition (mock) showed that it  can reliably detect target organisms of interest in a background of

closely related co-occurring relatives and frequently outperforms other methods.

MATERIAL AND METHODS

 Overview of the imGLAD pipeqine

imGLAD assumes that  reads  of  a  metagenomic  dataset  originate  at  random from all  regions  of  the

genome. Thus, the fraction of the genome that is recovered in the dataset (sequencing breadth) as well as

the number of times each region is sequenced (sequencing depth), both depend on the abundance of the
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organism in the community. Highly conserved regions (e.g., rRNA and tRNA genes), as well as regions

resulting from recent horizontal gene transfer (e.g., transposase and integrase genes), can recruit reads

from other non-target genomes and misleadingly increase the value of sequencing depth (and hence,

estimated relative abundance) in some datasets depending on the gene composition of the organisms

present. To address this problem, we developed a framework to identify which fraction of a target genome

corresponds to reads that belong to the target and what fraction is the result of spurious matches. This

framework has two steps: initial training and subsequent prediction (Figure 1). Training set selection can

be automatic or user defined. The automatic training generates reads from a randomly selected number of

genomes (default is 200 genomes) from RefSeq (7), and builds  in-silico-generated datasets of about 1

million reads each. Simulated reads from the target genome(s) are then generated in a similar way and

added to the former datasets in order to create the positive datasets with decreasing target abundances.

Reads from the target genome(s) are omitted for the construction of negative datasets. All other genomes

used to create the datasets are sampled in equal proportions (i.e., even richness). The user can also

choose the genomes to use to generate the training set (e.g., genomes previously known to co-occur in

the same environment). In this case, the construction of the training set will be performed based on these

genomes  rather  than  the  default  genome  collection  from  RefSeq.  Simulated  Illumina-like  reads  are

generated  using  ART-MountRainier  (8)  with  default  settings.  Simulation  of  reads  from  additional

sequencing platforms is provided as an option. Reads from both positive and negative samples are then

recruited against the target genome sequence (reference) using BLAT (9) (or BLAST (10)). By default,

reads with identity higher than 95% and at least 90% of the read length aligned are selected to calculate

sequencing breadth and sequencing depth, after normalizing for the size of  the dataset. This level of

identity  has  been  shown  to  capture  well  the  sequence-discrete  populations  recovered  frequently  in

metagenomes  of  natural  habitats  (11),  although  different  user-defined  cut-offs  can  be  used  as  well.

Sequencing depth (SD) is calculated as the number of reads mapping to the genome (N) multiplied by the

read length (L) divided by the total length of the genome (G), and sequencing breadth (SB) is calculated

as the number of bases covered (B) divided by the total length of the genome as follows.

   

SD=L*N/G                                                                                                                                              (1)

SB=B/G                                                                                                                                                  (2)

A logistic function is fitted to the resulting recruitment data that attempts to separate the positive from

the negative training datasets in terms of sequencing depth and sequencing breadth. The logistic function

is then used to estimate the probability of presence in the prediction step based on the sequencing depth

and/or  breadth  of  the  target  genome in  a  query  (unknown)  metagenome (see  also  below).  imGLAD

includes an additional, optional step in which MyTaxa (10) can be used to identify and mask the reference

genes that do not have robust phylogenetic signals at the species level due either to insufficient diversity

(high sequence conservation) or because of frequently undergoing horizontal gene transfer. This step, in

general, improves results for several datasets and genomes (see for instance Fig 4). 
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Modeq training

The logistic model estimates the probability of presence based on two predictor variables, i.e., sequencing

breadth,  or  a  combination  of  sequencing breadth  and sequencing depth.  Regression  coefficients  are

calculated for these variables as well as for an intercept term and thus, the final model estimates three

parameters, i.e., sequencing depth, breadth and intercept. These parameters are estimated via a training

set  that  consists  of  at  least  200  simulated  metagenome-like  datasets.  These  datasets  include  100

datasets with  the target  genome (positive  samples),  and 100 samples without this  genome (negative

samples).

Construction of training datasets

For each dataset, BLAT (9) is employed to align the reads to the target genome sequence. Alternatively,

BLAST can  be used  to  improve  sensitivity  at  the  expense  of  computational  time (10).  The resulting

alignments are used to calculate the sequencing depth and sequencing breadth of the target genome in

each dataset  using the nucleotide cut-off  mentioned above.  Sequencing breadth is  calculated as the

fraction of bases of the total genome sequence that recruit at least one read (equation 2 above). If the

genome consists of more than one contig (e.g., draft genomes), the length is assumed to be the sum of

the lengths of all contigs. Sequencing depth is calculated in an analogous way by counting the times that

each base of the reference genome sequence is covered by a read, on average (equation 1 above).

Sequencing breadth and depth are subsequently used to calculate the regression parameters of  a

logistic model using log likelihood maximization via gradient, which modifies the parameters values until

the error is minimized. This approach calculates the optimal set of parameters by computing the error in

the training set (i.e., what sequencing breadth and/or depth values are observed for positive vs. negative

samples) and modifying the parameter accordingly to reduce the error until convergence is reached. Final

parameters of the model are estimated by default only based on sequencing breadth, as this variable was

found  to  be  the  most  discriminating  parameter  for  positive  vs.  negative  samples  (see  also  below).

