A peer-reviewed version of this preprint was published in PeerJ on 20 September 2019.

View the peer-reviewed version (peerj.com/articles/7649), which is the preferred citable publication unless you specifically need to cite this preprint.

A draft genome and transcriptome of common milkweed (*Asclepias syriaca*) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae

Kevin A. Weitemier¹,⁷

Shannon C. K. Straub²

Mark Fishbein³

C. Donovan Bailey⁴

Richard C. Cronn⁵

Aaron Liston⁶

¹Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, USA

²Department of Biology, Hobart & William Smith Colleges, 113 Eaton Hall, Geneva, NY 14456, USA

³Department of Plant Biology, Ecology & Evolution, Oklahoma State University, 301 Physical Sciences, Stillwater, OK, 74078, USA

⁴Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA

⁵Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA

⁶Department of Botany & Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, USA
Corresponding author:

Kevin Weitemier
Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, USA
Fax: 541-737-3590
kevin.weitemier@oregonstate.edu

Keywords: Genome, *Asclepias*, milkweed, Apocynaceae, cardenolide, chromosome evolution

Running Title: *Asclepias* nuclear genomic resources
Milkweeds (*Asclepias*) are used in wide-ranging studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification. We present a transcriptome and draft nuclear genome assembly of the common milkweed, *Asclepias syriaca*. This reconstruction of the nuclear genome is augmented by linkage group information, adding to existing chloroplast and mitochondrial genomic resources for this member of the Apocynaceae subfamily Asclepiadoideae. The genome was sequenced to 80.4× depth and the draft assembly contains 54,266 scaffolds ≥1 kbp, with N50 = 3415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated. A large proportion of gene space is represented in the assembly, with 96.7% of *Asclepias* transcripts, 88.4% of transcripts from the related genus *Calotropis*, and 90.6% of proteins from *Coffea* mapping to the assembly. Scaffolds covering 75 Mbp of the *Asclepias* assembly formed eleven linkage groups. Comparisons of these groups with pseudochromosomes in *Coffea* found that six chromosomes show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. The progesterone 5β-reductase gene family, a key component of cardenolide production, is likely reduced in *Asclepias* relative to other Apocynaceae. The genome and transcriptome of common milkweed provide a rich resource for future studies of the ecology and evolution of a charismatic plant family.
INTRODUCTION

The development of genomic resources for an ever-increasing portion of the diversity of life is benefiting every field of biology in myriad ways. The decreasing cost of sequencing and the continual development of bioinformatic tools are allowing even single labs and small collaborations to produce genomic content that is beneficial and accessible to the wider research community. This study presents a draft genome assembly of a species of the milkweed genus *Asclepias* (Apocynaceae), which is the focus of diverse studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification.

Asclepias sensu stricto is made up of about 130 species in North and South America (Fishbein et al., 2011). The genus in the Americas is found in a wide range of habitats, from deserts to swamps, plains to shaded forests, and may represent a rapid ecological expansion (Fishbein et al., 2018). The common milkweed, *Asclepias syriaca* L., inhabits wide swaths of eastern North America, westward to Kansas, and northward to Canada (Woodson, 1954). It is well known for the milky latex exuded when injured, showy inflorescences, and pods filled with seeds tufted with fine hairs. Like other members of the Apocynaceae, milkweeds produce an array of potent secondary compounds, including cardiac glycosides (specifically cardenolides). Some herbivores possess defenses to avoid or tolerate these compounds, including the monarch butterfly, *Danaus plexippus*. Monarch caterpillars are able to sequester cardenolides from *Asclepias* to use for their own defense, and *Asclepias* are an essential host for monarchs (Brower et al., 1967). The variation within and among *Asclepias* species in types of and investments in defensive compounds and structures has engendered numerous studies of defensive trait evolution.
As members of Apocynaceae subfamily Asclepiadoideae, Asclepias species possess floral architectures unique among plants, including floral coronas and a central gynostegium composed of the unified stamens and pistil. Most Asclepias species are nearly or entirely self-incompatible (Wyatt and Broyles, 1994), and their pollen is packaged into masses, pollinia, which are transferred as a unit from one flower to another. This usually allows a single successful pollination event to fertilize all of the ovules in an ovary, resulting in full-sibling families in each fruit (Sparrow and Pearson, 1948; Wyatt and Broyles, 1990). These features have positioned Asclepias as a model in studies of angiosperm reproductive biology (Broyles and Wyatt, 1990; Wyatt and Broyles, 1990, 1994), floral development (Endress, 2006, 2015), selection on floral characters and prezygotic reproductive isolation (La Rosa and Conner, 2017; Morgan and Schoen, 1997), and floral display evolution (Chaplin and Walker, 1982; Fishbein and Venable, 1996; Willson and Rathcke, 1974).

A few genomic resources have been developed for Asclepias and other Apocynaceae. The chloroplast and mitochondrial genomes of Asclepias have been sequenced (Straub et al., 2011, 2013), and flow cytometry estimates place the nuclear genome size of A. syriaca at 420 Mbp (Bai et al., 2012; Bainard et al., 2012). Asclepias is not the first member of Apocynaceae to receive nuclear genome sequencing. Genomic sequencing and assembly of Catharanthus roseus (Rauvolfioideae) was performed by Kellner et al. (2015) to investigate the production of
medicinal compounds (Table 1). Sabir et al. (2016) assembled the genome of *Rhazya stricta* (subfamily Rauvolfioideae) and Hoopes et al. (2017) assembled the *Calotropis gigantea* (Asclepiadoideae) genome, investigating alkaloid diversity and cardenolide production, respectively (Table 1).

The transcriptomes of several species of Apocynaceae have been released as part of broader investigations into medicinally important plants, particularly those producing monoterpenoid indole alkaloids, including *Tabernaemontana elegans* (Rauvolfioideae), *Rauvolfia serpentina* (Rauvolfioideae), *Rhazya stricta*, and *Catharanthus roseus* (Góngora-Castillo, Childs, et al., 2012; Medicinal Plant Consortium, 2011; Park et al., 2014; Xiao et al., 2013; Yates et al., 2014). The transcriptome of *Calotropis procera* has also been investigated (Hoopes et al., 2017; Kwon et al., 2015; Pandey et al., 2016).

Outside of Apocynaceae the most closely related species to milkweed with a sequenced genome is the diploid ancestor of coffee, *Coffea canephora* (Rubiaceae; Denoeud et al., 2014). *Coffea* is in the same order as *Asclepias*, Gentianales, and *C. canephora* has the same number of chromosomes: $x=n=11$, $2n=22$ (Denoeud et al., 2014). The *Coffea* genome assembly is a high-quality reference, with large scaffolds ordered onto pseudochromosomes (scaffolds that have been ordered based on linkage information, as though on a chromosome; Table 1).

The genomic assembly of *Asclepias syriaca* presented here includes a nearly complete representation of gene space, supported by transcriptome evidence. The heterozygosity present in this obligate outcrossing species is used to develop a panel of SNPs that can be captured via targeted enrichment, and a set of offspring from the sequenced individual is used to cluster assembled scaffolds into linkage groups. A comparison of linkage groups between *Asclepias* and
Coffea is presented, providing insights into chromosome organization in Asclepias, and chromosomal evolution within Gentianales. Both genome and transcriptome sequences are used to explore gene family evolution, especially as related to cardenolide biosynthesis.

METHODS

Tissue preparation and library construction

Leaf tissue of Asclepias syriaca was sampled from a single individual at the Western Illinois University research farm, raised from seed from a wild population in McDonough County, Illinois (40.29622°N, 90.89876°W; Winthrop B. Phippen s.n., OSC 226164, 226165). DNA was extracted from frozen tissue using the FastDNA Spin Kit from MPBiomedicals (Santa Ana, CA, USA) following manufacturer's protocols, modified by the addition of 40 μL 1% polyvinylpyrrolidone and 10 μL β-mercaptoethanol to the lysis solution prior to grinding.

