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Abstract 21 

Evolutionary biology has entered an era of unprecedented amounts of DNA sequence 22 

data, as new sequencing platforms such as Massive Parallel Sequencing (MPS) can 23 

generate billions of nucleotides within less than a day. The current bottleneck is how to 24 

efficiently handle, process, and analyze such large amounts of data in an automated and 25 

reproducible way. To tackle these challenges we introduce the Sequence Capture 26 

Processor (SECAPR) pipeline for processing raw sequencing data into multiple sequence 27 

alignments for downstream phylogenetic and phylogeographic analyses. SECAPR is 28 

user-friendly and we provide an exhaustive empirical data tutorial intended for users with 29 

no prior experience with analyzing MPS output. SECAPR is particularly useful for the 30 

processing of sequence capture (synonyms: target or hybrid enrichment) datasets for non-31 

model organisms, as we demonstrate using an empirical sequence capture dataset of the 32 

palm genus Geonoma (Arecaceae). Various quality control and plotting functions help 33 

the user to decide on the most suitable settings for even challenging datasets. SECAPR is 34 

an easy-to-use, free, and versatile pipeline, aimed to enable efficient and reproducible 35 

processing of MPS data for many samples in parallel. 36 

 37 

Keywords: Next generation sequencing (NGS), exon capture, Illumina, FASTQ, 38 

contig, allele phasing, phylogenetics, phylogeography, BAM, assembly 39 

  40 
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Introduction 41 

An increasing number of studies apply sequence data generated by Massive Parallel 42 

Sequencing (MPS) to answer phylogeographic and phylogenetic questions (e.g. Botero-43 

Castro et al. 2013; Smith et al. 2014; Faircloth et al. 2015; Heyduk et al. 2016). 44 

Researchers often decide to selectively enrich and sequence specific genomic regions of 45 

interest, rather than sequencing the complete genome. One reason is that enriching 46 

specific markers leads to a higher sequencing depth for each individual marker, as 47 

compared to the alternative whole genome sequencing. Sequencing depth is important for 48 

the extraction of single nucleotide polymorphisms (SNPs) and for allele phasing 49 

(Andermann et al. 2018; Bravo et al. 2018). Additionally, phylogenetic analysis software 50 

usually relies on multiple sequence alignments (MSAs) with homologous sequences 51 

across many taxa, which are easiest to recover when specifically enriching these 52 

sequences across all samples prior to sequencing. 53 

The enrichment of specific genomic regions (markers) is usually archived through 54 

sequence capture (synonyms: hybrid enrichment, hybrid selection, exon capture, target 55 

capture) prior to sequencing (Gnirke et al. 2009). This technique applies specific RNA 56 

baits, which hybridize with the target regions and can be captured with magnetic beads. 57 

Sequence capture is gaining popularity, as more bait sets for non-model organisms are 58 

being developed. Some bait sets are designed to match one specific taxonomic group (e.g. 59 

Heyduk et al. 2016; Kadlec et al. 2017), while others are designed to function as more 60 

universal markers to capture homologous sequences across broad groups of taxa (e.g. 61 

UCEs, Faircloth et al. 2012). After enrichment of targeted markers with such bait sets, the 62 

enriched sequence libraries are sequenced on a MPS machine (see Reuter, Spacek, and 63 

Snyder 2015). 64 

Despite recent technological developments, analyzing sequencing results is a great 65 

challenge due to the amount of data produced by MPS machines. An average dataset 66 

often contains dozens to hundreds of samples, each with up to millions of sequencing 67 

reads. Such amounts of sequence data require advanced bioinformatics skills for storing, 68 

quality checking, and processing the data, which may represent an obstacle for many 69 
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students and researchers. This bottleneck calls for streamlined, integrative and user-70 

friendly pipeline solutions. 71 

To tackle these challenges, here we introduce the Sequence Capture Processor (SECAPR) 72 

pipeline, a semi-automated workflow to guide users from raw sequencing results to 73 

cleaned and filtered multiple sequence alignments (MSAs) for phylogenetic and 74 

phylogeographic analyses. We designed many of the functionalities of this pipeline 75 

toward sequence capture datasets in particular, but it can be effectively applied to any 76 

MPS dataset generated with Illumina sequencing (Illumina Inc., San Diego, CA, USA). 77 

SECAPR comes with a detailed documentation in form of an empirical data tutorial, 78 

which is explicitly written to guide users with no previous experience with MPS datasets. 79 

