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Proteins that modify the activity of transcription factor (TF), often called modulators, play a

vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene

processing and it can modulate gene function by adding or removing certain protein

domains, and therefore influences the activity of a protein. The objective of this study is to

investigate the role of alternative splicing in modulating the transcriptional regulation in

brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely

related to various diseases, including Alzheimer9s disease and down syndrome. Results

showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated

with changes in the expression correlation between ELK1 and its targets. Meanwhile, the

structural features of the two modulators are strongly associated with the pathological

impact of exon inclusion. Our analysis suggests, protein in different splicing level could

play different functions on transcription factors, hence induces multiple genes

dysregulation.
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Abstract 10 

Proteins that modify the activity of transcription factor (TF), often called modulators, play a vital 11 

role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing and 12 

it can modulate gene function by adding or removing certain protein domains, and therefore 13 

influences the activity of a protein. The objective of this study is to investigate the role of 14 

alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), 15 

especially transcription factor ELK1, which is closely related to various diseases, including 16 

Alzheimer9s disease and down syndrome. Results showed that changes in the exon inclusion ratio 17 

of proteins APP and STK16 are associated with changes in the expression correlation between 18 

ELK1 and its targets. Meanwhile, the structural features of the two modulators are strongly 19 

associated with the pathological impact of exon inclusion. Our analysis suggests, protein in 20 

different splicing level could play different functions on transcription factors, hence induces 21 

multiple genes dysregulation. 22 

Keywords  23 

alternative splicing, amyloid precursor protein, EST domain-containing protein Elk-1, lower grade 24 

glioma, modulator, serine/threonine kinase 16 25 

Introduction 26 

Alternative splicing (AS) is a key regulator of gene expression as it generates numerous 27 

transcripts from a single protein-coding gene. In humans, over 95% of multi-exonic protein-coding 28 

genes undergo AS(Wang, Sandberg et al. 2008), and AS plays an important role in cellular 29 

differentiation and organism development(Castle, Zhang et al. 2008, Wang, Sandberg et al. 2008). 30 

As AS affects numerous genes and is highly important for regulating a given gene9s normal 31 
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expression and tissue specificity, it is not surprising that changes in AS are frequently associated 32 

with human diseases, such as cancers(Kozlovski, Siegfried et al. 2017) and neurodegenerative 33 

diseases(Scotti and Swanson 2016). Recent genome-wide analyses of cancer transcriptomes have 34 

demonstrated that splicing changes are often global rather than gene specific(Jung, Lee et al. 2015). 35 

Undoubtedly, widespread splicing changes, such as altered cassette exon inclusion ratios of 36 

proteins, influence the expression of numerous genes and consequently cause aberrant gene 37 

regulation.  38 

Lower grade glioma (LGG) is a type of cancer that develops in the glial cells of the brain. 39 

Tumors are classified into grades I, II, III or IV based on standards set by the World Health 40 

Organization(Ostrom, Gittleman et al. 2013). Regardless of tumor grade, tumors compress normal 41 

brain tissue as they grow, frequently causing disabling or fatal effects. The Cancer Genome Atlas 42 

(TCGA) consortium has produced a comprehensive somatic landscape of glioblastoma by 43 

combining molecular and clinical data, and TCGA has become a valuable resource for studying 44 

gene deregulation in LGG.  45 

Modulators are proteins that modify the activity of transcription factors (TFs) and influence the 46 

expression of their target genes. Our current knowledge of TF modulation mainly comes from 47 

experimental studies that measure the expression levels of a few target genes(Lachmann, Xu et al. 48 

2010). The objective of this study is to explore the role of AS in modulating the transcriptional 49 

activities of TFs in LGG. The modulated relationships among TF-modulator-targets are inferred 50 

using a known probabilistic model, named GEM(Babur, Demir et al. 2010). EST domain-51 

containing protein Elk-1 (ELK1) is one of the TFs whose regulation activity is most influenced by 52 

