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Antarctica is one of the most stressful ecosystems worldwide with few vascular plants,

which are limited by abiotic conditions. Here, plants such as Deschampsia antarctica (Da)

could generate more suitable micro-environmental conditions for the establishment of

other plants as Colobanthus quitensis (Cq). Although, plant-plant interaction is known to

determine the plant performance, little is known about how microorganisms might

modulate the ability of plants to cope with stressful environmental conditions. Several

reports have focused on the possible ecological roles of microorganism with vascular

plants, but if the rizospheric microorganisms can modulate the positive interactions among

vascular Antarctic plants has been seldom assessed. In this study, we compared the

rhizosphere microbiomes associated with Cq, either growing alone or associated with Da,

using a shotgun metagenomic DNA sequencing approach and using eggNOG for

comparative and functional metagenomics. Overall, results show higher diversity of

taxonomic and functional groups in rhizospheric soil from Cq+Da than Cq. On the other

hand, functional annotation shows that microorganisms from rhizospheric soil from Cq+Da

have a significantly higher representation of genes associated to metabolic functions

related with environmental stress tolerance than Cq soils. Additional research is needed to

explore both the biological impact of these higher activities in terms of gene transfer on

plant performance and in turn help to explain the still unsolved enigma about the strategy

deployed by Cq to inhabit and cope with harsh conditions prevailing in Antarctica.
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ABSTRACT

Antarctica is one of the most stressful ecosystems worldwide with few vascular plants, which are

limited by abiotic conditions. Here, plants such as Deschampsia antarctica (Da) could generate

more  suitable  micro-environmental  conditions  for  the  establishment  of  other  plants  as

Colobanthus quitensis  (Cq). Although, plant-plant interaction is known to determine the plant

performance, little is known about how microorganisms might modulate the ability of plants to

cope  with  stressful  environmental  conditions.  Several  reports  have  focused  on  the  possible

ecological roles of microorganism with vascular plants, but if the rizospheric microorganisms can

modulate the positive interactions among vascular Antarctic plants has been seldom assessed. In

this study, we compared the rhizosphere microbiomes associated with Cq, either growing alone or

associated with Da, using a shotgun metagenomic DNA sequencing approach and using eggNOG

for  comparative  and  functional  metagenomics.  Overall,  results  show  higher  diversity  of

taxonomic and functional groups in rhizospheric soil from Cq+Da than Cq. On the other hand,

functional  annotation shows that  microorganisms from rhizospheric  soil  from  Cq+Da have a

significantly  higher  representation  of  genes  associated  to  metabolic  functions  related  with

environmental stress tolerance than  Cq soils. Additional research is needed to explore both the

biological impact of these higher activities in terms of gene transfer on plant performance and in

turn help to explain the still unsolved enigma about the strategy deployed by Cq to inhabit and

cope with harsh conditions prevailing in Antarctica.
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INTRODUCTION

Diverse mutualistic bacteria and fungi thrive on plant surfaces and inhabit most plant tissues.

Many of these microorganisms interact with their plant hosts intimately; they can influence plant

metabolism and hormonal pathways in addition to providing novel nutritional or biosynthetic

capacities  stimulating  plant  growth  and  conferring  enhanced  resistance  to  different  stressors

(Lugtenberg & Kamilova, 2009; de Zelicourt et al. 2013). 

Several studies have shown that microorganisms can have a direct effect on the plant

capacity to resist biotic and abiotic stress such as herbivory, drought, extreme temperatures and

high salinity (Redman  et al.,  2002; Marquez  et al.,  2007; Giauque & Hawkes,  2013).  Many

bacteria and fungi have been found in association with plant roots, facilitating the establishment,

spread and/or plant fitness in stressful environments (Frey-Klett  et al., 2007; Bano & Fatima,

2009;  Hoffman  &  Arnold,  2010).  On  the  other  hand,  it  has  been  documented  that  some

microorganisms can modulate the interaction between plants or filtering the establishment of new

species in a determinate community (Amsellem  et al. 2017).  Therefore, microorganisms  have

been shown to have great  impact  on plant-plant  interactions,  thus  studying the diversity and

composition of microbial communities is key to understand how vascular plants survive under the

stresfull environmental conditions of Antarctic habitats. 