Aliquots of isolated DNA were sheared with a BioRuptor sonicator (Diagenode Inc., Denville, NJ, USA). Two libraries were prepared following the Illumina protocol for paired-end libraries (Solexa, Inc, 2006). Ligated fragments were cut from agarose gels centered around 225 bp and 450 bp, and were amplified through 15 and 14 cycles, respectively, of polymerase chain reaction using Phusion High-Fidelity PCR Master Mix (New England BioLabs, Ipswich, MA, USA) and standard Illumina primers. Cleaned product was submitted for sequencing on an Illumina GAIi Sequencer (Illumina Inc., San Diego, CA, USA) at the Center for Genome Research and Biocomputing (CGRB) at Oregon State University (Corvallis, OR, USA). One lane of the 450 bp library was sequenced with 80 bp paired-end reads, and 5 lanes of the 225 bp library were sequenced with 120 bp paired-end reads.
Frozen tissue was sent to GlobalBiologics, LLC (Columbia, MO, USA) for DNA extraction and production of mate-pair libraries using the Illumina Mate Pair Library v2 protocol with average insert sizes of 2750 bp and 3500 bp, and indexed with unique barcode sequences (Bioo Scientific, Austin, TX, USA). Purified DNA was provided to the CGRB for production of a mate-pair library using the Illumina Nextera protocol with an average insert size of 2000 bp. The 2000 bp library was sequenced on an Illumina MiSeq at the CGRB, one of 15 samples pooled on a lane, and sequenced with 76 bp paired-end reads. The 2750 bp library was sequenced on an Illumina HiSeq 2000 sequencer at the CGRB, one of three samples pooled on a lane, and sequenced with 101 bp paired-end reads. The 3500 bp library was sequenced on an Illumina MiSeq at Oregon Health and Science University (Portland, OR, USA) with 33 bp paired-end reads (Table 2).

Genomic read processing

Pairs of reads properly mapping to the *Asclepias* chloroplast or mitochondria, with three or fewer mismatches between the target and query, were filtered out using Bowtie 2 v. 2.1.0 (scoring parameter “--score-min L,-6,0”), samtools v. 0.1.18, and bamtools v. 2.3.0 (Barnett et al., 2013; Langmead and Salzberg, 2012; Li et al., 2009). Portions of reads matching the Illumina adapter sequences were removed with Trimmomatic v. 0.30 and the “ILLUMINACLIP” option (Bolger et al., 2014). Duplicate read pairs from the same library were removed using the custom script fastq_collapse.py (Weitemier, 2014). Paired-end read pairs with sequences that overlapped by ≥7 bp sharing ≥90% identity were merged using the program FLASH v. 1.2.6 (parameters “-m 7 -M 80 -x 0.10”) (Magoč and Salzberg, 2011). The 3' and 5' ends of reads were then trimmed of
any bases with a Phred quality score below 30, and any remaining reads less than 30 bp were removed using Trimmomatic.

Summary statistics were calculated using a k-mer distribution plot of reads from the 225 bp insert library after removing chloroplast and mitochondrial reads, but prior to joining with FLASH. K-mers of 17 bp were counted using BBTools script kmercountexact.sh, and estimates of genome size and heterozygosity were calculated using the program gce (Bushnell and Rood, 2015; Liu et al., 2013).

RNA-seq library preparation, sequencing, and assembly

Total RNA was extracted from the individual used for genome sequencing from leaves and buds separately, by homogenizing approximately 200 mg of fresh frozen tissue on dry ice in a Fast-Prep-24 bead mill. Cold extraction buffer (1.5 mL of 3M LiCl/8M urea; 1% PVP K-60; 0.1M dithiothreitol; Tai et al., 2004) was added to the ground tissue. Tissue was then homogenized and cellular debris pelleted at 200 × g for 10 minutes at 4°C. Supernatant was incubated at 4°C overnight. RNA was pelleted by centrifugation (20,000 × g for 30 minutes at 4°C) and cleaned using a ZR Plant RNA MiniPrep kit (Zymo Research, Irvine, CA, USA). For each tissue type, an RNA-seq library was prepared using the Illumina RNA-Seq TruSeq kit v. 2.0 with the modifications of Parkhomchuk et al. (2009) to allow strand-specific sequencing by dUTP incorporation.

Libraries were sequenced on an Illumina HiSeq 2000 at the CGRB to yield 101 bp single-end reads. Before further analysis, reads that did not pass the Illumina chastity and purity filters were removed. Trimmomatic 0.20 (Bolger et al., 2014) was used to trim the final base of each read, leading and trailing bases with quality scores below Q20, and all following bases if a sliding
window of 5 bp did not have an average quality of at least Q30. Reads shorter than 36 bp after
trimming were excluded.

Transcripts were assembled de novo using Trinity (Release 2013-08-14) (Grabherr et al.,
2011) for bud and leaf reads separately, as well as combined into a single data set using default
settings, except for using a minimum contig length of 101 bp. The same settings were also used to
assemble RNA-seq data from leaf tissue of the same A. syriaca individual from a library made
using ribosomal RNA subtraction (Straub et al., 2013). Best scoring open reading frames (ORFs)
were determined for each library using the TransDecoder utility provided with Trinity (Haas et
al., 2013). Transcripts were annotated using Mercator (Lohse et al., 2014) and TRAPID (Van Bel
et al., 2013).

Comparative transcriptome and gene family evolution analyses in Apocynaceae

For a comparative analysis, transcriptomes were obtained for five other species of
Apocynaceae. *Catharanthus roseus* and *Rauvolfia serpentina* transcriptomes were downloaded
from the Medicinal Plant Genomics Resource project database
(http://medicinalplantgenomics.msu.edu; Góngora-Castillo, Fedewa, et al., 2012), the *Rhazya
stricta* (Yates et al., 2014) and *Calotropis procera* (Kwon et al., 2015) transcriptomes were
downloaded from NCBI, and the *Tabernaemontana elegans* transcriptome was downloaded from
the PhytoMetaSyn Project database (www.phytometasyn.ca; Xiao et al., 2013). All
transcriptomes, including that of A. syriaca, were checked for duplicate transcripts, and the
duplicates removed using the Dedupe tool in BBMap (Bushnell and Rood, 2015). Transcriptomes
were checked for completeness using BUSCO v. 1.22 (Simão et al., 2015). Transcripts of all
species were assigned to reference gene families using TRAPID. Reference gene family
assignments were obtained from two high quality genomes, *Coffea canephora* (Denoeud et al., 2014) and *Vitis vinifera* (PLAZA v. 2.5; Proost et al., 2009).

A phylogenetic framework for comparative analysis was produced using published evolutionary relationships and divergence times in Apocynaceae (Fishbein et al., 2018). The timings of the *Coffea* split from Apocynaceae and the *Vitis* split from Gentianales were based on the estimates of Wikström et al. (2015). In order to examine changes in gene family sizes across Apocynaceae transcriptomes, BadiRate v. 1.35 (Librado et al., 2012) was run using the BDI (birth-death-innovation) stochastic model with a free rate (FR) branch model where each branch can have a different gene turn-over rate. Gains and losses were inferred using Wagner (ordered) parsimony (Kluge and Farris, 1969).

Genomic sequence assembly

Processed read-pairs were assembled into contigs using Platanus v. 1.2.1 (Kajitani et al., 2014). Platanus is designed to assemble highly heterozygous diploid genomes, and initially uses several k-mer sizes during assembly. *Asclepias* reads were assembled with an initial k-mer size of 25 bp with a k-mer step increase of 10 bp up to a maximum k-mer of 110 bp. As part of the expectation for heterozygous assembly, Platanus can merge contigs sharing high identity. We allowed contigs sharing 85% identity to be merged (assembly parameters “-k 25 -u 0.15”).

Scaffolding was performed with Platanus, setting the paired-end reads as “inward pointing” reads and the mate-pair reads as “outward pointing” reads. Reads were mapped to scaffolds using an initial seed size of 21 bp, one link between contigs was sufficient to align them into a scaffold, and scaffolds sharing 85% identity could be merged (scaffolding parameters “-s 21 -l 1 -u 0.15”).
Gaps between scaffolds were closed via local alignment and assembly of reads around the gaps using Platanus. An initial seed size of 21 bp was used to include reads in the mapping around a gap, and a minimum overlap of 21 bp between the newly assembled filler contig and the edges of the scaffold was required to use that contig to fill the gap (gap close parameters “-s 21 -k 21 -vd 21 -vo 21”).