To simplify the processing of big datasets, all available functions are built to process 80 

batches of samples, rather than individual files. We developed SECAPR to provide the 81 

maximum amount of automation, while at the same time allowing the user to choose 82 

appropriate settings for their specific datasets. The pipeline provides several plotting and 83 

quality-control functions, as well as more advanced processing options such as the 84 

assembly of fully phased allele sequences for diploid organisms (Andermann et al. 2018). 85 

 86 

Material & Methods 87 

The SECAPR pipeline in a nutshell 88 

SECAPR is a platform-independent pipeline written in python, and tested for full 89 

functionality on Linux and MacOS. It can be easily downloaded together with all its 90 

dependencies as a virtual environment, using the conda package manager (see 91 

Availability). The strength of SECAPR is that it channels the main functionalities of 92 

many commonly used bioinformatics programs and enables the user to apply these to sets 93 

of samples, rather than having to apply different software to each sample individually. 94 

The basic SECAPR workflow (Figure 1) includes the following steps: 95 

1. Quality filtering and adapter trimming 96 

2. De novo contig assembly 97 

3. Selection of target contigs 98 
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4. Building MSAs from contigs 99 

5. Reference-based assembly 100 

6. Allele phasing 101 

SECAPR automatically writes summary statistics for each processing step and sample to 102 

a log-file (summary_stats.txt, Table 1). The pipeline includes multiple visualization 103 

options (e.g. Figure 2 and Figure 4) to gauge data quality and, if necessary, adapt 104 

processing settings accordingly. SECAPR comes with a detailed documentation and data 105 

tutorial (see Availability). 106 

 107 

Description of the SECAPR workflow 108 

1. Quality filtering and adapter trimming (secapr clean_reads). The SECAPR 109 

clean_reads function applies the software Trimmomatic (Bolger, Lohse, and Usadel 110 

2014) for removing adapter contamination and low quality sequences from the raw 111 

sequencing reads (FASTQ-format). An additional SECAPR plotting function summarizes 112 

FASTQC (Babraham Institute) quality reports of all files and produces a visual overview 113 

of the whole dataset (Figure 2). This helps to gage if the files are sufficiently cleaned or if 114 

the clean_reads function should be rerun with different settings. 115 

2. De novo contig assembly (secapr assemble_reads). The SECAPR function 116 

assemble_reads assembles overlapping FASTQ reads into longer sequences (de novo 117 

contigs) by implementing the de novo assembly software Abyss (Simpson et al. 2009). 118 

Abyss has been identified as one of the best-performing DNA sequence assemblers 119 

currently available (Hunt et al. 2014). SECAPR produces one file for each sample 120 

(FASTA-formatted) that contains all assembled contigs for that sample. 121 

3. Selection of target contigs (secapr find_target_contigs). The SECAPR function 122 

find_target_contigs identifies and extracts those contigs that represent the DNA targets of 123 

interest. This function implements the program LASTZ (formerly BLASTZ, Harris 2007) 124 

by searching the contig files for matches with a user-provided FASTA-formatted 125 

reference library. For sequence capture datasets, a suitable reference library is the 126 

reference file that was used for synthesizing the RNA baits, which will return all contigs 127 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26477v3 | CC BY 4.0 Open Access | rec: 13 Feb 2018, publ: 13 Feb 2018



 

 

that match the enriched loci of interest. The find_target_contigs function identifies 128 

potentially paralogous loci (loci that have several matching contigs) and excludes these 129 

from further processing. It further allows the user to keep or exclude long contigs that 130 

match several adjacent reference loci, which can occur if the reference file contains 131 

sequences that are located in close proximity to each other on the genome (e.g. several 132 

separate exons of the same gene).  133 

4. Building MSAs from contigs (secapr align_sequences). The SECAPR function 134 

align_sequences builds multiple sequence alignments (MSAs) from the target contigs that 135 

were identified in the previous step. The function builds a separate MSA for each locus 136 

with matching contigs for g3 samples. 137 

5. Reference-based assembly (secapr reference_assembly). The SECAPR 138 

reference_assembly function applies the BWA mapper (Li and Durbin 2010) for 139 

reference-based assembly of FASTQ reads and Picard (broadinstitute.github.io/picard/) 140 

for removing duplicate reads. The function saves the assembly results as BAM files 141 