The  Antarctic  ecosystem  is  one  of  the  most  stressful  natural  habitats,  especially  for

terrestrial plants (Convey et al. 2014; Pointing et al. 2015). Likewise, only two vascular plants

have  colonized  the  Antarctic  environment,  Colobanthus  quitensis (Caryophyllaceae)  and

Deschampsia antarctica (Poaceae) (Moore, 1970). Although both plants colonize Antarctica, C.

quitensis is mainly found growing in association with D. antarctica in more stressful areas and

alone in low-stress area, while  D. antarctica is capable of growing alone in areas with higher

abiotic stress (Alberdi  et al. 2002).  D. antarctica is a grass that form tussocks where micro-

environmental conditions above and below their canopy could be milder than outside, acting like
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a “nurse species” for other less tolerant species (e.g.,  C. quitensis) in Antarctica (see Molina-

Montenegro  et al. 2013).  In fact,  some native and invasive species increase its  physiological

performance and fitness-related traits when growing in association with D. antarctica compared

with those growing outside of them (Molina-Montenegro  et al., under review). Although it is

clear that positive interactions can determine the performance and survival for some less tolerant

species, the underlying mechanisms are not clear, and/or whether microorganisms mediate this

positive interaction remains unknown.

Positive inter-specific interactions play a pivotal role in the structure and functioning of

several plant communities. Despite their known potential to drive the ability of plants to cope

with stressful environmental conditions, little is known about how microorganisms might affect

plant performance in this environment (but see, Torres-Díaz et al. 2016). Symbiotic interactions

between fungi and/or bacteria,  and higher Antarctic plants in the Antarctic environment have

been demonstrated (Rosas et al. 2009). In fact, several reports have focused on the occurrence,

type of association, diversity and possible ecological roles of microorganism interactions with

vascular plants (Upson  et al. 2009, Torres-Díaz  et al. 2016). Nevertheless, to the best of our

knowledge,  this  work  is  the  first  study  assessing  if  the  rizospheric  microorganisms  could

modulate the positive interactions among vascular Antarctic plants. 

In this study, we compare the rhizosphere microbiomes associated with C. quitensis, either

growing alone or associated with  D. antarctica,  using shotgun metagenomic DNA sequencing

technology for  comparative  metagenomics.  This  approach allows  us  to  gain  insight  into  the

rhizospheric microbial community structure associated with  C. quitensis and  C. quitensis +  D.

antarctica, through the study of soil’s microbial taxonomic diversity, including  non-culturable

organisms. Such analysis could also provide valuable information regarding microbial functional

diversity (Nesme  et  al.,  2016).  This  functional  diversity might  be playing important  roles  in

conferring different degrees of tolerance to Antarctica’s harsh environmental conditions such as
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low temperatures,  desiccation,  and  low  water  and  nutrient  availability,  which  could  help  to

explain the “enigma” of the success of these plant species in such harsh environments (sensu,

Smith, 2003). 

MATERIALS AND METHODS

Site description and soil sample processing 

Rhizospheric soil samples were collected from Devils Point, Byers Peninsula, Livingstone Island,

Antarctica  (62°40’11.8”S;  61°10’20.7”W)  during  Summer  growing  season  (February  2016;

Figure 1).  Colobanthus quitensis rhizospheric soil  (Cq)  and rhizospheric  soil  of  C. quitensis

growing associated with Deschampsia antarctica (Cq+Da) were sampled at sea level (Figure 1).

Plants were dug out using a sterilized shovel and were transferred to sterilized polyethylene bags

to avoid excessive desiccation during transport and were stored at 4 °C. Bulk soil was discarded

by vigorously shaking the plants by hand until non-adhering particles were completely removed.

Rhizosphere soil was collected by hand shaking the roots in 1 L of a sterile 0.9% NaCl solution to

remove adhering soil and soil suspensions were centrifuged in 200 mL sterile tubes to concentrate

soil  particles in pellet.  Supernatants were removed by filtration on 1 mm sieves to eliminate

residuals in suspension before DNA extraction and processing. All plant and soil samples were

collected under  permission of the Chilean Antarctic  Institute  (INACH; authorization number:

1060/2014).

DNA Extraction and sequencing
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For a total of six rhizospheric soil samples (three replicates per condition,  Cq or Cq+Da), total

DNA was extracted using the  PowerSoil DNA Isolation Kit (MoBio Laboratories, Inc).  DNA

integrity was checked with capillary electrophoresis using a Fragment Analyzer (AATI) and DNA

quantification was performed using fluorometry (Qubit 2.0; Qubit DNA Broad Range Assay Kit,

Invitrogen). After QC, all samples were subjected to library construction for Illumina sequencing.