Transcripts were mapped to Asclepias scaffolds ≥1 kbp using BLAT v. 32x1; one or more transcripts spanning multiple scaffolds were used to merge those scaffolds (Kent, 2002). This was performed with the program Scubat (<https://github.com/elswob/SCUBAT> accessed 12/17/2015) modified so that scaffolds would not be clipped when joined by cap3 v. 02/10/15 (Elsworth, 2012; Huang and Madan, 1999; Tange, 2011).

Contaminant removal

Merged scaffolds were compared against a genomic database of potentially contaminating organisms with the program DeconSeq standalone v. 0.4.3 (Schmieder and Edwards, 2011). Contaminant databases were downloaded from the DeconSeq website representing bacteria, archaea, viruses, 18S rRNA, zebrafish, mouse, and several human genomes (<http://deconseq.sourceforge.net> accessed January 20, 2016). Fungal genomes were obtained from the National Center for Biotechnology Information (NCBI) including *Alternaria arborescens* accession AIIC01, *Aspergillus fumigatus* AAHF01, *Bipolaris maydis* AIHU01, *Botrytis cinerea* assembly GCA_000832945.1, *Cladosprium sphaerospermum* AIIA02, *Fomitopsis pinicola* AEHC02, *Fusarium oxysporum* AAXH01, *Galerina marginata* AYUM01, *Hypoxylon sp.* JYCQ01, *Penicillium expansum* AYHP01, *Rhodotorula graminis* JTAO01, *Saccharomyces cerevisiae* assembly GCA_000146045.2, and *Trichoderma reesei* AAIL02.
(Amselem et al., 2011; Firrincieli et al., 2015; Floudas et al., 2012; Goffeau et al., 1997; Hu et al., 2012; Li et al., 2015; Ma et al., 2010; Martinez et al., 2008; Ng et al., 2012; Nierman et al., 2005; Ohm et al., 2012; Riley et al., 2014; Shaw et al., 2015). The genome of *Solanum lycopersicum* (ITAG 2.4) was downloaded from the Sol Genomics Network (The Tomato Genome Consortium, 2012). The fungal and *Solanum* genomes were prepared as DeconSeq databases following the DeconSeq website, including filtering of repeated Ns, removal of duplicate sequences, and indexing with a custom version of BWA released with DeconSeq (Li and Durbin, 2010; <http://deconseq.sourceforge.net> accessed January 20, 2016).

Genomes obtained from the DeconSeq website and the fungal genomes were used as contaminant databases, the *Solanum* genome was used as a retain database. Scaffolds matching one of the contaminant genomes with ≥80% identity along ≥80% of the scaffold length were excluded as contaminants. Those scaffolds matching both a contaminating genome and the *Solanum* genome were retained.

Gene prediction and annotation

A library of *Asclepias* repetitive elements was created following guidelines in the MAKER Genome Annotation Pipeline online documentation (Jiang, 2015). The program RepeatModeler v. open-1.0.8 was used to integrate the programs RepeatMasker v. open-4.0.5, rmblastn v. 2.2.28, RECON v. 1.08, Tandem Repeats Finder v. 4.07b, and RepeatScout v. 1.0.5 (Bao and Eddy, 2002; Benson, 1999; Price et al., 2005; Smit et al., 2015). Repeat models initially missing a repeat annotation were compared, using BLAT, against a library of class I and class II transposable elements acquired from the TESeeeker website (Kennedy et al., 2010, 2011), and matching sequences provided an annotation. Remaining unannotated models were submitted to
the online repeat analysis tool, CENSOR, and provided annotations with a score ≥400 and ≥50% sequence similarity (Kohany et al., 2006). A set of proteins from *Arabidopsis thaliana* was filtered to remove proteins from transposable elements, then compared using BLASTX against the *Asclepias* repeat models. The program ProtExcluder.pl v. 1.1 then used the BLASTX output to remove repeat models and flanking regions matching *Arabidopsis* proteins (Altschul et al., 1990; Jiang, 2015).

The set of scaffolds ≥1 kbp were annotated via the online annotation and curation tool GenSAS v. 4.0 (Humann et al., 2016; Lee et al., 2011), which was used to implement the following tools for repeat masking, transcript and protein mapping, ab initio gene prediction, gene consensus creation, and mapping of *Asclepias* predicted proteins:

1) Repeats in the assembled sequence were masked via RepeatMasker v. open-4.0.1 using the *Asclepias* repeat models and using models developed from dicots more broadly (Smit et al., 2015).

2) Multiple datasets were mapped onto *Asclepias* scaffolds in order to assist with gene prediction. The best ORFs from assembled *Asclepias* transcripts were mapped using both BLAT and BLAST (expect < 1e-50, 99% identity). Assembled transcripts from *Calotropis procera* were mapped with BLAT (Kwon et al., 2015). Proteins from *Coffea canephora* were mapped with BLASTX (e<0.0001; Denoeud et al., 2014). While additional high-quality genomes within Apocynaceae were later released (Hoopes et al., 2017; Sabir et al., 2016), they were not available at the time this work was performed.

3) Genes were predicted using the ab initio tools Augustus v. 3.1.0, SNAP, and PASA (Haas et al., 2003; Korf, 2004; Stanke et al., 2008). Augustus was run using gene models from
Solanum, finding genes on both strands, and allowing partial models; SNAP was run using models from Arabidopsis thaliana. PASA was informed by the best ORFs from assembled Asclepias transcripts.

4) Multiple lines of evidence were integrated into a gene consensus using EVidenceModeler (Haas et al., 2008) with the following weights: Augustus, 1; SNAP, 1; Coffea proteins, 5; Asclepias transcripts (BLAST), 7; Asclepias transcripts (BLAT), 7; Calotropis transcripts, 5; PASA, 7. Consensus gene models were then refined using PASA, again informed by Asclepias transcripts.

5) Predicted proteins were compared to the NCBI plant RefSeq database using BLASTP (expect < 1e-4, BLOSUM62 matrix; Pruitt et al., 2002), as well as being mapped against protein sequences from Coffea and Catharanthus roseus (expect < 1e-4; Denoeud et al., 2014; Kellner et al., 2015). Protein families were classified using the InterPro database and InterProScan v. 5.8-49.0 (Jones et al., 2014; Mitchell et al., 2015). Transfer RNAs were identified using tRNAscan-SE v. 1.3.1 (Lowe and Eddy, 1997). Additional open reading frames were found using the getorf tool from the EMBOSS suite, accepting a minimum of 30 bp (Rice et al., 2000).

Some predicted proteins were missing one or more exons, either because they were fragmented on the ends of scaffolds or, rarely, transcript evidence predicted exons with non-canonical splice sites. The predicted coding sequence produced by GenSas for some of these proteins was out of frame. In these cases the coding sequence was translated under all reading frames and a translation lacking internal stop codons was selected, if available.

An estimate of the completeness of the assembled gene space was calculated using the program BUSCO v. 1.22 and a set of 956 conserved single copy plant genes (Simão et al., 2015).
BUSCO was run independently on the set of coding sequences returned following gene prediction as well as on the assembled scaffolds ≥1 kbp using Augustus gene prediction with Solanum models. Predicted genes from Asclepias, Catharanthus, Coffea, and Vitis (obtained from the PLAZA 3.0 database) were clustered into orthogroups using OrthoFinder v. 0.7.1 (Emms and Kelly, 2015; Proost et al., 2015; The French-Italian Public Consortium for Grapevine Genome Characterization, 2007).