162 splicing events, corresponding to 123 AS modulator proteins. Finally, amyloid precursor 53 
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protein (APP) and serine/threonine kinase 16 (STK16), modulators whose exon inclusion ratios 54 

are associated with the activity of ELK1, are analyzed in detail. 55 

Materials & Methods 56 

Construction of triplets 57 

We implemented a known algorithm named GEM(Babur, Demir et al. 2010) to predict (splicing 58 

modulator-TF-target) triplets. There are four input types: gene expression profiles, gene splicing 59 

profiles, modulator list and transcription factor-target relations. The modulator hypothesis predicts 60 

that the correlation between the expression levels of the TF and the target must change as the 61 

splicing level of the modulator changes. The percentage of exon inclusion ratio (PSI) is used to 62 

estimate the splicing level of a candidate modulator in LGG. We established a 5% false discovery 63 

rate as the threshold to call the triplets. 64 

Data processing and selection 65 

RNA-Seq data were download from the TCGA-LGG data portal as bam files. STAR aligner 66 

(version 2.3.0) was used to uniquely align each file uniquely to the hg19 human genome. We kept 67 

uniquely aligned reads with a minimum splice junction overhang of five nucleotides using default 68 

parameters. Gene expression level is estimated using a tool named NGSUtils (version 0.5.9) 69 

(Breese and Liu 2013) with the default parameters for calling gene expression. The splicing level 70 

(PSI) is estimated using a probabilistic model called Mixture of Isoforms (MISO)(Katz, Wang et 71 

al. 2010). The TF-target relations are derived from the ENCODE (The Encyclopedia of DNA 72 

Elements) project. The workflow of data processing and selection is described in Figure1. 73 

For the candidate modulators, we keep the splicing events where over 95% samples have 74 

confidence interval (CI) less than 0.25 and only analyze predicted cassette exons that have at least 75 
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10 reads supporting exon inclusion or exclusion in at least one sample. We fill the missing PSI 76 

value of a sample with the median PSI value of that splicing event. Finally, AS events were 77 

selected based on candidate modulators whose PSI IQR (interquartile range) were larger than 0.1 78 

As the input data require sufficient variability, we filtered out genes whose gene expression 79 

coefficient variation (CV) was less than 50% and keep genes in which over 95% of samples had 80 

expression values. 81 

Database and related software 82 

The implementation of GEM is available through SourceForge 83 

(https://sourceforge.net/projects/modulators). Statistical analysis and data processing were 84 

performed using R version 3.0.1 (www.r-project.org). DAVID(Dennis, Sherman et al. 2003) and 85 

IPA (Ingenuity Pathway Analysis) were used to perform gene function and pathway analysis. 86 

Protein-protein interactions were predicted by the STRING database (http://string-db.org).  87 

Results and Discussion 88 

Global inferring modulators of all TFs  89 

We assume that all TFs have the potential ability to interact with their modulator candidates. 90 

Seven hundred and sixty-five AS events were considered as putative modulators, and 173,598 TF-91 

target pairs composed of 74 TFs and 17,425 targets were used to infer modulated triplets. The 92 

number of inferred splicing modulators varied across all TFs, and the percent of influenced targets 93 

ranged from 0 to 33.5% for each TF (Figure 2). 94 

Figure 3 summarizes the number of modulators of 26 TFs whose influence targets over 10%. 95 

The number of inferred modulators ranges from 1 to 262. EST domain-containing protein Elk-1 96 

(ELK1) was one of the 26 TFs that had the greatest number of predicted modulators. A total of 97 
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262 splicing events corresponding to 187 proteins were identified as ELK1 modulators because 98 

their splicing outcome highly correlated with changes in ELK19s transcriptional activity.  99 

Gene function analysis of ELK1 modulators in LGG 100 

ELK1 is a member of the ETS transcription factor family, which is closely related to various 101 

diseases, including Alzheimer9s disease, down syndrome and breast cancer, in a dose-dependent 102 

manner(Peng, Yang et al. 2017). It can significantly regulate the expression of c-Fos, which is a 103 

key gene for cell proliferation and differentiation(Chambard, Lefloch et al. 2007). In this study, 104 

we inferred five hundred and forty splicing events as ELK1 modulators.  105 

Figure 4A summarizes the distribution of inferred modulators of ELK1. Two hundred and sixty-106 

two modulators influence over 10% of ELK19s targets, 49 modulators influence at least 20% of its 107 

targets, and 5 modulators influence more than 30% of its targets, including 108 

8chr2:39931221:39931334: +@chr2:39934189:39934326: +@chr2:39944150:39945104: +9 109 