Briefly, DNA was fragmented by Covaris ultrasonicator (average fragment size of 550bp), and

size-selected using AMPure XP purification beads. Libraries were constructed using the TruSeq

LT kit  following manufacturer  instructions  (Illumina),  ligated  to  indexed adapters  for  cluster

generation  and  sequenced  using  the  Illumina  MiSeq  reagent  kit  (v3)  in  an  Illumina  MiSeq

sequencer  (600  cycle;  300bp,  Paired-End  sequencing)  (Illumina,  San  Diego,  CA).

Demultiplexing  and  fastq  generation  were  performed  automatically  using  Illumina’s  built-in

software.  

Bioinformatics and statistical analysis

For each sequenced library (n = 6), raw sequences were filtered using Trimmomatic 0.36 (Bolger

et al., 2014) to remove specific Illumina sequencing adapters, low quality bases and all sequences

shorter  than  100  bp.  Filtered,  un-assembled  libraries  were  interleaved  and  aligned  using

DIAMOND BLASTX algorithm ver. 0.8.30.92 using default parameters (Buchfink et al., 2015)

to the NCBI-NR database (June 2017). Only alignments with an e-value of 10 -3 or lower were

included in our analysis. Alignment result files were imported in MEGAN6, which parsed results

using  the  Lowest  Common  Ancestor  algorithm (LCA)  and  NCBI’s taxonomy under  default

values.  All  reads  aligning  to  non-bacterial  species  were  not  considered  for  further  analysis.

Remaining  bacterial  reads  were  normalized  between  samples  by  using  MEGAN6’s  built-in

normalization tool. Functional profile analysis and annotation was performed using the eggNOG
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(Evolutionary genealogy of genes: Non-supervised Orthologous Groups) orthologous groups and

functional annotation database  (Huerta-Cepas et al.,  2016) included in MEGAN6.  Finally, the

relative abundance of reads  binned to eggNOG clusters of  orthologous groups were counted

using  MEGAN6  for  all  samples.  Comparison  of  binned  reads  between  Cq and  Cq+Da

rhizhospheric soil samples was performed using both a two-sided Welch's t-test with correction

for multiple comparisons (Benjamini-Hochberg false discovery rate correction approach, q-value

< 0.05) with the software STAMP (Statistical Analysis of Metagenomic Profiles, version 2.3.1;

Parks et  al.,  2014).  Relative abundances of  binned reads to  either  functional  or taxonomical

categories between both samples were compared using a multiple t-test with FDR correction (q-

value < 0.05). Taxonomic profiles and diversity analysis were carried out in R using the packages

ggplot2, phyloseq, vegan, and DESeq2 (Dixon, 2003; Love et al., 2014; McMurdie & Holmes,

2013; Wickham, 2009). Raw metagenomic data was deposited in NCBI’s Sequence Read Archive

database  under  BioProject  ID:  PRJNA419970.  All  supplementary  material  (both  figures  and

tables) are available at https://figshare.com/s/5d7961c1859f33067dab. 

RESULTS

Sequencing results

For the Cq metagenome, a total of 20,081,770 reads were obtained, while for Cq+Da samples,

19,348,212 reads were obtained. Read sizes ranged from 35bp to 300bp, although the majority of

reads (~97% of total sequenced reads per library) had a length equal or over 290bp. Filtering

steps removed sequencing adapters, low-quality reads and reads shorter than 100bp, reducing

library sizes in approximately 18%. These filtered libraries were in turn used for Taxonomical

and Functional analysis  with DIAMOND and MEGAN6 as described previously. Sequencing

statistics are shown in Supplementary table 1. 
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Taxonomic analysis and Rhizospheric soil diversity

Metagenomic analyses were conducted by importing DIAMOND BLASTX results to MEGAN6.

DIAMOND found one or more significant alignments for 49% (15.7 million reads) out of the 32

million  filtered  reads  used  as  input.  Taxonomic  analysis  showed  that  Bacteria,  followed  by

Eukaryota  and  Archaea  dominated  both  samples  (98%,  0.2%  and  1.7%,  respectively).  Our

analysis  also  indicated  that  Cq samples  had  significantly  higher  relative  abundances  for

Eukaryota compared to  Cq+Da (mean difference between samples: 60,744.3; p-value = 7.6e-4).

