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Abstract

Acoustic frog species classification has received much attention for its importance in
assessing biodiversity. However, most previous frog call classification models are trained
and tested using the data collected from the same area, which greatly limits the model’s
generalization. In practice, frogs often have regional accents. When training and testing
data are collected from different areas, there is an adverse impact on frog call classification
performance. To tackle this problem, this paper investigates domain adaptation for classi-
fying frog calls collected from different areas. To evaluate the performance of our proposed
methods, two frog call datasets, which are collected from subtropical eastern Australia and
tropical north-eastern Australia, are used. Experimental results demonstrate that domain
adaptation can significantly improve the weighted F1-score from 72.8% to 85.5%.

1 Introduction

Acoustic classification of frogs has received much attention for its promising applications in
assessing the biodiversity. Traditional methods for classifying frog calls are often based on a
frog listener, who stands around a pound and listens to frog calls for certain minutes. Then, the
listener subjectively assesses how many frog species are there in that specific area. Recently,
advances in recording and storage technology provide a novel way to classify frog species.
Compared to traditional field survey methods, the use of acoustic sensors greatly extend the
spatiotemporal monitoring scale [13]. Therefore, large volumes of acoustic data have been
collected from various locations. When training and testing data are collected from different
areas, there will be an adverse impact on frog call classification performance.

Many authors have proposed various methods for acoustic frog species classification
[8, 15, 14], but more work is needed to address the problem of classifying frog calls collected
from different areas. Most previous classification schemes have an assumption that the proba-
bility distributions of the training and testing datasets are similar. However, this assumption
is reasonable only when training and testing datasets are collected from the same area. Unlike
prior work in automatic frog call classification, in this paper, we consider the following clas-
sification problem: frog recordings, which are used as the training and testing datasets, are
collected from different areas.

We investigate domain adaptation for acoustic frog species classification. To the best of
knowledge, this paper is the first attempt to investigate domain adaptation in the bioacoustics
classification problem. Two frog call datasets, which are collected from Subtropical Eastern
Australia and Tropical North-eastern Australia, are used. To be specific, frog recordings are
first segmented into individual syllables, where a novel acoustic feature set is constructed.
Then, domain adaptation is applied to the build feature set to reduce the discrepancy between
the source and target domain. Finally, support vector machines (SVMs) are used for the
classification with the adapted feature set.
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The remaining part of this paper is organized as follows: Section 2 describes the proposed
methods in detail and analyzes their characteristics. Experiments results are shown in Section
3. Conclusions are drawn in Section 4 along with the future research.

2 Methods and Experiments

The flow diagram of the proposed approach is shown in Fig. 1, which can be divided into five
modules: pre-processing, syllable segmentation, feature extraction, domain adaptation, and
classification.

Syllable 
segmentation

Pre-
processing

Feature 
extraction

Domain 
adaptation SVMs Frog species

Figure 1: The flow diagram of our proposed approach.

Table 1: Two frog call dataset sets. Here, SET and TNE denote Subtropical Eastern Australia
and Tropical North-eastern Australia.

Species Name Acronym SET Syllables No. TNE Syllables No. Species Name Acronym SET Syllables No. TNE Syllables No.
Adelotus brevis ASS 7 4 Litoria caerulea LIE 84 90
Crinia deserticola CAA 83 85 Litoria chloris LCS 34 33
Limnodynastes convexiusculus LSS 113 107 Litoria fallax LFX 91 88
Limnodynastes ornatus LOS 35 66 Litoria gracilenta LGA 22 9
Limnodynastes peronii LSI 44 43 Litoria inermis LAS 83 74
Limnodynastes tasmaniensis LSN 50 59 Litoria latopalmata LLA 137 84
Limnodynastes terraereginae LTE 42 50 Litoria lesueuri LLI 67 205
Mixophyes fasciolatus MFS 25 31 Litoria nasuta LIA 162 150
Uperoleia fusca UFA 41 43 Litoria revelata LRT 87 111
Cyclorana alboguttata CAA 108 111 Litoria rothii LII 3 47
Cyclorana brevipes CAS 19 14 Litoria rubella LRA 37 37
Cyclorana novaehollandiae CAE 68 74

2.1 Datasets

In this study, two frog call datasets, which are collected from subtropical eastern Australia and
tropical north-eastern Australia, are used for the experiment. The syllable distribution of both
datasets is uneven across 20 frog species. The species name, their acronym, and the number of
syllables (described in Section 2.2) are shown in Table 1.