(TMEM178A, Transmembrane protein 178A precursor), 8chr2:74685527:74685798: 110 

+@chr2:74686565:74686689: +@chr2:74686770:74686872: +9 (WBP1, WW domain binding 111 

protein 1), 8chr2:36805740:36806008: -@chr2:36787928:36788008: -112 

@chr2:36785581:36785656: -8 (FEZ2, Fasciculation and elongation protein zeta-2), 113 

8chr5:175788605:175788809: -@chr5:175786484:175786570: -@chr5:175782574:175782752:9 114 

(KIAA1191, Putative monooxygenase p33MONOX), 8chr2:74685527:74685798: 115 

+@chr2:74686565:74686679: +@chr2:74686770:74686872: +9 (WBP1).  116 

As many inferred modulators may have similar protein functions or function related, we 117 

performed pathway and function enrichment analysis to explore the functions of these modulated 118 

genes. We filtered modulators whose influenced targets less than 10% and finally 262 splicing 119 

events as modulators corresponding to 129 proteins are remained as ELK1 final modulators. After 120 
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removing duplicated gene symbols and unannotated genes, 126 proteins can be mapped to the 121 

Ingenuity Knowledge Base that are subject to core analysis.  122 

Results show that over 80% of these splicing proteins related to cancer are enriched and most 123 

of the enriched canonical pathways are overlapped with certain genes. As Table 1 summarized, 124 

these modulators are enriched in three types of diseases, including neurological disease, 125 

organismal injury and abnormalities disease, and cancer, respectively. Molecular and cellular 126 

function enrichment analysis showed that over 20% of the modulators were associated with 127 

cellular movement (28/123), cellular assembly and organization (32/123), and cellular function 128 

and maintenance (26/123); 11% and 8% of the modulators were highly enriched in cell 129 

morphology (14/123), and cell-to-cell signaling and interaction process (10/123), respectively. 130 

Top5 modulator-enriched pathways (Figure 4B) are highly (p < 0.05) associated with signaling 131 

processes, including clathrin-mediated endocytosis signaling, CTLA4 signaling in the cytotoxic T 132 

lymphocyte pathway, nNOS signaling in neurons and calcium signaling pathways. 133 

APP modulates ELK1 transcriptional activity 134 

Amyloid precursor protein (APP) was one of modulators of interest and its analysis is described 135 

in detail here. An interaction between APP and ELK1 is mentioned in the STRING database. 136 

Several AS isoforms of APP have been observed in humans. The isoforms range in length from 137 

639 to 770 amino acids, and certain isoforms are preferentially expressed in neurons; changes in 138 

the neuronal ratio of these isoforms have been associated with Alzheimer9s disease (Matsui, 139 

Ingelsson et al. 2007).  140 

One splicing event of APP detected as a modulator was <chr21:27354657:27354790:-@ 141 

chr21:27372330:27372497:-@chr21:27394156:27394358:-=. Different inclusion ratios of the 142 

alternatively spliced exon in APP protein influence 18.6% of the targets of ELK1, and the 7th exon, 143 
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which contains a vital domain named BPT/Kunitz inhibitor (BPTI) (residues 291-341), is the 144 

alternatively spliced exon. The splice isoforms that contain the BPTI domain possess protease 145 

inhibitor activity. 146 

According to GEM algorithm, unmodulated ELK1 activity was classified into three categories 147 

according to ³�: activation if positive, inhibition if negative, and inactive if zero. Similarly, by 148 

comparing ³ and ³ coefficents, modulators are classified into three classes: enhance, attenuate or 149 

invert the activity of the ELK1. Hence, there are six possible categories of action. The APP 150 

modulation categories and their interpretations are listed in supplement file Table S1. 151 

As Table 2 summarized, without APP modulation of APP, unmodulated ELK1 inhibits 172 152 

targets, and activates 31 targets. However, when APP interacts with ELK1 as a modulator, the 153 

original transcriptional activity of ELK1 becomes different: APP attenuates ELK1 inhibition roles 154 

on 164 targets, inverts inhibition activity on 8 targets, and enhances activation on 14 targets. 155 

Meanwhile, APP also inverts or attenuate ELK1 activity on 31 targets, including 1 targets activity 156 

is inverted and 30 targets activity is attenuated. 157 

We randomly selected four targets (ANKRD34A, DDX27, DVL3 and HEATR1) of ELK1 to 158 

explore the different activities of ELK1 under the modulation of differential inclusion levels of 159 