(Figure 3) and generates a consensus sequence from the read variation at each locus. 142 

These consensus sequences have several advantages over the de novo contig sequences 143 

(see Discussion) and can be used for building MSAs with the SECAPR align_sequences 144 

function 145 

The reference_assembly function includes different options for generating a reference 146 

library for all loci of interest: 147 

• --reference_type alignment-consensus: The user provides a link to a folder 148 

containing MSAs, e.g. the folder with the contig MSAs from the previous step, 149 

and the function calculates a consensus sequence from each alignment. These 150 

consensus sequences are then used as the reference sequence for the assembly. 151 

This function is recommended when running reference-based assembly for groups 152 

of closely related samples (e.g. samples from the same genus or family). 153 

• --reference_type sample-specific: From the MSAs, the function extracts the 154 

contigs for each sample and uses them as a sample-specific reference library. If 155 

the user decides to use this function it is recommendable to only use alignments 156 
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for reference that contain sequences for all samples. This will ensure that the same 157 

loci are being assembled for all samples. 158 

• --reference_type user-ref-lib: The user can provide a FASTA file containing a 159 

custom reference library. 160 

An additional SECAPR function (locus_selection) allows the user to select a subset of the 161 

data consisting of only those loci, which have the best read-coverage across all samples 162 

(Figure 4b). 163 

6. Allele phasing (secapr phase_alleles). The SECAPR phase_alleles function can be 164 

used to sort out the two phases (reads covering different alleles) at a given locus. This 165 

function applies the phasing algorithm as implemented in SAMtools (Li et al. 2009), 166 

which uses read connectivity across multiple variable sites to determine the two phases of 167 

any given diploid locus (He et al. 2010). After running the phasing algorithm, the 168 

phase_alleles function outputs a separate BAM-file for each allele and generates 169 

consensus sequences from these allele BAM-files. This results into two sequences at each 170 

locus for each sample, all of which are collected in one cumulative sequence file 171 

(FASTA). This sequence file can be run through the SECAPR align_sequences function 172 

in order to produce MSAs of allele sequences. 173 

 174 

Benchmarking with empirical data 175 

We demonstrate the functionalities of SECAPR on a novel dataset of target sequencing 176 

reads of Geonoma, one of the most species-rich palm genera of tropical Central and 177 

South America. (Dransfield et al. 2008) (Henderson 2011). Our data comprised newly 178 

generated Illumina sequence data for 17 samples of 14 Geonoma species (Supplementary 179 

Table S1), enriched through sequence capture. The bait set for sequence capture was 180 

designed specifically for palms by Heyduk et al. (2016) to target 176 genes with in total 181 

837 exons. More detailed information about the generation of the sequence data can be 182 

found in Appendix 1 (Supplemental Material). All settings and commands used during 183 

processing of the sequence data can be found in the SECAPR documentation on our 184 

GitHub page (see Availability). 185 
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 186 

Results 187 

The newly generated Geonoma data used for benchmarking constitute an empirical 188 

example of a challenging dataset, characterized by irregular read coverage and multiple 189 

haplotypes. Despite these challenges, the SECAPR workflow provides the user all the 190 

necessary functions to filter and process datasets into MSAs for downstream phylogenetic 191 

analyses.  192 

After de novo assembly (secapr assemble_reads) we recovered an average of 323 193 

(stdev=14) contigs per sample (secapr find_target_contigs) that matched sequences of the 194 

837 targeted exons (Table 1, Figure 4a, Supplementary Table S2). In total 45 exons were 195 

recovered for all samples. Many of the recovered target contigs spanned several reference 196 

exons (all samples: mean=100, stdev=25) and hence were flagged as contigs matching 197 

multiple loci (Supplementary Table S3). Since these contigs may be phylogenetically 198 

valuable, as they contain the highly variable interspersed introns, we decided to keep 199 

these sequences. We extracted these longer contigs together with all other non-duplicated 200 

contigs that matched the reference library (secapr find_target_contigs) and generated 201 

MSAs for each locus that could be recovered in at least three Geonoma samples (secapr 202 

align_sequences). This resulted in contig alignments for 593 exon loci (center line in 203 

Figure 4a). 204 

During reference-based assembly (secapr reference_assembly) we mapped the reads 205 

against the consensus sequence of the contig MSAs for all loci. We found an average of 206 