Gene analyses

The P5βR region (PLAZA v. 2.5 gene family HOM000752) was identified in assembled scaffolds with BLAT (Kent, 2002), using the P5βR sequences from Asclepias curassavica (ADG56538; Bauer et al., 2010) and Catharanthus roseus (KJ873882-KJ873887; Munkert et al., 2015) as references. A maximum likelihood tree was constructed from peptide sequences of two A. syriaca regions with high identity to P5βR; six Catharanthus P5βR sequences; the A. curassavica sequence; P5βR sequences from Calotropis procera (Kwon et al., 2015), C. gigantea (Hoopes et al., 2017), and Rhazya stricta (Sabir et al., 2016); sequences from Digitalis purpurea and D. lantata (ACZ66261, AAS76634), representing P5βR2 and P5βR paralogs, respectively; and a sequence from Picea sitchensis (ABK24388). P5βR sequence alignments were performed using MUSCLE 3.8.425, as implemented in Geneious v. 11.1.5, with a maximum of 10 iterations (Edgar, 2004; Kearse et al., 2012). The optimal models of amino acid substitution, rate variation among sites, and equilibrium frequencies were inferred using the Akaike and Bayesian information criteria, as implemented in the online tool PhyML 3.0, which was also used to infer trees under those models and calculate aBayes support values (Anisimova et al., 2011; Guindon et al., 2010; Guindon and Gascuel, 2003).
SNP finding and targeted enrichment probe development

The Platanus genome assembler uses a de Bruijn graph approach for contig assembly (Kajitani et al., 2014). Certain types of branches in this graph, known as “bubbles,” may be caused by heterozygosity and are saved by the program for use in later assembly stages. Here, saved bubbles were filtered to identify those likely to represent heterozygous sites in low-copy regions of the genome.

The program CD-HIT-EST v. 4.5.4 was used to cluster any bubbles sharing ≥90% identity, which were removed, leaving only unique bubbles (Li and Godzik, 2006). Unique bubbles were mapped against the set of *Asclepias* scaffolds ≥1 kbp using BLAT at minimum identity thresholds of 90% and 95% (Kent, 2002). A set of 4000 SNP probes developed from a preliminary study using a similar approach, but from a different genome assembly, were mapped against the assembly presented here with a 90% identity threshold (Weitemier et al., 2014). One appropriate bubble from each scaffold <10 kbp, and up to two bubbles from scaffolds ≥10 kbp, were selected, up to a total of 20,000 bubbles. Bubbles mapping only once within the ≥90% identity mapping analysis were selected first, progressively adding bubbles that either mapped to ≤4 locations in the ≥90% identity mapping or mapped to ≤3 locations in the ≥95% identity mapping. Bubble sequences were trimmed to 80 bp, and centered around the SNP site where possible. Potential SNP probes were further analyzed by MYcroarray (now Arbor BioSciences, Ann Arbor, MI, USA) and excluded if they were predicted to anneal in a solution hybridization reaction to >10 locations within the *Asclepias* genome at 62.5-65°C or >2 locations above 65°C. Twenty thousand RNA oligos suitable for targeted enrichment, matching 17,684 scaffolds, were produced by MYcroarray.
Linkage mapping population

Mature follicles were collected from the open pollinated plant that was the subject of genome sequencing. Approximately 100 seeds from six follicles collected from four stems of this plant (1, 3, 1, and 1 follicle per stem) were germinated and grown at Oklahoma State University. Due to the pollination system of Asclepias, seeds in a fruit are likely to be fertilized by a single pollen donor (Sparrow and Pearson, 1948; Wyatt and Broyles, 1990), meaning up to six paternal parents are represented among the 96 mapping offspring.

Seeds were surface sterilized in 5% bleach and soaked for 24 hr in distilled water. The testa was nicked opposite from the micropylar end and the seeds germinated on moist filter paper, in petri dishes, in the dark, at room temperature. Germination occurred within 4-7 days, and seedlings were planted into MetroMix 902 media in plug trays when radicles attained a length of 2-3 cm. Seedlings were again transplanted to 3-inch deep pots following the expansion to two sets of true leaves. Seedlings were grown under high intensity fluorescent lights in a controlled environment chamber at 14 hr daylength at approximately 27°C. Plants were grown for approximately 90 days, harvested, and rinsed in distilled water, and frozen at -80°C. DNA was extracted from roots, shoots, or a combination of roots and shoots using the FastDNA® kit (MP Biomedicals, Santa Ana, California) and Thermo Savant FastPrep® FP120 Cell Disrupter (Thermo Scientific, Waltham, MA, USA). DNA quantity and quality were visualized using agarose gel electrophoresis and quantified with a Qubit® fluorometer (Invitrogen, Carlsbad, CA, USA) and Quant-iT™ DNA-BR Assay Kit.

Ninety-six genomic DNA samples were diluted as necessary with ultrapure water to obtain approximately 3 μg in 100 ul and sheared on a Bioruptor UCD-200 (Diagenode) at low
power for 12 cycles of 30 s on/30 s off. Several samples required sonication for 5-10 additional cycles to achieve a high concentration of fragments at the target size of 300-400 bp. Illumina-compatible, dual-indexed libraries were produced with the TruSeq® HT kit (Illumina), each with a unique barcode.

Barcoded libraries were pooled by equal DNA mass in three groups of 32 samples. These were enriched for targeted SNP regions using RNA oligos and following MYcroarray MYbaits protocol v. 3.00. Enriched pools were then themselves evenly pooled and sequenced with 150 bp paired-end reads on an Illumina HiSeq 3000 at the CGRB, producing 120.3 Mbp of sequence data (NCBI short read archive: SRX2163716-SRX2163811).

Linkage analyses

Reads were processed using Trimmomatic v. 0.33 to remove adapter sequences, bases on the ends of reads with a Phred quality score below three, and clipping once a sliding window of 4 bp fell below an average quality score of 17 (Bolger et al., 2014). Processed reads for 90 samples (excluding 6 with low sequencing depth) were mapped onto the assembled scaffolds using bowtie2 with “sensitive” settings and a maximum fragment length of 600 bp (Langmead and Salzberg, 2012). Reads from the 225 bp insert library of the sequenced individual were also mapped back onto assembled scaffolds using the same settings. Mappings for all individuals and the parent were combined using samtools v. 0.1.16 and SNPs called using the bcftools “view” command (Li et al., 2009).

Two subsets of SNPs were retained. The first was a subset of SNPs where the maternal parent was heterozygous and the paternal parents for all offspring were homozygous for the same allele. The file containing all variants was converted to a format suitable for the R package.
OneMap, using a custom perl script (Tennessen, 2015), retaining only sites heterozygous in one parent, the maternal sequenced individual. In this filtering the minor genotype abundance (either heterozygote or homozygote) needed to be at least 24 across 90 samples, loci could have up to 30% missing individuals, and alternative genotypes within individuals were ignored if their Phred probability score was 15 or above (i.e., of the three possible genotypes AA, Aa, aa, one should be most probable with a low Phred score and the other two less probable with Phred scores above 15).

The second subset retained SNPs from 22 full siblings (from the fruit producing the most offspring) for loci in which either the maternal or paternal parent, but not both, were heterozygous. Filtering in this set required a minor genotype abundance of at least five, loci could have up to four missing individuals, and genotypes with Phred probabilities of 20 or above were ignored (i.e., the final genotype calls are more certain because alternative genotypes are less likely).

SNP sets were clustered into linkage groups in R v. 3.2.2 using the package OneMap v. 2.0-4 (Margarido et al., 2007; R Core Team, 2014). One SNP from each scaffold was selected from SNPs among the full set of individuals, and were grouped using a logarithm of odds (LOD) threshold of 8.4. This clustered SNP loci into eleven clear groups, referred to here as the core linkage groups.

From the full-sibling set of SNPs, those held on the same scaffold and with identical genotypes across individuals (i.e., in perfect linkage) were grouped, and SNPs on different scaffolds in perfect linkage with no missing data were grouped. This was performed separately for loci where either the maternal or paternal parent was heterozygous. These loci were clustered
into groups using LOD scores 6.1, 6.0, and 5.5. Each of these groupings produced hundreds of groups, but each contained about 22 groups that were substantially larger than the others.

A custom R script was used to combine the linkage group identity of scaffolds in the core linkage groups with scaffolds and groups in the sibling sets (Weitemier, 2017). For example, scaffold A could be assigned to a linkage group if it was in perfect linkage in the sibling set with scaffold B, and scaffold B was also present in the core linkage groups. If multiple scaffolds were perfectly linked, but associated with different core linkage groups, no unknown scaffolds would be assigned unless the most common core linkage group was three times as common as the next core group.