2.2 Syllable segmentation

For frogs, one syllable is an elementary acoustic unit for acoustic classification, which is a
continuous frog vocalization emitted from an individual [9, 14]. Here, we apply Härmä’s method
to perform syllable segmentation for all frog recordings [7]. The distribution of syllable number
for all frog species is shown in Table 1, which is highly unbalanced.

2.3 Feature extraction

In this study, we build a feature set consists of nine acoustic features: syllable duration (1),
Shannon entropy (1), rênyi entropy (1), tsallis entropy (1), mean frequency (1), average power
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of frequency band (15), zero crossing rate (1), Mel-frequency cepstral coefficients (19), Linear-
frequency cepstral coefficients (19)1. All those features have been used for frog call classification
except average power of frequency band [8, 14]. All those features are concatenated into together
to build a new feature set, whose dimension is 59. To remove the correlation between those
features, the normalization is conducted as follows.

vi =
vi − µi

σi
(1)

where µi and σi are the mean and standard deviation computed for each feature i.

2.4 Domain adaptation

In this study, four standard domain adaptation methods are investigated for acoustic frog species
classification, which are subspace alignment, transfer component analysis, Geodesic flow kernel,
and Information-theoretical learning of discriminant clusters. All those methods do not require
labeled target data, which is suitable for our classification task.

2.4.1 Subspace alignment

For subspace alignment (SA), the first step is to generate the subspace for both source and
target data [5], which is realized by principal component analysis (PCA). Then, an alignment
between those subspaces is learned. The PCA dimensions are determined by minimizing the
Bregman divergence between the subspaces.

2.4.2 Transfer component analysis

Transfer component analysis (TCA) is to discover common latent features that share the
marginal distribution across the source and target domains while maintaining the intrinsic
structure of the original domain data [10]. Specifically, in a reproducing kernel Hilbert space,
the latent features are first learned between the source and target domains [12], where the
maximum mean discrepancy is used as a marginal distribution measurement criteria [2].

2.4.3 Geodesic flow kernel

Geodesic flow kernel (GFK) aims to find a low-dimensional feature space, which reduces the
marginal distribution between labeled source and unlabeled target domains [6]. Specifically,
a geodesic flow kernel first projects a large number of subspaces that lie on the geodesic flow
curve, which represents incremental differences in geometric and statistical properties between
the source and target domain spaces. Then, a classifier is learned from the geodesic flow kernel
by selecting features from the geodesic flow curve that are domain invariant.

2.4.4 Information-theoretical learning of discriminant clusters

Information-theoretical learning of discriminant clusters (ITL) learns a domain-invariant feature
space and optimizes information-theoretic metrics directly related to discriminative classifica-
tion on the target domain simultaneously [11]. When ITL identifies a domain-invariant feature
space where data in the source and target domains are similarly distributed, the feature space is
also learned discriminatingly. This method is realized by optimizing an information-theoretical
metric using simple gradient-based methods.

1The value in the bracket is the dimension of the feature.
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(b) Tropical North East as source data

Figure 2: Difference between the confusion matrix yielded by the ITL model and the confusion
matrix yielded by the no adaptation method.

2.5 Support vector machine

SVMs have been widely used for classifying animal sounds due to their high accuracy and
superior generalization properties [1, 9]. To perform the classification, training data is first
constructed using the new feature set. Then, the pairs (vnl , L

n
l ), l = 1, 2, ..., Cl are built using

the selected training data, where Cl is the number of frog instance in the training data, vnl is
the feature vector obtained from the l-th frog instance in the training data, Ln

l is the label of
frog species n. Finally, the decision function for the classification problem based on SVMs [4]
is defined by the training data as follows.

f(v) = sgn(
�

sv

αn
l L

n
l K(v, vnl ) + bnl ) (2)

where K(., .) is the kernel function, αn
l is the Lagrange multiplier, and bnl is the constant value.

Since our frog call classification task aims to classify multiple classes, one-against-one SVMs
is chosen for classifying 22 frog species. To solve this 22 classes pattern recognition problem,
22 classifiers are first constructed and one for each class. Then, the k -th classifier constructs a
hyperplane between class n and k -1 classes. A majority vote across all classes is lastly used to
give the frog species of the new input instance.