439 exon loci (stdev=82) per sample that were covered by more than three reads (average 207 

coverage across complete locus, Figure 4a). Hence, our approach of mapping FASTQ 208 

reads to libraries compiled from the data leads to an increase of recovered loci per 209 

sample, from 323 resulting from de novo assembly to 439 from the referenced-based 210 

assembly (36% increase). Further, the number of loci that were recovered with sufficient 211 

coverage for all samples increased by 116%, from 45 after the de novo assembly, to 97 212 

after the reference-based assembly (Supplementary Table S4). We extracted the 50 loci 213 

with the best coverage across all samples (secapr locus_selection), as shown in Figure 4b. 214 

In cases of irregular read-coverage across samples (as in our sample Geonoma data), we 215 
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strongly recommend the use of the locus_selection function before further processing the 216 

data, as demonstrated in our tutorial (see Availability). 217 

The results of the reference-based assembly also revealed that our sample data showed 218 

more than two haplotypes for many loci. Future research may clarify whether this is the 219 

result of various paralogous loci in the dataset or if it is the result of a recent genome 220 

duplication or hybridization event in the ancestry of our Geonoma samples. Due to the 221 

presence of more than two haplotypes at various loci, the results of the allele-phasing step 222 

(secapr phase_alleles) are to be viewed critically, since the algorithm is built for phasing 223 

the read data of diploid organisms or loci only. All phased BAM files and the compiled 224 

allele MSAs are available online (see Availability). 225 

 226 

 Discussion 227 

De novo assembly vs. reference-based assembly 228 

There are several ways of generating full sequences from raw FASTQ-formatted 229 

sequencing reads. The SECAPR pipeline contains two different approaches, namely de 230 

novo assembly and reference-based assembly (Figure 1). De novo assembly can be 231 

directly applied to any raw read data while reference-based assembly requires the user to 232 

provide reference sequences for the assembly. We find for the Geonoma example data 233 

that reference-based assembly results into recovering more target sequences per sample 234 

(Figure 4) and provides the user a better handle on quality and coverage thresholds. It is 235 

also computationally much less demanding in comparison to de novo assembly. 236 

However, reference-based assembly is very sensitive toward the user providing 237 

orthologous reference sequences that are similar enough to the sequencing reads of the 238 

studied organisms. If the reference sequences are too divergent from the sequenced 239 

organisms, only a small fraction of the existing orthologous sequencing reads will be 240 

successfully assembled for each locus. In contrast, when relaxing similarity thresholds 241 

and other mapping parameters too much (e.g. to increase the fraction of reads included in 242 

the assembly) there is higher a risk of assembling non-orthologous reads, which can lead 243 

to chimeric sequences being assembled. This can be a problem, particularly in cases of 244 
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datasets containing non-model organisms, since suitable reference sequences for all loci 245 

usually do not exist. 246 

For this reason, the SECAPR workflow encourages the user to use these two different 247 

assembly approaches in concert (Figure 1). Our general suggestion is to first assemble 248 

contig MSAs for all regions of interest, resulting from de novo assembly and then use 249 

these MSAs to build a reference library for reference-based assembly. In that case 250 

SECAPR produces a reference library from the sequencing data itself, which is specific 251 

for the taxonomic group of interest or even for the individual sample. 252 

A common approach is to stop data processing after the de novo assembly step and then 253 

use the contig MSAs for phylogenetic analyses (e.g. Faircloth et al. 2012; B. T. Smith et 254 

al. 2014; Faircloth 2015). Here we take additional processing steps, including generating 255 

new reference libraries for all samples and using these for reference-based assembly. 256 

There may be several reasons for carrying out these additional steps: 257 

1. Sensitivity: In order to identify de novo contigs that are orthologous to the loci of 258 

interest, the user is usually forced (because of the lack of availability) to use a set 259 

of reference sequences for many or all loci that are not derived from the studied 260 

group. Additionally these reference sequences may be more similar to some 261 

sequenced samples than to others, which can introduce a bias in that the number 262 

of recovered target loci per sample is based on how divergent their sequences are 263 

to the reference sequence library. In other words, the 'one size fits all' approach 264 

for recovering contig sequences is not the preferred option for most datasets and 265 

may lead to taxonomic biases. For this reason it is recommended to generate 266 

family, genus or even sample-specific reference libraries using the recovered 267 

contigs, and use these to re-assemble the sequencing reads. 268 

2. Intron/exon structure: Another reason for creating a new reference library from 269 

the data is that available reference sequences often constitute exons, omitting the 270 

interspersed intron sequences (as in the case of using bait sequences as the 271 

reference library). The more variable introns in between exons are usually not 272 

suitable for designing baits, they are too variable, but are extremely useful for 273 

most phylogenetic analyses because they have more parsimony informative sites. 274 
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There is a good chance that the assembled contigs will contain parts of the trailing 275 

introns or even span across the complete intron, connecting two exon sequences 276 