However, an estimation including sequencing depth is also provided as an option in order to produce, in

addition to the probability of presence/absence, an accurate estimation of the abundance of the target

genome.

Probabiqity estimation

Once the logistic model has been built, sequencing breadth can be used to reliably predict the probability

of presence of the target genome in any number of query metagenomes after the reads of the query have

been recruited against the target genome as described above for training datasets. The probability of

presence is estimated according to:

p=12
1

12e
2z

                                                                                                                                               (3)
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Where z is a linear function of the form ³Tt, ³ represents the regression parameters and t is either a

vector  composed  of  the  sequencing  depth  (d)  and  sequencing  breadth  (b)  or  by  default,  a  one-

dimensional variable corresponding to  b. Based on the model parameters, it is possible to establish a

detection limit for the target genome in each metagenomic dataset analysed. This limit is defined as the

minimum fraction (sequencing breadth) that needs to be sampled in order to estimate a probability of

presence at 0.95. The result is displayed as a black solid line in a 2D plot of sequencing breadth and

sequencing depth (e.g., Figure 2). The sequencing depth value observed based on the read recruitment,

when corresponding to a probability value equal or higher to 0.95, is then used to estimate the relative

abundance of the organism in the sample. The sequencing depth corresponding to 0.95 probability then

provides the limit of detection in terms of relative abundance.

Fiqtering of conserved regions

To avoid  spurious results  from reads mapping on conserved or  highly  mobile  regions  of  the  (target)

genome, the user can create a filter for these regions using MyTaxa. This filter is created by predicting

genes in  the target  genome and determining their  classification weight  using MyTaxa.  If  the MyTaxa

classification score is at the bottom 5% or the gene is not scored (e.g., some hypothetical proteins), the

gene  is  removed  from  the  genome  and  further  analysis.  The  filtered  version  of  the  genome  is

subsequently used for the model training and probability estimation steps.

Parameters of software used

MetaPhlAn V2 (5) was run with the default settings using Bowtie version 2.2.8 (13) for read mapping.

MetaMLST (6) was used with default settings. PathoScope 2.0 (3) was run with default settings, using the

same set of reference genomes that were used to build the training datasets for imGLAD.

Four tests were performed to assess specificity and sensitivity. In all cases, sensitivity was calculated

as the proportion of properly classified positive datasets among the total number of positive datasets.

Specificity was defined instead as the fraction of correctly identified negative datasets among all negative

datasets examined. For the first test, metagenomic datasets were created with similar parameters to the

training dataset of  E. coli (i.e., 100 datasets from RefSeq genomes). These datasets were spiked with

seven different concentrations of the E. coli genome, ranging from 1% to 7%. In the second test, Human

Microbiome Project (HMP) metagenomes were spiked with reads from the E. coli ranging from 1% to 7%

relative abundance. 571 HMP datasets were used for each  E. coli concentration. In the third test, the

datasets constructed in test 1 were spiked with reads from close relatives of E. col, i.e., Klebsiella (81%

ANI),  Salmonella  (82% ANI), and  Escherichia fergusoni (92% ANI), at random concentrations for each

genome  in  addition  to  the  E.  coli reads.  Finally,  a  test  using  close  relatives,  e.g.,  >95%  ANI,  was

performed in the HMP datasets in a similar way as described above for test #3.

Leaf inocuqation experiments to test imGLAD
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Fifty  grams  of  field  grown  spinach  leaves  were  inoculated  (spiked  in)  with  cells  of  Escherichia  coli

O157:H7 strain RM6067, a strain linked to the 2006 spinach-associated outbreak in the U.S.A (14). Three

serial dilutions were performed resulting in three inoculation concentrations: 80, 8 x 10 3 and 8 x 105 cells

per pellet, plus a control sample with no inoculated cells. Cells for inoculation were obtained from single

colonies that were grown overnight, and cell concentrations were determined by enumeration of colony

forming units (CFUs) on LB agar plates. Leaves were subsequently washed, the leaf wash was filtered to

remove plant debris, and leaf-associated microorganisms were pelleted by centrifugation at 10,000g for 10

min at 4°C. DNA extraction was performed using MoBio UltraClean Microbial DNA isolation kit according

to manufacturer9s instruction (MoBio).

DNA sequencing libraries were prepared using the Illumina Nextera XT DNA library prep kit according

to manufacturer9s recommendations, except that the protocol was terminated after isolation of cleaned

amplified double stranded libraries. Library concentrations were determined by fluorescent quantification

using a Qubit HS DNA kit and Qubit 2.0 fluorometer (ThermoFisher Scientific, formerly Life Technologies)

according to manufacturer's recommendations and libraries were run on a High Sensitivity DNA chip using

the Bioanalyzer 2100 instrument (Agilent) to determine average library insert sizes. An equimolar mixture

of the libraries (final loading concentration of 11 pM) was sequenced using a MiSeq reagent v3 kit for 600

cycles  (2  x  300  bp  paired  end  run)  on  an  in-house  Illumina  MiSeq  instrument  (Georgia  Institute  of

Technology), running the MiSeq control software v2.4.0.4 (MCS). Adapter trimming and demultiplexing of

sequenced samples was carried out by the MCS. Additionally, we used metagenomic datasets inoculated

with Bacillus anthracis DNA, which were made available previously (1).