Linkage groupings in the sibling sets could be assigned to core linkage groups based on the membership of the scaffolds they contained. If the markers indicating that a sibling group should belong to a certain core linkage group were ten times as common as markers supporting a second most common assignment, then the sibling group was assigned to the core group, and all unknown scaffolds it contained also assigned to that group. (For example, sibling group A contains ten scaffolds known to be on core linkage group 1, one scaffold known to be on core linkage group 2, and one unknown scaffold; sibling group A is assigned to core linkage group 1 and the unknown scaffold is similarly assigned.)

This process was performed iteratively, progressively assigning scaffolds to core linkage groups. It was performed first with the sibling set grouped with LOD 6.1, then the grouping with LOD 6.0, finally the grouping with LOD 5.5.
Synteny within Gentianales

Scaffolds found within the core linkage groups were mapped to *Coffea* coding sequences (BLASTN, expect < 1, best hit chosen) and mapped to their location on *Coffea* pseudochromosomes. Six *Asclepias* linkage groups had a roughly one-to-one correspondence with a *Coffea* pseudochromosome (e.g., most of the scaffolds from that linkage group, and few from other linkage groups, mapped to the pseudochromosome). From these six linkage groups one marker was selected for every 1 Mbp segment of the *Coffea* chromosome. Recombination fractions were measured among these loci using OneMap (retaining “safe” markers with THRES=5) and converted to cM using the Kosambi mapping function.

455 **RESULTS**

Sequencing and read processing

Paired-end sequencing produced 215.6 million pairs of reads representing 50.0 Gbp of sequence data, and mate-pair sequencing produced 52.8 million pairs of reads for 9.9 Gbp of sequence data. After read filtering and processing, 30.7 Gbp of paired-end sequence data remained along with 3.0 Gbp of mate-pair data. This represents total average sequence coverage of 80.4× on the 420 Mbp *Asclepias syriaca* genome (Table 2).

The distribution of 17 bp k-mers from the largest set of paired-end reads demonstrates a clear bi-modal distribution, with peaks at 43× and 84× depth (Fig. 1), corresponding to the sequencing depth of heterozygous and homozygous portions of the genome, respectively. This k-mer distribution provides a genome size estimate of 406 Mbp, and a site heterozygosity rate estimate of 0.056.
Sequence assembly and gene annotation

The assembly of *Asclepias syriaca* contains 54,266 scaffolds ≥1 kbp, with N50 = 3415 bp, representing 37% of the estimated genome (156.6 Mbp of sequence plus 5.8 Mbp of gaps, Table 3). When including scaffolds ≥200 bp the assembly sums to 229.7 Mbp, with N50 = 1904 bp. The largest scaffold is 100 kbp, and 10% of the *Asclepias* genome, 42.82 Mbp, is held on 2343 scaffolds ≥10 kbp.

Within the 156.6 Mbp of scaffolds ≥1 kbp, 1.25 million putative open reading frames were identified, along with 193 transfer RNA loci. Assembled repeat elements made up about 75.7 Mbp. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models. These are predicted to produce 15,628 unique mRNAs, and are made up of a total of 87,496 exons with an average length of 225.3 bp. The median length of predicted proteins is 303 amino acids (mean = 402), which is shorter than lengths predicted in *Calotropis* (median = 367, mean = 448), similar to those predicted in *Coffea* (median = 334, mean = 402), but longer than those predicted in *Catharanthus* (median = 251, mean = 340; Fig. 2). Of the 14,474 predicted genes, 13,749 (95.0%) mapped to either *Coffea* or *Catharanthus* proteins, and 9811 mapped to RefSeq proteins.

Of 32,728 assembled *Asclepias* transcripts representing the best scoring ORFs, 31,654 (96.7%) mapped onto scaffolds ≥1 kbp. For *Calotropis*, 92,115 (88.4%) transcripts were mapped to *Asclepias* scaffolds, while 23,182 (90.6%) proteins from *Coffea* mapped to the assembly. BUSCO analysis of the genome assembly identified 818 of the 956 plant genes in its set, of which 209 were identified as duplicates. An additional 77 BUSCO genes were fragmented, meaning they were found in the genome assembly, but with a length outside two standard
deviations of the mean BUSCO length for that gene. This represents a total of 895 BUSCO genes, or 93.6%. When applied to just the set of coding sequences BUSCO identified 742 complete genes (302 duplicated) and 84 fragmented genes, representing 86.4% of the conserved plant gene set. Apocynaceae transcriptomes were compared using the BUSCO set of 429 genes common to eukaryotes. The *Asclepias* transcriptome contained 365 of the genes (117 duplicated, 21 fragmented), representing 85.1%. Presence of these genes in other transcriptomes (*Catharanthus, Rauwolfia, Rhazya, Tabernaemontana, Calotropis*) ranged from 83.7% in *Calotropis* to 86.5% in *Tabernaemontana*, indicating that the *Asclepias* transcriptome assembly was of similar completeness to Apocynaceae transcriptomes publicly available at the time of analysis. All Apocynaceae transcriptomes showed increased duplication of the 429 genes with approximately 2× the number of duplicates on average compared to the *Coffea, Catharanthus, and Vitis* genomes.

Among 100,114 predicted genes from *Asclepias, Catharanthus, Coffea, and Vitis*, 69.9% were clustered into 13,906 orthogroups. *Asclepias* had the highest percentage of genes placed in orthogroups, 81.6%, but those genes only represent 9837 orthogroups, the lowest of the four genomes. *Asclepias* shared the fewest orthogroups with other species (Table S1).

Comparison of all six Apocynaceae transcriptomes showed 5195 gene families were common to all. The *Asclepias* transcriptome contained 5762 gene families also present in the *Coffea* genome. There were 58 gene families with 1-3 gene copies in *Asclepias* that were not present in other Apocynaceae. Among Apocynaceae lineages, *Asclepias* was not unusual in its number of gene gains or losses. *Asclepias* had close to the median number of gene gains among all lineages with 5697 (median = 5791.5), much less than the 15,831 gene gains inferred in the
lineage with the highest number of gains, *Rauvolfia*. Similarly, the number of gene losses in *Asclepias* at 905 was just below the median number of losses (median = 1136), and much less than the 7619 losses inferred for *Catharanthus*. While *Asclepias* had one of the highest gene birth rates over time (0.01082 events per gene per million years; Fig. 3), it was lower than that of close relative *Calotropis* (0.01463 events per gene per million years), and the rate inferred for the *Rauvolfia* plus *Catharanthus* plus *Tabernaemontana* lineage (0.14406 events per gene per million years) was an order of magnitude greater. *Asclepias* had close to the median value for gene death rate (0.00177 events per gene per million years). However, *Asclepias* had the second highest gene innovation rate (0.00069 events per gene per million years) compared to other lineages (Fig. 3).

As with gene birth rate, the gene innovation rate of the *Rauvolfia* plus *Catharanthus* plus *Tabernaemontana* lineage (0.00146 events per gene per million years) was an order of magnitude higher.

Linkage mapping and synteny within Gentianales

Following filtering, the set of all 96 offspring retained over 16,000 SNPs for which the maternal parent was heterozygous and all the paternal parents were homozygous for the same allele. These were located on 8495 scaffolds, covering 43.5 Mbp. Ninety of 96 individuals were sequenced at adequate depth to inform linkage group analyses. At a likelihood of odds (LOD) score of 8.4, 7809 scaffolds were clustered into 11 groups, the core linkage groups, representing 41.9 Mbp.

Filtering for SNPs among just the largest group of full-siblings, in which one parent (but not both) was heterozygous, found 83,854 SNPs on 18,333 scaffolds. These SNPs were consolidated by perfect linkage and then clustered at LOD scores of 6.1, 6.0, and 5.5. Combining
scaffolds from the core linkage groups with those clustered among the full-sibling group ultimately provided a combined linkage set, with linkage group assignments to 16,285 scaffolds, representing 75.0 Mbp.