Specifically,  a  high  number  of  sequences  were  aligned  to  Viridiplantae  in  Cq compared  to

Cq+Da  (mean difference between samples: 58542,3; p-value = 1.4e-3),  hence we suspect that

some plant tissue was also taken during rhizospheric soil  sampling in both cases, although it

seems that a higher amount of plant tissue was present in the  Cq samples. Therefore, all non-

bacterial aligned reads were filtered and removed from the following analyses. Only bacterial-

mapped reads were  both taxonomically and functionally analyzed (~15 million aligned reads)

using MEGAN6 and eggNOG database. Microbiome analyses at the Phylum level from all soil

samples  showed  that  Proteobacteria  was  the  most  abundant  Phylum  (33.7%),  followed  by

Actinobacteria  (23.5%)  and  Bacteroidetes  (16.2%)  (Figure  2;  Core  Microbiome is  shown in

Supplementary  figure  1).  Interestingly,  comparative  taxonomic  analysis  showed  differences

regarding bacterial species present in our samples; only 46.1% of bacterial species was found in

both rhizospheric soil samples, while 25.44% was exclusively found in Cq rhizospheric soil and

28.5% was found in Cq+Da rhizospheric soil (Supplementary figure 2). 

Regarding alpha diversity, all Cq+Da samples were consistently found to be more diverse

than  Cq samples,  both  in  richness  (observed  and  corrected  [Chao1])  and  evenness  (ACE;

Shannon; Simpson; Inverse Simpson) (Figure 3). While interquartile ranges did not overlap under

any metric, suggesting significant differences, these are sensitive to low sample sizes for which

more samples need to  be collected and evaluated to obtain precise alpha diversity estimates.
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However, median values between Observed and Chao1 estimates are in agreement (~755 taxa),

which suggests sequencing depth is adequate for sampling these rhizosphere communities.

Functional Rhizospheric soil sample comparison

Functional categorization and annotation of sequenced microorganisms from Cq and Cq-Da was

performed by analyzing mapped reads to the NR and eggNOG databases using MEGAN6. 6.8

million reads (37.7%) were annotated and associated with at least one cluster of orthologous

genes of the following top hierarchies: cellular processes and signaling, information storage and

processing, and metabolism. The most represented functional categories at eggNOG level 2 (i.e.,

the categories with the higher proportion of reads assigned to it) are aminoacid transport and

metabolism  (12%),  replication,  recombination  and  repair  (10.9%)  and  cell

wall/membrane/envelope biogenesis (7.2%) (Supplementary table 2). We also found differences

in the microbial communities’ functional profiles between the two rhizospheric soils at eggNOG

level-2,  where  14  functional  genes  categories  (out  of  22)  had  significantly  higher  relative

abundances between rhizospheric soil samples (p-value < 0.05; Figure 4). Of these 14 categories,

10 were highly represented in Cq (Figure 4, blue dots) while the other 4 were highly represented

in Cq+Da (Figure 4, orange dots). In addition, mean differences ranged between 0.06% to 1.1%

(Supplementary table 4; Figure 4). The differences in terms of relative abundance (1.1%) were

found  for  the  eggNOG  category  “Replication,  recombination  and  repair”  which  is  more

represented in  the  Cq+Da  condition.  A global,  deep comparison of reads binned to different

eggNOG  terms  (N=11,732  categories)  showed  eight  terms  with  significative  representation

differences between both samples. Interestingly, we found a significantly higher representation of

Serine/Threonine protein kinases (COG0515; 54% more represented) in Cq+Da samples, which

in bacteria have been linked to phosphorylation of serine or threonine residues in proteins, being

a key mechanism in regulation of protein activity and control cellular functions such as stress
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response  (Pereira  et  al.,  2011).  Other  over-represented  terms  in  Cq+Da are  DNA  ligases

(COG1793;  86%  more  represented)  and  transcriptional  regulators  (COG3903;  71.9%  more

represented). These results suggest a higher transcriptional potential activity and/or DNA repair

in  microorganisms  from this  sample  (possible  due  to  the  existence  of  transposable  insertion

sequences),  which  could  be  a  consequence  of  microorganisms  being  exposed  to  a  more

challenging environment compared to Cq growing alone. 