Avaiqiabiqity and dependencies of imGLAD

imGLAD is available through  http://enve-omics.ce.gatech.edu/imGLAD/. Source code is available under

GNU General Public License v3.0 https://github.com/jccastrog/imGLAD. imGLAD execution requires BLAT

or BLAST to be installed, ART and the Python modules "scipy", "numpy", "screed", "statsmodels", and

"Bio".

RESULTS

Training set for E. coli and B. anthracis

We evaluated imGLAD's performance on training datasets with  E. coli strain O157:H7 EC4115, a strain

almost genetically identical to RM6067 used in the spinach inoculation experiments, i.e., >99.9% average

nucleotide identity  (or  ANI),  and  B. anthracis strain  Ames as target  genomes.  The datasets included

closely related species of the same genus with ANI around 95% or lower (Figure 1; see also below for

evaluation of the effect of relatedness of co-occurring genomes), which corresponds to the frequently used

standard  for  species  demarcation  (15)  and  encompass  the  sequence-discrete  populations  recovered

frequently in metagenomes of natural habitats (11). Although the predicted detection limit (from the training

step) varied slightly for each species, it was always possible to have confident detection (probability of

presence >99%) when sequencing breadth was about 0.03 (or 3% of the total genome) or more based on
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the training datasets used (Figure 2 & Table 1). The model for  E. coli was able to accurately separate

positive from negative samples (probability of presence >95%) to a minimal value of sequencing breadth

of 0.01 (Figure 2A).

The logistic models from the training datasets were then applied to metagenomic datasets originating from

environmental  samples,  spiked-in  with  the  target  genome  (see  Materials  and  Methods  for  details).

Samples from spinach leaf surface spiked with different concentrations of  E. coli strain O157:H7 cells

were sequenced at about 1-2 Gbp/sample on an Illumina Mi-Seq platform. Four different concentrations

were tested, three with different inoculum concentrations, 80, 8 x 103 and 8 x 105 target E. coli cells per

leaf microbiome that was recovered from 100g of spinach leaf material, and a negative control (no cells

were spiked in; although E. coli cells might have been present in the background leaf microbial community

in low concentrations). The model was able to detect the target E. coli genome in all samples, even as low

as 80 cells (Table 1). For the negative control, imGLAD provided values of sequencing breadth (0.007)

and sequencing depth (0.042) that were consistent with the values of negative samples in the training set,

i.e., the target genome was not present at the limit of detection of the approach (Figure 2A; p-value for

presence:  0.847,  Table  1).  The  matching  reads in  this  case  probably  originated  from natural  E.  coli

populations present on the spinach leaves at low abundance or close relatives and/or spurious matches

(Suppl Fig 1).

The datasets made available by Be and colleagues consisted of a soil microbial community DNA sample

spiked with known quantities (genome equivalents) of DNA of  B. anthracis strain Ames (Table 2), and

sequenced using the Illumina technology (1). A training set for B. anthracis was built in a similar way to the

E. coli set; however, genomes that belong to Bacillus cereus were excluded from the training dataset in

this case as they show ANI values higher than 95% to  B. anthracis. Based on the training datasets, a

slightly higher limit of detection than the one for E. coli was obtained (probability of presence >95%), with

a minimum value of sequencing breadth of 0.039 (Figure 2B). Among the 6 samples tested, a significant

probability of presence (p > 99%) was obtained in samples with 100 (3.8% of the genome recovered),

1,000 (56.2%), 104 (98.3%), and 105 (99.9%) B. anthracis genomes. The samples with lower genome copy

number (1 and 10 genomes) were not identified as positive. Manual inspection of the number and position

of matching reads to the  B. anthracis reference genome in the latter two datasets revealed about 2000

reads for the 10 genome copy dataset and about 4000 reads for the 1 genome copy dataset, i.e., more

reads were obtained with the lower abundance dataset, indicating spurious matches (each dataset was on

average 5.6 Gbp in size).  Further, the reads were concentrated in a few regions of  the genome (not

randomly distributed), which was indistinguishable from negative datasets (Table 2, Figure 2B, and Suppl

Fig 2). Thus, it appears that the B. anthracis genomes might not have been sequenced adequately in the

low copy number datasets. This interpretation is also consistent with estimates that 100 Gbp or more are

required to cover the complete genome diversity within typical soil microbial communities as described

previously (16) and the conclusions of the original study by Be and colleagues.