Mapping of scaffolds from just the core linkage groups to Coffea pseudochromosomes found several linkage group/pseudochromosome “best hit” pairs (e.g., most Asclepias scaffolds from a linkage group mapped to one pseudochromosome, while few scaffolds from other linkage groups mapped to that pseudochromosome). Asclepias linkage groups 2, 4, 6, 7, 8 and 9 mapped in this manner to Coffea pseudochromosomes 10, 8, 6, 11, 3, and 1, respectively (Figs. 4, 5). From these six linkage groups, SNPs were chosen mapping to every 1 Mbp region (if available) of the corresponding Coffea pseudochromosome. Recombination distances were measured among these markers and their relative positions within Asclepias plotted against their position in Coffea (Figs. S1-S6). Monotonically increasing or decreasing series of points in these plots represent loci in Asclepias and Coffea that maintain their relative positions. Several such marker clusters are seen in these plots (e.g., Fig. S2), though they tend to cover only short chromosomal regions and are often interrupted by markers from outside the cluster.

Progesterone 5β-reductase gene family

One region on linkage group 11 had 98.4% identity with peptide sequence from progesterone 5β-reductase from Asclepias curassavica (Table S2). This region was supported by A. syriaca transcriptome evidence, as well as mapped Calotropis transcripts and Coffea proteins. Approximately 500 bp downstream from this gene, a second region was identified sharing 52% amino acid identity with the first region, for 70% of its length. The second region lacks transcript evidence from A. syriaca, though portions of Calotropis transcripts and Coffea peptides map to it.
Gene predictions from Augustus and SNAP include potential exons within the region, and the region includes P5βR conserved motifs I, II, and III, and portions of motifs IV, V, and VI described by Thorn et al. (2008). It is interpreted here as a pseudogene of P5βR, ΨP5βR (Table S2).

Paralogs of P5βR have been described in other angiosperms including *Arabidopsis*, *Populus*, *Vitis*, and *Digitalis*, and the P5βR2 paralog occurs on a chromosome separate from that of P5βR1 in *Arabidopsis* and *Populus* (Bauer et al., 2010; Pérez-Bermúdez et al., 2010). Due to frame shifts and ambiguous exon boundaries in ΨP5βR, it is difficult to assess the correct peptide sequence it initially encoded, and therefore difficult to fully align with *Digitalis* P5βR1 and P5βR2 sequences. However, a few motifs, particularly a triple tryptophan at the N-terminal end of the sequence, suggest its origin from P5βR1, a conclusion supported by its position adjacent to the coding P5βR in *Asclepias*.

A third region on an unlinked scaffold exhibited moderate (37%) identity with the peptide sequence from linkage group 11 (Table S2). This region includes an intact reading frame and is matched by transcripts from *Calotropis*, though a lack of *Asclepias* transcripts matching this region indicates that it may not be regularly expressed within leaves or buds. A peptide alignment was made for this sequence, the known coding P5βR in *Asclepias*, and P5βR sequences from *A. curassavica*, *Calotropis procera*, *C. gigantea*, *Rhazya*, *Digitalis*, *Catharanthus*, and *Picea* to infer the phylogeny of this locus. The optimal model of sequence evolution selected by AIC was the LG+G+I model of peptide substitution, rate variation among sites, and proportion of invariable sites (BIC selected the LG+G model, but tree topologies were identical and are not shown). A maximum-likelihood estimate of the P5βR gene tree grouped the unlinked *Asclepias* sequence
with a paralog from *Rhazya* (originating on supercontig 3 from Sabir et al., 2016) and
Catharanthus paralog P5βR6 (Fig. 6). Together these are sister to all other P5βR sequences analyzed, except *Picea*, which was used to root the gene tree. The P5βR sequence from linkage group 11 is strongly supported as the most closely related sequence to the one from *A. curassavica*, within a clade including P5βR1 sequences from *Digitalis* and *Catharanthus*.

Analysis of the P5βR gene family across Apocynaceae showed that this gene family is largest in *Rauvolfia*, *Catharanthus*, and *Tabernaemontana*, with most of the expansion occurring in the common ancestor of these three (Fig. 3). However, this interpretation may change as more Apocynaceae genomes and transcriptomes become available.

DISCUSSION

The *Asclepias syriaca* nuclear genome assembly presented here represents a large fraction of the protein-coding gene space, despite very high levels of heterozygosity and sequence data restricted to Illumina short reads. Gene space coverage is supported by high proportions of BUSCO plant core genes found within the assembly (93.6%) as well as assembled transcripts mapping to the assembly (96.7%). A substantial portion of genes from related plant species mapped to the assembly as well, including 88.4% of transcripts from *Calotropis* and 90.6% of amino acid sequences from *Coffea*.

Overall, the *Asclepias* assembly is fragmented when compared to other plant genomes assembled using either long reads or deep sequencing of known contiguous fragments (e.g. BACs or fosmids). Assembly was also hindered by poor quality mate-pair libraries containing low proportions of properly paired fragments (Table 2). However, assembly results are typical for a sequencing project relying entirely on short reads, especially for organisms with high levels of
heterozygosity. For example, the *Asclepias* N50 value of 3.4 kbp compares favorably to the assembly of the rubber tree, *Hevea brasiliensis*, genome (N50 = 2972 bp; Rahman et al., 2013), though it is not as contiguous as the dwarf birch, *Betula nana*, genome (N50 = 18.6 kbp; Wang et al., 2012), which incorporated several mate pair libraries. The assembly of the olive tree, *Olea europaea*, genome was also very similar to *Asclepias*, with N50 = 3.8 kbp prior to the inclusion of fosmid libraries (Cruz et al., 2016). See, however, the assembly of *Calotropis gigantea* using paired-end and mate-pair reads (N50 = 805 kbp, Table 1; Hoopes et al., 2017) as an example of a less fragmented assembly. The effect of high heterozygosity is clearly seen in the comparison of *Asclepias* and *Catharanthus* assemblies (Kellner et al., 2015). While sequence data and genome assembly methods are similar between the two, *Asclepias* has an estimated heterozygosity rate of >1 SNP per 20 bp, whereas the heterozygosity rate in the inbred *Catharanthus* cultivar is estimated at <1 SNP per 1000 bp. This resulted in a N50 of 27.3 kbp assembled from only a single *Catharanthus* Illumina library (Table 1).

Functional annotations were applied to a high proportion (95.0%) of the 14,474 called genes, which were mapped to proteins from *Catharanthus roseus* and/or to *Coffea canephora*. The number of called genes is well below the typical value for plant genomes: the genome of *Calotropis gigantea*, the closest relative with an assembled genome, contains 19,536 gene loci (Hoopes et al., 2017). The genomes of *Rhazy* and *Catharanthus* contain 21,164 and 33,829 called genes, respectively (Kellner et al., 2015; Sabir et al., 2016). The genome of *Coffea* contains 25,574 protein-coding genes, and the genome of tomato, *Solanum lycopersicum*, from the sister order, Solanales, contains 36,148 (Denoeud et al., 2014; The Tomato Genome Consortium, 2012).
It is likely that the gene count in *Catharanthus* is an overestimate, a possibility in fragmented genome assemblies (Denton et al., 2014), as indicated by the excess of short predicted proteins relative to *Coffea* and *Calotropis* (Fig. 2). By contrast, the 14,474 called genes in *Asclepias* is likely an underestimate of the true number. While the size distribution of predicted *Asclepias* proteins is quite similar to that of *Coffea*, *Asclepias* contains fewer proteins of all sizes, and the dramatic reduction of orthogroups found in *Asclepias* relative to other species argues for deficiency in gene calling. While it’s possible that similar genes were mistakenly collapsed into a single contig during the assembly stage meant to collapse alleles at a single locus, this should only occur with genes isolated on small contigs and should not affect the number of orthogroups identified. Nevertheless, the high proportion of matches between the *Asclepias* genome assembly, *Asclepias* transcripts, and gene sets from related organisms, indicates that the assembly likely does contain sequence information for nearly the full complement of genes, but that some of these have not been recognized by gene calling algorithms due to the fragmented nature of the assembly.