APP protein. Ideally, the inclusion level of the splicing modulator and expression of ELK1 should 160 

have high variance and low correlation in the samples. We divided rank-ordered PSI values of 161 

APP splicing modulators, extracting ELK1 and its target samples that were consistent with APP 162 

splicing modulator samples in upper/lower tertile, and estimated the differences in correlation 163 

between ELK1 and its target using Spearman9s correlation. 164 

Figure 5A shows the examples of APP-modulated ELK1 target genes and the corresponding 165 

action modes. As shown in Figure 5A, when the exon inclusion level of APP was in lower tertile, 166 
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an increase in the gene expression level of ELK1 resulted in a significant increase in the gene 167 

expression of its target ANKRD34A. Spearman9s correlation of gene expression between ELK1 168 

and ANKRD34A was 0.71 (p < 2.2e-16), which means that in this condition, ELK1 plays an 169 

enhancement role on its target. However, when the PSI value of the APP modulator is in upper 170 

tertile, the correlation decreased into 0.30 (p = 0.0085). For the other two targets, DDX27 and 171 

DVL3, the correlations changed from -0.47 and -0.53, respectively, to non-significant (p > 0.1). 172 

For these three cases, the APP modulator attenuates the activation of ELK1. The opposite 173 

modulation occurs on target HEATR1. When the exon is spliced out of the protein, ELK1 negative 174 

regulates the expression of HEATR1 with a correlation as -0.38 (p = 0.0005); however, when the 175 

exon is excluded from the mature mRNA, the APP modulator inverts the activation of ELK1 on 176 

its target with a correlation of 0.70 (p < 2.2-16).  177 

We evaluated the exon9s impact on APP protein using ExonImpact (Li, Feng et al. 2017). The 178 

results showed that the alternatively spliced exons of APP protein that we detected have a high 179 

probability (0.57 and 0.48) of being associated with disease. This result indicates that changes in 180 

the inclusion or exclusion level of spliced exons can lead to significant changes with respect to 181 

APP protein function.  182 

Figure 5B visualized the global effect of changing the inclusion ratios of alternately spliced 183 

exons in APP and influences on the relationship between ELK1 and its target. The two groups of 184 

samples are selected based on the 7th exon inclusion ratio of APP. The high and low inclusion 185 

groups contain samples with the top and bottom 30% of PSI values. The correlation patterns 186 

between ELK1 and its targets in the two groups are different, clearly showing that different splicing 187 

levels of APP can modulate the transcriptional activity of ELK1. 188 

STK16 modulates ELK1 transcriptional activity 189 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26482v1 | CC BY 4.0 Open Access | rec: 2 Feb 2018, publ: 2 Feb 2018



 10 

The AS event 190 

<chr2:220111379:220111598:+@chr2:220111835:220111968:+@chr2:220112137:220112257:+=  191 

for protein serine/threonine kinase 16 (STK16) is another interesting modulator that we identified. 192 

Inferred STK16 modulated triplets and their modulation categories are listed in Table S2. STK16 193 

is a membrane-associated protein kinase that phosphorylates on serine and threonine residues. An 194 

interaction between STK16 and ELK1 is inferred from the biochemical effect of one protein upon 195 

another in the BioGrid database. The alternatively spliced exon that acts as a modulator of SKT16 196 

is the 4th exon and it locates in a region that encodes for a kinase domain named Pkinase that is 197 

associated with the protein9s proton acceptor. 198 

Figure 6A shows the modulating effect of STK16 on ELK1, and TMEM60 is one of targets we 199 

randomly detected. The samples in the two groups are selected using the same method mentioned 200 

above. A negative correlation (-0.37, p = 0.0004) is only shown when the exon is included in the 201 

final product. The exon9s impact in protein function analysis (Li, Feng et al. 2017) shows that this 202 

alternatively spliced exon has a high disease probability of 0.67, which indicates that changes in 203 

the exon inclusion or exclusion ratio might cause a gain or loss in protein function. We know that 204 

the specific alternatively spliced exon of STK16 encodes a kinase domain, so it is not surprising 205 

that the loss of this exon will cause a change in protein function and may ultimately influence 206 

numerous normal gene functions. 207 

Figure 6B shows the global modulating effect of STK16 on ELK1. The low and high inclusion 208 

groups contain samples with the top and bottom 30% of PSI values, which indicate exon exclusion 209 