Comparison to other tooqs 
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We compared the performance of imGLAD with other available platforms that can be used to identify the

taxa present in the sample. It should be pointed out, however, that these tools do not target a specific

organism/genome of interest but instead assess the total microbial community composition and thus, their

objective is slightly different than imGLAD's. Nonetheless, we were able to obtain meaningful results by

comparing  imGLAD  with  popular  tools  for  these  purposes  such  as  MetaPhlAn,  MetaMLST,  and

Pathoscope, which illustrated the advantages of imGLAD. In the E. coli and B. anthracis metagenomes

described  above,  imGLAD  provided  higher  sensitivity  than  other  tools,  especially  at  low  levels  of

sequencing  breadth.  For  instance,  with  2% of  the  genome covered  by  sequencing  reads  in  training

datasets,  imGLAD can accurately classify as positive 95% of the datasets,  whereas Pathoscope and

MetaPhlAn can classify only about 47% and 16% of the datasets, respectively. Only when sampling 7% of

the genome or more, did these tools yield similar results to imGLAD (Figure 3A). It should be noted that

7% is more than twice the genome breadth (i.e., 3% of the genome) that imGLAD required to reach 100%

classification  sensitivity. Comparisons  against  available  tools  that  require  higher  target  abundance  to

make confident calls such as ConStrains (17) were not attempted as this would have been an unfair

comparison.

Additionally, we used a set of 571 metagenomic datasets of the HMP project (http://www.hmpdacc.org/), in

which different concentrations of E. coli (target organism) reads were spiked to further test the specificity

of  imGLAD against  a  naturally  occurring  background  community  (as  opposed  to  in-silico generated

datasets) (Figure 3B). The datasets were selected because they did not have any detectable amounts of

E. coli by any of the three tools to confound results. MetaPhlAn, which is optimized for human-associated

microbial communities, had better performance when tested against these HMP datasets relative to the E.

coli or  B. anthracis datasets mentioned above.  However, MetaPhlAn still  required at  least  5% of  the

genome  to  be  recovered  in  order  to  provide  high  confidence  (positive)  detection  whereas  imGLAD

achieved similar confidence with only 3% of the genome. Hence, imGLAD's performance is  superior,

especially in cases of low abundance of the target genome(s).

Improved detection was also observed in in-silico synthesized datasets that included close relatives (ANI

greater  than 95% up to 98% compared to the target),  although a larger  fraction of  the genome was

typically required in these cases (~7%) in order to achieve high specificity and sensitivity by imGLAD.

PathoScope and MetaPhlAn required an even higher fraction (at least 10%) of the target genome for

comparable specificity and sensitivity (Figure 3C; Suppl Fig 3 shows similar results but the background

metagenome was HMP instead of the in-silico synthesized datasets). In all cases high specificity (>97%)

was achieved by imGLAD, which resulted in a low false positive rate (i.e., <3%). In comparison, the other

three tools never reached higher than 90% specificity on the same four tests (Suppl Fig 4 & 5).

Fiqtering of conserved regions

In addition to creating a model using the whole genome, regions of the genome that provide a less reliable

phylogenetic signal (e.g., regions that are highly conserved or contain mobile elements; see Material and

Methods for details) can be identified by MyTaxa and removed/masked so that the prediction and/or the
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training steps can be repeated with the filtered genome for more accurate results. Filtering in general,

improved the detection limit because reads mapping on masked regions were not counted (Figure 4). For

instance, filtering lowered the minimum sequencing depth required for robust detection from 0.123 (no

filtering applied) to 0.061 (p-value < 0.05) in the training datasets for E. coli. The reduction in sequencing

breadth however was not as dramatic as sequencing depth (e.g., 0.014 to 0.009 for the same datasets).

The larger effect of filtering on sequencing depth than breadth was presumably attributable to the fact that

filtering typically  removed only  a  small  part  of  the target  genome (i.e.,  <5% by default  settings)  that

recruited a disproportionally high number of reads encoding highly conserved or frequently transferred

genes. This interpretation is also consistent with the sigmoidal relationship between sequencing depth and

breadth, which tends to flatten at high values of sequencing depth and becomes linear at lower values

(18). Hence, filtering with MyTaxa is recommended, in general.

Effect of reqatedness of co-occurring genomes and strain-qeveq resoqution

When building the training set, the user is able to add any non-target genomes that could be relevant for

optimizing detection of the target genome such as genomes that are known to be present and relatively

abundant in the sample or closely related species that should not contribute positive signal (i.e., reads

mapping on shared regions of the genome). In general, imGLAD's sequencing breadth and/or depth for

positive detection (i.e., the detection limit) was expected to be higher with higher relatedness of the non-

target genomes in the training set to the target genome. For instance, we tested three different training

sets that included relatives at different levels of ANI to the target genome, i.e., 95-98% (within species

resolution),  90-95%  (resolution  between  closely  related  species),  and  80-90%  (resolution  between

moderately related species). Consistent with our expectations, higher sequencing depth and breadth were

required for robust detection when relatives showing 95-98% ANI to the target co-occurred in the training

dataset compared to relatives showing 90% or 80% ANI. This is due to the fact that more conserved

and/or identical regions are present in the genome of the former relative to the latter. In fact, when co-

occurring relatives were members of  different species than the target species (i.e.,  show <95% ANI),

imGLAD's limit of detection was very similar to that of the training datasets without close relatives, i.e., 3%

of the genome needed to be recovered for confident detection in most cases. When genomes of the same

species were present (i.e., show 95-98% ANI), at least 10-12% of the genome was required, depending on

the  exact  genomes  considered  and  their  relatedness  (Figure  5).  Furthermore,  as  the  relatedness

increased, the contribution of the sequencing depth metric became less important. In fact, in some training

datasets where close relatives with high identity to the target genome (95% ANI or higher) were present

and in relative high abundance, the estimated parameters showed high variation during the training step

and resulted, for instance, in a positive slope between sequencing breadth and depth, which was not

reliable for estimating relative abundance and detection limit (Figure 5, black dotted and dashed line). In

such cases, imGLAD can be customized to perform a cross-validation analysis in order to derive more

robust parameters. Under this configuration, imGLAD generates a 10-fold larger training dataset, which is

subsequently divided into ten subsets. Each subset is used independently to fit the model parameters.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26515v1 | CC0 Open Access | rec: 13 Feb 2018, publ: 13 Feb 2018



The mean value for each parameter is taken as the consensus value and used to establish the relative

abundance and detection limit (Figure 5, grey dotted and dashed line).