Synteny within Gentianales

Six of eleven linkage groups in *Asclepias* show high synteny at a chromosomal scale with the pseudochromosomes of *Coffea* (Figs. 4, 5). This suggests that these chromosomes have remained largely stable and retained the same gene content for over 95 Myr, throughout the evolution of the Gentianales (Wikström et al., 2015). These stable chromosomes may have remained largely intact for a much longer period as well. The stable *Coffea* pseudochromosomes (1, 3, 6, 8, 10, and 11) retain largely the same content as inferred for ancestral core eudicot
chromosomes, exhibiting little fractionation, even after an inferred genome triplication at the base of the eudicots, 117-125 Myr ago (see Fig. 1B in Denoeud et al., 2014; Jiao and Paterson, 2014).

Despite the conservation of gene content, gene order within stable chromosomes may be more labile. Plots of recombination distance among markers in Asclepias against physical distance in Coffea show several sets of markers in Coffea that retain their relative order in Asclepias, but are frequently interrupted by loci found elsewhere on the same Coffea pseudochromosome. For example, within Asclepias linkage group 2 there is a set of markers that retain their same relative ordering from positions 3 million to 8 million on Coffea pseudochromosome 10 (Fig. S1). However, these markers in Asclepias are interrupted by markers mapping to positions closer to the origin on the same Coffea pseudochromosome as well as a marker mapping to the far end. The most conserved synteny is between Asclepias linkage group 8 and Coffea pseudochromosome 3, which show complete synteny except for an apparent transposition of markers at positions 2 million and 7 million on Coffea pseudochromosome 3 (Fig. S2).

Contrasting the stability in gene content of six Coffea pseudochromosomes, pseudochromosome 2 is inferred to contain portions of at least five ancestral core eudicot chromosomes. This suggests significant fractionation in this chromosome since the eudicot triplication event (Denoeud et al., 2014). Even between Coffea and Asclepias, pseudochromosome 2 maps to portions of several Asclepias linkage groups (Figs. 4, 5).

Therefore, the fractionation within this chromosome appears to have either occurred only within the branch leading from the Gentianales ancestor to Coffea, or occurred earlier and then continued along the branch leading to Asclepias. If the latter is true, then a higher frequency of
rearrangement may be a characteristic of this chromosome within the Gentianales, relative to other chromosomes. Analyses of chromosomal rearrangements in *Rhazya* (Figure 1 in Sabir et al., 2016) support this view, suggesting several rearrangements between the core eudicot triplication event and the Gentianales ancestor, and continued rearrangement between that ancestor and *Rhazya*. However, mapped genomic resources within other Asterids outside of Gentianales are scarce, and are only found in taxa that have undergone additional genome duplication events since the eudicot triplication (e.g., *Solanum*, *Daucus*; Iorizzo et al., 2016; The Tomato Genome Consortium, 2012), complicating synteny assessments that might resolve the timing of fractionation of this chromosome.

The production of physical maps of both *Asclepias* and *Coffea* chromosomes will help resolve how frequently synteny has been disturbed between the two taxa. The ordered scaffold maps presented here (Figs. S1-S6) contain only a few dozen markers, and trends apparent now could be altered on maps with much greater resolution. The *Coffea* pseudochromosomes, meanwhile, are still ultimately ordered by recombination frequency, and about half of the scaffolds are placed with unknown orientation (Denoeud et al., 2014), which could manifest here as apparent transpositions among adjacent markers.

Progesterone 5β-reductase gene family

The name *Asclepias* comes from the Greek god of medicine, Asclepius, whose name was applied to this genus for its potent secondary compounds. The cardenolides of *Asclepias* belong to a class of steroidal compounds, cardiac glycosides, used to treat cardiac insufficiency. While the genetic pathway that produces β-cardenolides (the form of cardenolide that includes the medicinal compound digitoxin) is largely unknown, one of the early steps involves the
conversion of progesterone to 5β-pregnane-3,20-dione (Gärtner et al., 1990, 1994), catalyzed by the enzyme progesterone 5β-reductase (P5βR). Orthologs of P5βR occur broadly across seed plants, even in taxa that do not produce β-cardenolides, including Asclepias, which only produces α-cardenolides (Bauer et al., 2010). The P5βR1 locus has been characterized in Asclepias curassavica, but information about its genomic context has remained unknown.

A coding P5βR ortholog was located in Asclepias syriaca on linkage group 11, sharing 98.4% amino acid identity with P5βR from A. curassavica. This gene is supported by transcripts from Asclepias, as well as mapped transcripts from Calotropis and proteins from Coffea. The presence of a novel P5βR pseudogene was also identified closely downstream from the expressed gene (Table S2). Sharing high identity with the expressed P5βR, including several conserved motifs, it clearly originated from a P5βR duplication at some point. However, it is assumed to be non-functional due to its degraded exons interrupted by multiple stop codons and lack of expression evidence from the transcriptome.

A third region in Asclepias, on an unlinked scaffold, was matched by multiple P5βR sequences from Catharanthus (Table S2). This region is made up of a single open reading frame that shares only moderate identity with the Asclepias coding P5βR, and is not supported by Asclepias transcript evidence. In a P5βR phylogeny, the unlinked Asclepias region is sister to Catharanthus P5βR6 and a copy from Rhazya (Kellner et al., 2015; Sabir et al., 2016). These sequences together are sister to all other P5βR sequences analyzed except Picea, which was used for rooting (Fig. 6).

While at least two P5βR paralogs have been identified in a wide range of plants, and Rhazya, Rauvolfia, Catharanthus, and Tabernaemontana exhibit expression evidence of multiple
paralogs, *Asclepias* is reduced for this group of genes. *Rauvolfia* and *Tabernaemontana* are known to produce cardenolides, but *Catharanthus* and *Rhazya* do not (Abere et al., 2014; Agrawal et al., 2012; Hoopes et al., 2017; Sivagnanam and Kumar, 2014). *Calotropis* is known to produce β-cardenolides (Bauer et al., 2010; Pandey et al., 2016), and contains two P5βR paralogs (Hoopes et al., 2017). It is possible that the fragmented nature of the current assembly precludes identification of all existing P5βR paralogs in *A. syriaca*, however, both genome assembly and transcript evidence point toward one functional P5βR locus. While multiple genes are involved in the production of β-cardenolides, it may be that the reduction in the P5βR family is responsible for the lack of these compounds in *Asclepias*, which only contains α-cardenolides.

CONCLUSIONS

We present a draft genome assembly with linkage information of *Asclepias syriaca*, assigning nearly half of scaffolds to linkage groups. While the assembly remains fragmented, multiple lines of evidence indicate that nearly all of the gene space of *Asclepias* is represented within the assembly.

Linkage information allowed assessment of synteny across the order Gentianales. Six of eleven chromosomes retain similar gene content across the order, and these chromosomes have likely remained stable since the divergence of eudicots. One chromosome has either experienced dramatic fractionation since the divergence of Rubiaceae from other Gentianales, or experienced earlier fractionation that continued within Gentianales.

Asclepias syriaca and its relatives are important systems for a wide range of evolutionary and ecological studies, and are an important component of many ecosystems, serving as prolific nectar producers and as hosts to a range of specially adapted species. The availability of the
Asclepias genome, coupled with genomic data from symbiotic organisms, particularly insects, promises to inform important mechanisms of co-evolution (Agrawal and Fishbein, 2008; Edger et al., 2015; Zhan et al., 2011). We expect that the data presented here will advance these studies and aid the discovery of novel insights into the origin and evolution of a charismatic family, the production of important secondary compounds, and the ecological and evolutionary relationships between milkweeds and their communities.

ACKNOWLEDGMENTS

The authors wish to kindly thank the following for important contributions to this work: Winthrop Phippen for cultivating Asclepias, supplying tissue for sequencing, and harvesting fruits. Nicole Nasholm, Matt Parks, LaRinda Holland, Zoe Austin, and Lisa Garrison for DNA extraction and library preparation. The Oregon State University Center for Genome Research and Biocomputing for expert sequencing facilities and computational infrastructure. Access to the TAIR database was provided under the Terms of Use, accessed on August 11, 2016, available at http://www.arabidopsis.org/doc/about/tair_terms_of_use/417.