3 Experiments

3.1 Experimental setup

Since the number of frog syllables in both datasets is uneven, the performance is evaluated
using a weighted F1-score which is defined as follows:

F1-score =
n�

i=1

2 · precision(i) · recall(i)
precision(i) + recall(i)

∗ ri (3)

4
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where F1-score denotes the weighted F1-score, precision is defined as TP
TP+FP , and recall is

defined as TP
TP+FN , TP is true positive, TN is true negative, FP is false positive, FN is false

negative; i is the maneuver class index of each dataset, ri is the ratio between the syllable
number of one frog species and syllable number of all frog species

The SVMs using an RBF kernel are trained on our proposed feature set of the source domain
using LIBSVM [3]. The parameters C and γ were set by searching 2i(i = −5,−3,−1, 1, 3, 5, 7, 9)
and 2j(j = −15,−11,−7,−3, 1, 5) to find the optimal value. For SA, the dimensions of the
source subspace and target subspace were set at 59. For TCA, we set the subspace bases as 59,
and the adaptation regularization parameter λ was set by searching λ ∈ {0.01, 0.1, 1, 10, 100}.
For GFK, the dimensions of the source subspace and target subspace were set at 59. For ITL,
the dimensions of the source subspace and target subspace were set at 59, and the optimal
regularization parameter λ was set by searching λ ∈ {3, 7, 11, 15, 19, 23}

3.2 Experimental results and discussions

In this study, we investigate four domain adaptation methods for frog call classification. The
classification results are shown in Table 2. We use the fully transductive protocol to evaluate the
performances of domain adaptation methods. ITL (Information-theoretical learning of discrimi-
nant clusters) achieves the best performance with F1-score of 85.5%. However, the performance
of TCA (Transfer component analysis) and GFK (Geodesic flow kernel) is slightly worse than
the baseline method. Therefore, it is essential to choose the suitable domain adaptation method
for the specific application such as frog call classification.

Among four domain adaptation methods, ITL achieves the best performance. The classi-
fication result is sensitive to the parameter λ, which is shown in Fig. 3. For ITL, the best
performance for TNE → SET and SET → TNE is achieved when λ is set at 15 and 11, respec-
tively.

3 7 11 15 19 23

Parameter: 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
1
 s

c
o
re

ITL:TNE   SET

ITL:SET  TNE

NA

Figure 3: Weighted F1-score on the value of parameter λ.

The differences of confusion matrix between NA and ITL are shown in Fig. 2. Here, along
the diagonal, positive value values indicate that the ITL method makes more correct predictions
for the corresponding species and negative values indicate the NA method makes more correct
predictions for the corresponding species. Off the diagonal, positive values indicate greater
confusion by the ITL method for the corresponding pairs of species, while negative values
indicate greater confusion by the NA model for the corresponding pairs of species. For TNE
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Table 2: Weighted classification F1-score of five methods. Here, NA denotes no adaptation
baseline. TNE → SET denotes that TNE dataset is used as source data while SET dataset
is target data, and vice versa. The reported result is the best performance by optimizing the
parameters.

Method TNE → SET SET → TNE Average
NA 72.28% 72.32% 72.80%
SA 72.28% 72.46% 72.80%
TCA 69.58% 68.38% 69.98%
GFK 70.54% 71.49% 71.01%
ITL 82.82% 88.19% 85.50%

→ SET, the performance improvement is due to the improved recognition accuracy of U.fusa,
L.fallax and L.latopalmata. For SET → TNE, the performance improvement is due to the
accurate recognition of L.fallax, L.inermis and L.latopalmata.

Furthermore, we also test the classification result using the training and testing data from
the same area (TNE or SET). We split the data from the same area into 50%-50% for training
and testing. The weighted F1-scores for TNE and SET are 98.58% and 97.59%. However,
the trained model’s generalization is very limited, since training and testing data are collected
from the same area. When training and testing data are collected from different areas, the
classification performance is decreased to 72.8%. To reduce the impact of mismatch between
areas, domain adaptation is used to improve the weighted F1-score from 72.8% to 85.5%. This
result verifies the need of domain adaptation for solving the bioacoustic classification problem,
especially when large volumes of bioacoustic data are collected from various areas using the
distributed sensor network.

4 Conclusions

In this study, we investigate four domain adaptation methods for acoustic frog species clas-
sification. First, we segment continuous frog recordings into individual syllables. Then, a
novel feature set including syllable duration, Shannon entropy, rênyi entropy, tsallis entropy,
fundamental frequency, average power of frequency band, zero crossing rate, Mel-frequency
cepstral coefficients, and Linear-frequency cepstral coefficients, is first built. Next, four domain
adaptation methods are investigated for discrepancy reduction between source and target do-
main. Among those domain adaptation methods, ITL provides the best performance, where
the weighted classification F1-score can be up to 85.5%.

Although ITL achieves the best performance, linear feature transformation is used. Future
work aims to investigate discriminatively learning of nonlinear feature transformation for do-
main adaptation. In addition, only 22 frog species are used in this paper, a wider variety of
frog audio data from different geographical and environmental conditions will be tested in the
future experiments.
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