In summary, gene-content differences among the target genome and the co-occurring, non-target close

relatives  become  increasingly  more  important  for  robust  detection  in  cases  where  the  non-target

genome(s) show increasing genetic relatedness to the target. Strain-level resolution was achievable by

imGLAD  in  such  cases,  and  the  resolving  power  decreased  with  smaller  gene-content  differences

between  target  and  non-target  genomes.  Hence,  training  with  close  relatives,  and  possibly  cross-

validation analysis, are important for more stringent results, especially in cases that the close relatives are

known or highly anticipated to co-occur in the same samples with the target organism.

DISCUSSION

We presented  imGLAD,  a  novel  algorithm that  utilizes  a  logistic  model-based  learning  approach  for

accurate detection of target bacterial species in complex metagenomes, and for establishing detection

limits in a target species- and microbial community-specific manner. By building and analysing training

datasets with decreasing abundances of spiked-in reads originating from the target genome, imGLAD

allows  for  highly  reliable  calls,  while  reducing the  number  of  false  positives  (Figure  2).  Further,  and

contrary to available tools, imGLAD allows for reliable estimation of the detection limit of the metagenomic

sequencing effort applied based on the training datasets of decreasing target genome abundance and a

linear  combination  of  both  genome  sequencing  depth  and  genome  sequencing  breadth,  or  only

sequencing breadth. The degree of sequence conservation of the genes of the target genome and their

extent of horizontal gene transfer are also taken into account in estimating the limit of detection, which

represents a substantial advantage over existing tools in minimizing false-positive calls. The results using

both  simulated  datasets  (e.g.,  Figure  2)  as  well  as  experimental  metagenomes  (Tables  1  and  2)

highlighted these advantages of imGLAD. However imGLAD is not designed to detect all species present

in a sample. Thus, it differs from taxonomic profiling software, and is computationally more expensive, due

to the training step, if the goal is to detect more than a couple of targets. Rather, the goal of imGLAD is to

provide highly accurate detection of  specific, user-provided target species (e.g.,  pathogens),  including

newly sequenced genomes. Further, imGLAD's logistic model, while computationally demanding to create

(e.g.,  building  in-silico training datasets),  need  to  be built  only  once  and  can  subsequently  be  used

multiple times, such as with different metagenomes. This way, imGLAD could be used to detect several

target organisms in an environmental sample (by building a model for each target).

A distinguishing strength of imGLAD is the detection of low abundance target genomes. Current tools

for metagenomic profiling use specific markers or SNP patterns to identify and classify the species present

in the sample [e.g., (4)]. However, at low levels of abundance, these markers may not be found, and SNPs

cannot be called, and in some cases, the SNPs are called incorrectly such as in the case of MetaMLST

(6), which requires high abundances (above 2X) to make confident calls and thus, performed poorly in the

tests we conducted compared to other tools or imGLAD (e.g., Fig 3). Our approach is not focused on a

particular region of the genome, but instead takes into account the whole genomic context. This provides
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higher  recall  while  preserving  precision  (Figure  3  &  Suppl  Fig  4).  Further,  methods  based  on  read

assignment  depend on the  comprehensiveness  of  their  reference  database  and  do  not  provide  high

precision when challenged with  samples  containing closely-related  species  (3).  Accordingly, the tools

evaluated  here  provided  high  false  positive  rates  in  such  cases  (Suppl  Fig  4  &  5),  which  can  be

concerning,  for  instance,  in  pathogen surveillance studies and environmental  samples,  where closely

related strains of the same species may co-occur. imGLAD can provide reliable prediction even in such

cases, although at the expense of a lower detection limit, assuming the close relatives are known and

available and, hence, can be used as part of the training step as exemplified in the E. coli case above.

However, if the query metagenome(s) include relatively abundant, non-target genomes more related to the

target genome than any of the genomes used to construct the training datasets, then the predictions of

imGLAD (or  other tools)  might not  be highly accurate.  In such cases, the user needs to recover the

genome sequences of the relatives from the metagenome(s) using genome binning techniques, if  the

representative sequences are not available otherwise, in order to include them in the training dataset. The

results presented here (e.g., Figure 3A & Figure 5) provide a quantitative picture of this issue and its

consequences on the accuracy of imGLAD as well as other tools.