Funding for this work is provided by the National Science Foundation Division of Environmental Biology awards 0919389 (to M.F.) and 0919583 (to R.C.C. and A.L.) and Integrative Organismal Systems award 1238731 (to C.D.B). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

DATA AVAILABILITY

The whole genome shotgun project and transcriptome shotgun assembly have been deposited at DDBJ/ENA/GenBank under the accessions MSXX01000000 and GFXT01000000,
respectively. Additional data has been deposited in the Oregon State University institutional archive (Weitemier, 2017). A genome browser is available at www.milkweedgenome.org.
REFERENCES

Weitemier K (2017) Supplemental data to ‘A draft genome and transcriptome of common milkweed (*Asclepias syriaca*) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae’. Oregon State University. DOI: 10.7267/N9M61HDR.

Figure 1: K-mer distribution of *Asclepias syriaca* genomic reads. Depth is the number of times a certain 17 bp k-mer occurred in the genomic reads, and count is the number of different k-mers at that depth. K-mers with depths below 15 or above 205 are not shown. Within the read set analyzed, 629 million k-mers were unique. Peaks occur at 43× and 84× depth.
Figure 2: Peptide length histograms of *Asclepias*, *Calotropis*, *Coffea*, and *Catharanthus*. Mean and median peptide lengths are provided in the legend.
Figure 3: Gene family evolution in Apocynaceae inferred from transcriptomes. The ultrametric tree depicts the phylogenetic relationships and estimated divergence times of sampled Apocynaceae and outgroups (Coffea, Vitis). The number of gene birth/death/innovation events per gene per million years across all gene families is shown above the branches. Numbers following tip labels represent the observed number of P5βR gene family paralogs, and the inferred number of paralogs present in common ancestors is shown to the right of nodes.
Figure 4: Counts of *Asclepias* linkage group scaffolds mapping to *Coffea* pseudochromosomes. Each column includes scaffolds from a single *Asclepias* linkage group, each row includes scaffolds mapping to a *Coffea canephora* pseudochromosome. *Coffea* chromosome 0 represents unassigned *Coffea* regions. Dot size is proportional to the number of mapping scaffolds, which is also provided.
Figure 5: *Asclepias* linkage group scaffolds mapped to *Coffea* pseudochromosomes. *Coffea canephora* pseudochromosomes are shown in rows; the x-axis shows distance along each pseudochromosome. Each vertical bar represents one scaffold from the *Asclepias* core linkage groups, colored by its linkage group membership.
Figure 6: Maximum likelihood phylogeny of progesterone 5β-reductase paralogs. *A. syriaca* labels indicate the linkage group from which that sequence originates. *Catharanthus* and *Digitalis* labels indicate numbered paralogs isolated from that species. *Rhazya* labels indicate the originating supercontig from Sabir et al (2016) with two paralogs coming from supercontig 17. *Calotropis procera* labels indicate the originating transcript from Kwon et al (2015). *Calotropis gigantea* labels indicate the originating contig from Hoopes et al (2018). Numbers at nodes indicate aBayes support values. Branch lengths are in substitutions per site.
Table 1: Assembly comparison of *Asclepias*, *Catharanthus*, *Rhazya*, and *Coffea*. **Sequencing method** includes technologies and materials used in sequencing; N50 = 50% of the assembly is contained in scaffolds of this length or larger, BAC = bacterial artificial chromosome, SE = single-end, PE = paired-end.

<table>
<thead>
<tr>
<th>Species</th>
<th>Genome size (Mbp)</th>
<th>Assembly size (Mbp)</th>
<th>N50 (kbp)</th>
<th># Scaffolds</th>
<th>Sequencing method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffea canephora</td>
<td>710</td>
<td>568.6</td>
<td>1261</td>
<td>13,345</td>
<td>454 SE & mate-pair, Illumina SE & PE, BACs, haploid accession</td>
</tr>
<tr>
<td>Rhazya stricta</td>
<td>200</td>
<td>274</td>
<td>5500</td>
<td>980</td>
<td>Illumina PE & mate-pair, PacBio, optical mapping</td>
</tr>
<tr>
<td>Catharanthus rosea</td>
<td>738</td>
<td>506</td>
<td>27.3</td>
<td>41,176</td>
<td>Illumina PE, inbred accession</td>
</tr>
<tr>
<td>Calotropis gigantea</td>
<td>225</td>
<td>157.3</td>
<td>805</td>
<td>1,536</td>
<td>Illumina PE & mate-pair</td>
</tr>
<tr>
<td>Asclepias syriaca</td>
<td>420</td>
<td>156.6</td>
<td>3.4</td>
<td>54,266</td>
<td>Illumina PE & mate-pair</td>
</tr>
</tbody>
</table>
Table 2: *Asclepias syriaca* sequencing summary.

Machine: Illumina instrument that performed the sequencing; **Raw yield, Processed yield:** Total Mbp of sequence data before and after read processing. **SRA:** NCBI Short Read Archive accession number.

<table>
<thead>
<tr>
<th>Library type</th>
<th>Insert size (bp)</th>
<th>Machine</th>
<th>Lanes</th>
<th>Read length (bp)</th>
<th>Clusters</th>
<th>Raw yield (Mbp)</th>
<th>Processed yield (Mbp)</th>
<th>SRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired-end</td>
<td>225</td>
<td>GA II</td>
<td>5</td>
<td>120</td>
<td>193,332,028</td>
<td>46400</td>
<td>29171</td>
<td>SRX2164079</td>
</tr>
<tr>
<td>Paired-end</td>
<td>450</td>
<td>GA II</td>
<td>1</td>
<td>80</td>
<td>22,244,539</td>
<td>3559</td>
<td>1530</td>
<td>SRX322144</td>
</tr>
<tr>
<td>Mate-pair</td>
<td>2000</td>
<td>MiSeq</td>
<td>1/15</td>
<td>76</td>
<td>257,750</td>
<td>39</td>
<td>34</td>
<td>SRX2164126</td>
</tr>
<tr>
<td>Mate-pair</td>
<td>2750</td>
<td>HiSeq 2000</td>
<td>1/3</td>
<td>101</td>
<td>46,704,483</td>
<td>9434</td>
<td>2819</td>
<td>SRX322145</td>
</tr>
<tr>
<td>Mate-pair</td>
<td>3500</td>
<td>MiSeq</td>
<td>1</td>
<td>33</td>
<td>5,815,961</td>
<td>384</td>
<td>195</td>
<td>SRX22148</td>
</tr>
<tr>
<td>RNA-Seq Buds</td>
<td>--</td>
<td>HiSeq 2000</td>
<td>1/4</td>
<td>101</td>
<td>48,085,747</td>
<td>4857</td>
<td>2812</td>
<td>SRX2432900</td>
</tr>
<tr>
<td>RNA-Seq Leaf</td>
<td>--</td>
<td>HiSeq 2000</td>
<td>1/4</td>
<td>101</td>
<td>64,772,831</td>
<td>6542</td>
<td>3787</td>
<td>SRX2435668</td>
</tr>
</tbody>
</table>

Paired-end total 215,576,567 49959 30701
Mate-pair total 52,778,194 9857 3048
RNA-Seq total 112,858,578 11399 6599
Table 3: Asclepias syriaca assembly statistics.

Minimum scaffold: The minimum scaffold size (bp) used for calculations. **Sum:** The sum of the lengths of all included scaffolds, not including gaps. **N80, N50, N20:** The length (bp) of the shortest scaffold in the set of largest scaffolds needed to equal or exceed \((N/100)(\text{Sum})\). **# scaffolds:** Total scaffolds \(\geq\) the minimum size.

<table>
<thead>
<tr>
<th>Minimum scaffold</th>
<th>Sum (Mbp)</th>
<th>N80</th>
<th>N50</th>
<th>N20</th>
<th># scaffolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 (all)</td>
<td>265.9</td>
<td>317</td>
<td>1454</td>
<td>7080</td>
<td>508851</td>
</tr>
<tr>
<td>200</td>
<td>229.7</td>
<td>621</td>
<td>1904</td>
<td>8967</td>
<td>221940</td>
</tr>
<tr>
<td>1000</td>
<td>156.6</td>
<td>1633</td>
<td>3415</td>
<td>14019</td>
<td>54266</td>
</tr>
<tr>
<td>10000</td>
<td>42.82</td>
<td>12894</td>
<td>18998</td>
<td>30689</td>
<td>2343</td>
</tr>
</tbody>
</table>