DISCUSSION

In this study, we explored the species composition and functional genomics of rhizosphere soil

samples associated with C. quitensis growing alone (Cq) and C. quitensis growing in association

with  D.  antartica (Cq+Da).  Shotgun  metagenomics  has  proved  to  be  useful  for  assessing

microbial community structure, composition and abundance (Castañeda & Barbosa, 2017), while

also providing a foundational sequence dataset allowing genomic functional analysis. Our results

showed that bacterial species had the highest relative abundance in both habitats (98%) compared

to  Archaea  (0.22%)  and Eukaryota  (1.77%),  whereas  the  most  abundant  bacterial  Phyla  are

Proteobacteria,  Actinobacteria,  Bacteroidetes,  Acidobacteria  and  Firmicutes,  accounting  for

approximately  85%  of  the  sequences  in  rhizosphere  soil  samples.  These  Phyla  have  been

described as widespread and often abundant in other different soil samples (Aislabie et al., 2013;

Imchen et al., 2017; Lauber et al., 2009; Yang, 2015), including Antarctic soils  (Bottos et al.,

2014; da Silva et al., 2017; Teixeira et al., 2013) and may constitute a core root microbiome

playing a pivotal role in plant growth promotion, nutrient acquisition and abiotic stress tolerance

(Chen et  al.,  2017).  Proteobacteria  is  a  metabolically diverse  group that  has  been related  to

nutrient cycling, including carbon, nitrogen and sulfur, by degrading soluble organic molecules

such as organic acids, aminoacids and sugars  (Eilers et al., 2010). The relative abundance of

Proteobacteria found in our study is similar to the reported in other soil studies  (Castañeda &
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Barbosa, 2017). Actinobacteria also participates actively in the terrestrial carbon cycling through

organic  matter  turnover,  breakdown  of  recalcitrant  molecules  and  production  of  secondary

metabolites (de Menezes et al., 2015). Interestingly, a higher relative abundance of Bacteroidetes

was found in Cq compared to Cq+Da samples (19.08% and 13.53%, respectively); Bacteroidetes

are involved in degradation of plant material and related organic molecules such as starch and

cellulose  (Aislabie et  al.,  2013) and  their  abundance  correlates  with  soil  pH,  available

nitrogen/phosphorus content and water content  (Zhang et al., 2014). A possible explanation for

the differences observed in terms of relative abundance of certain Phyla may be that plants are

thought  to  be  involved in  shaping the  rhizosphere  by differentially altering  bacterial  species

across these sites, and these altered bacterial communities may provide beneficial services to the

host plants (Mahoney et al., 2017). Furthermore, the observed differences in terms of unique and

shared  bacterial  species  present  in  both  rhizospheres  (Supplementary  figure  2)  could  be  a

consequence of C. quitensis plants differentially shaping the rhizosphere composition compared

to C. quitensis growing associated with D. antartica. It is thought that rhizospheric effects depend

specifically  on  the  plant  species,  as  plants  significantly  influence  and  shape  soil  microbial

communities  through  exudation  of  unique,  species-specific  root  compounds,  which  in  turn

decrease  microbial  diversity  in  the  rhizosphere  compared  to  bulk  soil  (Kielak et  al.,  2008).

However, a previous study did not find any clear difference between microbial communities in

the rhizosphere of C. quitensis and D. antartica growing separately in Admiralty Bay (Teixeira et

al., 2010), while finding significant differences between microbial communities in bulk soil and

rhizospheric samples from the same plant species  (Teixeira et al., 2013). Similar results have

been found in other studies; plant species composition appeared to have a reduced effect on the

diversity, structure or size of associated rhizosphere bacterial communities (Kielak et al., 2008).

Although plant roots generally influence microbial community composition and diversity in the
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rhizosphere,  dominant  soil  physicochemical  factors  could  be  a  determinant  factor  in  shaping

microbial communities rather than plant species (Nunan et al., 2005; Singh et al., 2007).

Metagenomic shotgun sequencing and functional annotation using eggNOG functional

categories  revealed  that  “metabolism”,  was  the  highest  represented  category,  followed  by

“cellular process and signaling”, and “information storage and processing”. In the metabolism

category,  the  highest  represented  terms  were  those  related  to  “aminoacid  transport  and

metabolism”, “energy production and conversion”, “carbohydrate transport and metabolism” and

“inorganic ion transport and metabolism”. This suggests that microbial communities present in

these soils  could be playing an important  role  in  both enhancing nitrogen cycling in  limited

nitrogen  ecosystems  and  in  carbohydrate  degradation  through  organic  matter  decomposition,

indicating a higher carbon cycling activity in these soils which in turn might help to provide the

necessary energy and precursor materials for defense responses and secondary metabolism under

abiotic stress  (Lin et al., 2013). The high number of reads annotated in these three categories