Electrochemical immunoassays have shown promise in detecting pathogens such as  B. anthracis or

their toxins, and can sometimes offer strain-level resolution. The limit of detection of these techniques can,

in some cases, be ~1pg/ml (19), which is below the limit of detection of imGLAD (56 pg/ml-560 pg/ml

corresponding to 10-100 cells, respectively) based on the  E. coli spike in experiment on spinach and

current best practices for metagenomic sequencing and the samples analysed here. Thus, immunoassays

and culture-based approaches are still  more sensitive than metagenomics, at least for highly complex

metagenomes such as those of soils (but probably not as much for food and agricultural samples, the

human gut or habitats of similar complexity), and could be used in combination with tools like imGLAD for

more reliable and comprehensive results. A key advantage of imGLAD is that it has high specificity, which

sometimes cannot be achieved by immunoassays or culture-based approaches. It should be noted that

imGLAD might be able to offer resolution within species as well, e.g., by including in the training dataset

genomes that are members of the same species but show sequence divergence from the target genome

higher than that of the sequencing errors (e.g., 99% ANI or less, assuming a sequencing error of <1%)

and/or  have substantial  gene content differences (which can be captured by the sequencing breadth

parameter). Sub-species resolution can also be obtained by analysing the reads identified by imGLAD as

representing the target genome in the query metagenome for their SNP pattern against a collection of

genomes related to the target genome, using -for instance- the PathoScope approach (3).

A key advantage of imGLAD is that the training step is easily customizable; thus, the algorithm can be

optimized to evaluate samples of different microbial community complexity and co-occurring relatives of

varied genetic similarity to the target organism as well as different target genomes. For instance, more

complex communities can be simulated in the training step by including a higher number of  different

genomes in  the  training datasets (200  genomes by default)  and/or  with  different  species  abundance

distributions, e.g., power law as opposed to equal abundances (default setting). We have also found that
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training datasets with 200 genomes work well for most natural communities of medium-to-high complexity

while increasing the number of genomes only marginally increased the specificity or sensitivity of imGLAD

(Suppl Fig 6 & 7), in general,  especially given the extra computational time required. Specifically, our

assessment showed that if the richness of the targeted microbial community (i.e., number of 95% ANI

defined species or clusters) is within one order of  magnitude of  the number of  genomes used in the

training (i.e., 1 through 2000 species, for 200 genomes in the training datasets), the estimated imGLAD

models  are  robust.  Hence,  the  default  number  of  genomes  (n=200)  should  work  for  most  microbial

communities, and smaller number of genomes could be used for less complex communities (e.g., n=100).

Moreover, analysing the target metagenome with profiling tools such as MethaPlan and MyTaxa (5,12) in

advance can provide the end user with pertinent information on the taxonomic composition of the target

community. This information can guide the selection of the genomes used for the training datasets so that

close relatives, when present in the metagenome, can be included for more robust results (e.g., Figure. 5).

Further, imGLAD allows one to include new target genomes, including draft assemblies, in the training

datasets, with little effort,  which may be important for practical applications. Thus, the training step of

imGLAD can be optimized with specific microbial communities or habitats in mind such as the human gut

and provide comparable, if not better results than tools that are already optimized for these communities.

In contrast, most tools available require time and CPU-intensive updates of their reference databases to

include new targets. Similarly, imGLAD can be easily optimized for different sequencing technologies as

long as the training datasets are produced with reads simulating these technologies. This flexibility of

imGLAD is an important advantage because the tenet "one approach fits all" does not apply well in the

case  of  microbial  detection  in  environmental  samples,  which  are  typically  characterized  by  different

degrees  of  microbial  community  complexity  and  co-occurring  (non-target)  relatives  and  are  often

sequenced based on different strategies nowadays.

CONCLUSIONS

The decreasing costs of sequencing as well as technological improvements in sequencing throughput

and read length make it possible to use metagenomics to track specific bacterial populations in time series

data or monitor the presence of pathogens in clinical or environmental samples. As studies with a focus on

metagenomic datasets continue to increase, the need for fast, reliable and flexible bioinformatics analysis

tools to detect and characterize target populations will also continue to grow, particularly in cases where

isolation is not possible or is expensive. imGLAD represents an effective way to accomplish this objective

and to  robustly  evaluate  the  limitations  of  the  underlying  sequencing technology  or  effort.  imGLAD's

default  settings  should  work  for  most  target  microbial  communities  and  genomes,  and  the  results

presented here represent a guide for further optimization depending on the specific goals of the study and

the samples analysed. Therefore, we anticipate that imGLAD will find applications across the fields of

clinical and environmental microbiology.
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imGLAD  is  open  source  software  available  in  the  GitHub  repository

(https://github.com/jccastrog/imGLAD).
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FIGURE LEGENDS

Figure 1. Schematic representation of imGLAD's pipeqine. imGLAD has two main components. The

first part (training) consists of a learning procedure, in which a set of in-silico generated datasets are fitted

through a logistic model that aims to separate positive from negative datasets. For this, a database of 200

genomes is used to generate the simulated Illumina reads of these datasets. Reads simulated from the

target  genome are  then  incorporated  into  half  of  the  simulated  datasets.  The  resulting  datasets  are

marked as positive for training while the other half is marked as negative. Sequencing depth and breadth

of the target (reference) genome are calculated for each dataset. A logistic function is then fitted to the

data to separate positive from negative examples. The regression parameters are stored for further use.