and inclusion in the final protein. A positive correlation between ELK1 and its targets is clearly 210 

shown when the exon is excluded, whereas this correlation becomes negative when the exon is 211 

included. This result suggests that the 4th cassette exon in STK16 is important to final protein 212 
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function and that changes in the splicing level of STK16 are associated with the differential 213 

transcriptional activity of ELK1. 214 

Conclusions 215 

We globally dissected the role of AS in regulating the transcriptional activity of TFs in LGG 216 

using TCGA-LGG data. ELK1 was one of TFs with the greatest number of inferred modulators, 217 

e.g., APP and STK16. The results show that changes in the AS of APP and STK16 proteins are 218 

associated with changes in the transcriptional activity of ELK1 and that the structural features of 219 

the two proteins are strongly associated with the pathological impact of exon inclusion. The 220 

presented results provide important insights on the modulating role of AS on transcription 221 

regulation in LGG. 222 
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Table 1(on next page)

ELK1 modulators protein function and disease enrichment (p<0.001)

Each number in the table indicates the account of ELK1 modulators enriched in specific

function or disease. The statistical threshold is p<0.001.
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Molecular and Cellular Functions

Cellular assembly and organization 32 Cellular movement 28

Cellular function and maintenance 26 Cell morphology 14

Cell-to-cell signaling and interaction 10
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Table 2(on next page)

Interpretation of the categories of APP modulation, and the inequality constraints that

the category should satisfy

Each number in the table indicates the number of triplets in each classification. '+9 and 8-9

signs in the columns indicate significantly positive and negative values, respectively.
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8+9 and 8-9 signs in the columns indicate significantly positive and negative values, respectively.   

Modulation 

classification 

Explanation #triplets ! "# $# $% "# + $%

Attenuates inhibition F, alone, inhibits T 3 M attenuates F 
activity

164 + -

Enhances inhibition Modulated F inhibits T 0 - - - -

Inverts inhibition F, alone, inhibits T - M inverts F 
activity

8 + - + + +

Inverts activation F, alone, activates T 3 M inverts F 
activity

1 - + - - -

Enhances activation Modulated F activates T 14 + + + +

Attenuates activation F, alone, activates T 3 M attenuates F 
activity

30 - +
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Figure 1(on next page)

Workflow for data processing and selection.

The whole workflow including three parts: obtain the transcriptional profile, expression and

splicing calling and construct the modulated triplets.
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Expression calling
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Figure 2(on next page)

The effect of transcription factors activity regulated by splice modulator proteins.

Each row represents a candidate modulator and each column indicates a transcription factor.

The color much darker means a much higher percent targets of TF is influenced.
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Figure 3(on next page)

Summarized counts of inferred modulators of TFs.

The c-axis represents the transcription factor list, and the y-axis represents the counts of

inferred modulators. The number on each TF indicates the number of modulators of each TF

that influence more than 10% of its targets.
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Figure 4(on next page)

Statistical analysis of the modulators of ELK1.

(A) Distribution of the number of ELK1 modulators. The x-axis represents the percentage of

targets influenced by modulator proteins. The y-axis indicates the percent of modulators of

ELK1. The number noted on each column indicates the percent of modulators in each

classification. (B) IPA of ELK1 modulators that influenced over 10% of its targets. The x-axis is

the -log10 transformed p of each enriched pathway (y-axis).
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Figure 5(on next page)

APP is a modulator that influences the activity of ELK1 in LGG.

(A) Examples of different correlations between ELK1 and its targets under the modulation of

APP with differential splicing levels. (B) Visualization of how APP regulates the stability of

ELK1 protein. Gene expression profiles are displayed with genes in rows and samples in

columns. Expression values of each gene are rank transformed, median centered and

rescaled between [-0.5, 0.5]. Samples were partitioned based on the alternatively spliced

exon inclusion level of APP and sorted by the expression levels of ELK1 within each partition.
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Figure 6(on next page)

STK16 is a modulator that affects the transcriptional activity of ELK1 in LGG.

(A) Examples of differential regulation activities of ELK1 on its target under the modulation of

STK16 with differential splicing levels. The spliced exon is excluded in the final production of

STK16 in the first scenario, and the exon is included in the final production of STK16 in the

second scenario. (B) STK16 regulates the stability of ELK1. See Figure 3B for interpretation of

this graph.
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