(30.4%) suggests that rhizosphere microorganisms have high metabolic capabilities (da Silva et

al.,  2017),  which  may  be  relevant  for  plant-microorganism interaction  in  other  rhizospheric

communities (Yan et al., 2016). We also found that relative abundance of sequences assigned to

eggNOG subclasses were similar among samples, although some small but significant differences

were detected (0.06% to 1.1%). Similar trends, in terms of relative differences, have been found

for other soil samples (Castañeda & Barbosa, 2017). The higher differences in terms of relative

abundance (1.1%) were found for the eggNOG category “Replication, recombination and repair”,

which is  more  represented in  the rhizosphere of  C. quitensis growing with  D. antarctica.  A

detailed analysis for this category showed that the top five sub-categories with higher abundance

in Cq+Da compared to Cq are transposases, resolvases and RNA-directed DNA polymerases (or

reverse  transcriptases).  Transposases  are  enzymes  that  catalyze  movement  of  transposons

(“jumping genes”) to other parts of the genome, and require both DNA polymerases and ligases
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(which  were  also  over-represented  in  Cq+Da)  to  fill  gaps  and  complete  the  recombination

process (Zhang et al., 2009). Insertion of a transposon in a certain genomic position may change

underlying  DNA  sequences,  subsequently  activating  or  inactivating  gene  expression  which

ultimately may have an impact on their hosts’ fitness (Aziz et al., 2010). Recently, transposases

have been linked to horizontal/lateral gene transfer events in bacteria, leading to potential gene

sequence and functionality being shared between microorganisms in order to thrive under similar

environmental conditions (Cuecas  et al., 2017). Resolvases (also known as recombinases) are

enzymes involved in  site-specific DNA recombination,  and may play a role in the spread of

chromosomal genes in the plant rhizosphere through retro-transference of DNA, and occurs in

bacteria of different genera (Ronchel et al., 2000). These results suggest that Cq+Da rhizospheric

soil has an enrichment of several functional categories linked to regulation of protein activity

(through Serine/Threonine protein kinase),  gene transcriptional  activation/inactivation through

transposons and related enzymes (Transposases,  DNA ligases),  regulation of  gene expression

through transcriptional regulators, and replication of retroid elements (such as retrotransposons)

which could be involved in spreading genes between organisms through genetic exchange. These

over-represented  bacterial  mechanisms  could  be  contributing  to  increase  plant  fitness  by

stimulating  plant  growth  and/or  by  conferring  enhanced  resistance  to  abiotic  stress,  hence

allowing plants to grow in extreme environmental conditions (De Zelicourt et al., 2013).

CONCLUSION

We explored the taxonomic and functional diversity of microbial communities in rhizospheric

soils  of  the  vascular  species  from Antarctica  using  shotgun  sequencing.  Our  metagenomics

analyses  revealed  that  bacterial  communities  are  similar  in  terms  of  taxonomic  composition

independently of the plant species upon which rhizospheric soil was collected. However, these

similarities could be limited by taxonomic assignment based on BLASTx alignments using the
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NR non-redundant protein database as reference and MEGAN6 accession parsing tool. However,

the results from these comparisons are valid since all samples were subjected to the same bias.

Conversely, some functional categories had shown significant relative differences in terms of

abundance  between  rhizospheres,  suggesting  that  these  microbial  communities  could  have  a

higher activity in terms of gene transfer, which ultimately could have an effect on plant’s growth

and colonization. Additional research is needed to explore both the biological impact of these

higher activities in terms of gene transfer on plant performance and to explain the still unsolved

enigma about the strategy deployed by  C. quitensis to inhabit and cope with the harsh abiotic

conditions prevailing in Antarctica (see Smith, 2003).
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Figure captions

Figure 1. (A) Study site (Devils Point, Byers Peninsula, South Shetland Islands) in Antarctica

where individuals of Colobanthus quitensis were sampled, growing alone on bare ground (B) or

associated to Deschampsia antarctica tussocks (C). 

Figure  2. Percentage  distribution  of  bacterial  phylum from  rhizospheric soil  samples  of  C.

quitensis (Cq) and C. quitensis + D. antarctica (Cq+Da).

Figure 3. Alpha diversity measure for both  C. quitensis (Cq) and C. quitensis + D. antarctica

(Cq+Da).

Figure 4.  EggNOG functional categories found in rhizospheric soil bacteria communities. Bar

plot  shows  mean  proportion  (%)  of  functional  categories  found  in  rhizospheric  bacterial

communities based on the EggNOG database, level 2 categories. Points indicate the differences

between C. quitensis and C. quitensis + D. antarctica soils (blue and orange bars, respectively).

Corrected  p-values  (q-values)  were  derived  from  a  Welch’s  t-test  with  Benjamini-Hochberg

correction for false discovery rate.
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