The second part (estimation) consists of estimating the sequencing breadth and/or depth values of the

target genome provided by the (recruited) reads of the experimental metagenomes, and comparison of the

derived sequencing depth and breadth values to those of the logistic function from the training step.

Figure 2. Identification of target genomes in metagenomic datasets with imGLAD. Positive datasets

(crosses) are separated form negative datasets (dots) through a logistic function (solid line) based on in-

silico training datasets.  (A)  Datasets with  reads of  E. coli are  separated form negative datasets.  (B)

Datasets with  reads of  B. anthracis are  separated form negative datasets.  Red asterisks  denote the

position of the experimental metagenomes (remaining dots represent in-silico generated datasets). Note

the differences in scale on the x-axes between positive and negative datasets.

Figure 3. Performance of imGLAD in comparison to Pathoscope, MetaPhqAn and MetaMLST.  (A)

in-silico synthesized datasets from 200 RefSeq genomes were spiked with E. coli EC11 reads at different

abundances (reflected by sequencing breadth, x-axes) to test the sensitivity of imGLAD (y-axes), i.e., the

proportion of properly classified positive datasets among the total number of positive datasets. (B) Similar

comparisons based on 571 datasets from the HMP project, which did not contain any E. coli signal and

were spiked with different concentrations of E. coli EC11 reads. (C) imGLAD was evaluated in the same

datasets as in panel A but this time the datasets included, in addition to the RefSeq genomes, 10 E. coli

genomes with ANI ranging between 95-98% to the target  E. coli EC11 genome spiked in at the same

concentration (i.e., 0.3X). Note that as sequencing breadth increases the sensitivity of the prediction is

higher for all tools tested, with the exception of MetaMLST that requires at least 2X sequencing depth for

robust  detection  (see  text  for  details).  However,  imGLAD  can  effectively  classify  samples  at  100%

sensitivity (as positive samples in this case) with a sequencing breadth as low as 0.03 (i.e., 3% of the

target genome recovered) or less, whereas the other tools show lower sensitivity at these levels in all

cases evaluated.

Figure 4. Effect of fiqtering of qess informative genes by MyTaxa on minimum sequencing breadth

and depth. Genome regions of the E. coli target genome were classified by MyTaxa, and regions with low

scores (bottom 5%) or no scores because the corresponding genes were not indexed by MyTaxa were

excluded from further analysis (filtered genome). Note that detection limit for the filtered genome (dashed

line) is lower than the unfiltered genome (solid line).
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Figure 5. Detection qimits when co-occurring reqatives are present. Negative and positive examples

were constructed using default imGLAD settings except that closely related (non-target) genomes to the

target genome at three levels of ANI, i.e., 95-98% (dotted and dashed line), 90-95% (dashed line), and 80-

90% (solid line) were included in the datasets. 20 genomes of relatives were used at each ANI level, e.g.,

20 E. coli genomes showing between 95 and 98% ANI to the target E. coli O157-H7 strain were used in

the  first  set.  Note  that  as  relatedness  increases,  the  fraction  of  the  genome required  for  making  a

confident decision also increases since negative datasets (that include the relatives) have higher values of

sequencing depth, which causes the decision line to have even a positive slope for the 95-98% ANI set

and thus, the estimated detection limit to not be reliable. In the latter case, the detection limit should be

calculated based on a cross-validation approach (grey lines; see text for details), which can provide more

reliable estimates of model parameters and thus, relative abundance and detection limit. For relatives

showing ANI lower than 95% identity to the target, cross-validation was not necessary (e.g., grey and

black lines coincided).
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Figure 1(on next page)

Schematic representation of imGLAD's pipeline.

imGLAD has two main components. The first part (training) consists of a learning procedure,

in which a set of in-silico generated datasets are fitted through a logistic model that aims to

separate positive from negative datasets. For this, a database of 200 genomes is used to

generate the simulated Illumina reads of these datasets. Reads simulated from the target

genome are then incorporated into half of the simulated datasets. The resulting datasets are

marked as positive for training while the other half is marked as negative. Sequencing depth

and breadth of the target (reference) genome are calculated for each dataset. A logistic

function is then fitted to the data to separate positive from negative examples. The

regression parameters are stored for further use. The second part (estimation) consists of

estimating the sequencing breadth and/or depth values of the target genome provided by

the (recruited) reads of the experimental metagenomes, and comparison of the derived

sequencing depth and breadth values to those of the logistic function from the training step.
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Figure 2(on next page)

Identification of target genomes in metagenomic datasets with imGLAD.

Positive datasets (crosses) are separated form negative datasets (dots) through a logistic

function (solid line) based on in-silico training datasets. (A) Datasets with reads of E. coli are

separated form negative datasets. (B) Datasets with reads of B. anthracis are separated form

negative datasets. Red asterisks denote the position of the experimental metagenomes

(remaining dots represent in-silico generated datasets). Note the differences in scale on the

x-axes between positive and negative datasets.
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Figure 3(on next page)

Performance of imGLAD in comparison to Pathoscope, MetaPhlAn and MetaMLST.

(A) in-silico synthesized datasets from 200 RefSeq genomes were spiked with E. coli EC11

reads at different abundances (reflected by sequencing breadth, x-axes) to test the

sensitivity of imGLAD (y-axes), i.e., the proportion of properly classified positive datasets

among the total number of positive datasets. (B) Similar comparisons based on 571 datasets

from the HMP project, which did not contain any E. coli signal and were spiked with different

concentrations of E. coli EC11 reads. (C) imGLAD was evaluated in the same datasets as in

panel A but this time the datasets included, in addition to the RefSeq genomes, 10 E. coli

genomes with ANI ranging between 95-98% to the target E. coli EC11 genome spiked in at

the same concentration (i.e., 0.3X). Note that as sequencing breadth increases the sensitivity

of the prediction is higher for all tools tested, with the exception of MetaMLST that requires at

least 2X sequencing depth for robust detection (see text for details). However, imGLAD can

effectively classify samples at 100% sensitivity (as positive samples in this case) with a

sequencing breadth as low as 0.03 (i.e., 3% of the target genome recovered) or less,

whereas the other tools show lower sensitivity at these levels in all cases evaluated.
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Figure 4(on next page)

Effect of filtering of less informative genes by MyTaxa on minimum sequencing breadth

and depth.

Genome regions of the E. coli target genome were classified by MyTaxa, and regions with low

scores (bottom 5%) or no scores because the corresponding genes were not indexed by

MyTaxa were excluded from further analysis (filtered genome). Note that detection limit for

the filtered genome (dashed line) is lower than the unfiltered genome (solid line).
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Figure 5(on next page)

Detection limits when co-occurring relatives are present.

Negative and positive examples were constructed using default imGLAD settings except that

closely related (non-target) genomes to the target genome at three levels of ANI, i.e., 95-

98% (dotted and dashed line), 90-95% (dashed line), and 80-90% (solid line) were included in

the datasets. 20 genomes of relatives were used at each ANI level, e.g., 20 E. coli genomes

showing between 95 and 98% ANI to the target E. coli O157-H7 strain were used in the first

set. Note that as relatedness increases, the fraction of the genome required for making a

confident decision also increases since negative datasets (that include the relatives) have

higher values of sequencing depth, which causes the decision line to have even a positive

slope for the 95-98% ANI set and thus, the estimated detection limit to not be reliable. In the

latter case, the detection limit should be calculated based on a cross-validation approach

(grey lines; see text for details), which can provide more reliable estimates of model

parameters and thus, relative abundance and detection limit. For relatives showing ANI lower

than 95% identity to the target, cross-validation was not necessary (e.g., grey and black lines

coincided).
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Table 1(on next page)

Samples inoculated with different cell concentrations of E. coli (1st column) were

classified by imGLAD as present/positive or absent/negative.

The calculated breadth of the E. coli reference genome recovered (2nd column) and the

sequencing depth (3rd column) as well as the derived probability of presence (4th column) are

shown. All samples were found positive for presence of E. coli (p-value = 0.004) except the

control sample without inoculated E. coli cells.
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Table 1.  Samples inoculated with  different  cell  concentrations of  E. coli (1st column)  were

classified by imGLAD as present/positive or absent/negative. 

Sample Sequencing 
breadth

Sequencing depth E. coli presence
(p-value)

  Control 0.007 0.042 0.847
  80 Cells 0.239 0.262 0.004
8 × 103 Cells 0.463 0.639 7.1 X 10-4

8 × 105 Cells 0.993 3.683 1 X 10-5

The calculated breadth of the E. coli reference genome recovered (2nd column) and the sequencing

depth (3rd column) as well as the derived probability of presence (4 th column) are shown. All samples

were  found positive  for  presence  of  E.  coli (p-value  =  0.004)  except  the  control  sample  without

inoculated E. coli cells.

1
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Table 2(on next page)

Soil samples inoculated with different copies of B. anthracis strain Ames genomic DNA

(1st column) were classified by imGLAD as present/positive or absent/negative.

The calculated breadth of the B. anthracis reference genome recovered (2nd column) and the

sequencing depth (3rd column) as well as the derived probability of presence (4th column) are

shown. Samples with a number of genome higher or equal to 100 genomes were classified as

positive samples. Samples with 1 and 10 genomic copies were indistinguishable from the

negative samples of the training set.
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Table 2. Soil samples inoculated with different copies of  B. anthracis strain Ames genomic

DNA (1st column) were classified by imGLAD as present/positive or absent/negative. 

Sample Sequencing breadth Sequencing depth B. anthracis presence

(p-value)

1 Genome 1.56 X 10-3 2.0 X 10-3 0.999

10 Genome 0.001 0.003 0.998

100 Genome 0.039 0.128 0.002

103 Genome 0.562 0.732 1.4 X 10-3

104 Genome 0.983 1.563 0

105 Genome 0.999 4.34 0

The  calculated  breadth  of  the  B.  anthracis reference  genome  recovered  (2nd column)  and  the

sequencing depth (3rd column) as well as the derived probability of presence (4 th column) are shown.

Samples  with  a  number of  genome higher  or  equal  to  100 genomes were classified as  positive

samples. Samples with 1 and 10 genomic copies were indistinguishable from the negative samples of

the training set.
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