(e.g. Bi et al. 2012). This is why it is preferable to use these usually longer and 277 

more complete contig sequences for reference-based assembly, rather than the 278 

shorter exon sequences from the bait sequence file, in order to capture all reads 279 

that match either the exon or the trailing intron sequences at a locus. 280 

3. Allelic variation: Remapping the reads in the process of reference-based assembly 281 

will identify the different allele sequences at a given locus. This can also aid in 282 

the evaluation of the ploidy level of samples and in identifying loci potentially 283 

affected by paralogy. 284 

4. Coverage: Reference-based assembly will give the user a better and more intuitive 285 

overview over read-depth for all loci. There are excellent visualization softwares 286 

(such as Tablet Milne et al. 2013) that help interpret the results. 287 

 288 

Novelty 289 

Several pipelines and collections of bioinformatics tools exist for processing sequencing 290 

reads generated by MPS techniques, e.g. PHYLUCE (Faircloth 2015), GATK (McKenna 291 

et al. 2010) and ‘reads2trees’ (Heyduk et al. 2016). In contrast to some of these existing 292 

pipelines, SECAPR i) is targeted towards assembling full sequence data (as compared to 293 

only SNP data, e.g. GATK); ii) is intended for general use (rather than project specific, 294 

e.g. reads2trees); iii) is optimized particularly for non-model organisms and non-295 

standardized sequence capture datasets (as compared to specific exon sets, e.g. 296 

PHYLUCE); iv) allows allele phasing and selection of the best loci based on read 297 

coverage, which to our knowledge are novel to SECAPR. This is possible due to the 298 

approach of generating a clade- or even sample-specific reference library from the 299 

sequencing read data, which is then used for reference-based assembly; v) offers new 300 

tools and plotting functions to give the user an overview of the sequencing data after each 301 

processing step. 302 

 303 
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Conclusions 304 

The SECAPR pipeline described here constitutes a bioinformatic tool for the processing 305 

and alignment of raw Illumina sequence data. It is particularly useful for sequence 306 

capture datasets and we show here how it can be applied to even challenging datasets of 307 

non-model organisms. 308 
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Table 1: Summary statistics for all samples, produced by SECAPR. Reported for 435 

each sample are the number of sequencing reads in the FASTQ sequencing files, before 436 

(1. column) and after (2. column) cleaning and trimming, the total count of assembled de 437 

novo contigs (3. column), the number of filtered contigs that matched target loci (4. 438 

column) and the number of sequencing reads that mapped to the new reference library 439 

generated from the contig MSAs during reference-based assembly (5. column). These 440 

summary statistics are automatically compiled and appended to a log file 441 

(summary_stats.txt) during different steps in the SECAPR pipeline.  442 

Sample 

ID 

FASTQ 

read pairs 

(raw) 

FASTQ read 

pairs (cleaned) 

Total contig 

count 

Recovered 

target contigs 

Reads on 

target regions 

1087 291089 276072 277628 562 22308 

1086 244726 231326 230122 516 17969 

1140 206106 192676 153377 469 18039 

1083 377228 352646 309993 534 31922 

1082 277999 262378 258359 556 19491 

1085 307671 291377 309561 512 22030 

1079 315801 298450 306369 550 13969 

1061 209586 192407 177910 545 14474 

1068 295402 278069 264865 563 22013 

1063 354795 336356 356512 525 20439 

1080 459485 434951 433954 531 41068 

1065 217725 205290 204082 544 13524 

1073 302798 286021 289612 529 15598 

1070 295822 278011 295557 539 19288 

1064 408723 384908 405080 543 21531 

1074 408370 383604 398758 531 25476 

1166 405667 385442 410292 544 29697 

  443 
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 444 

Figure 1: SECAPR analytical workflow. The flowchart shows the basic SECAPR 445 

functions, which are separated into two separate steps (colored boxes). Blue box (1. 446 

reference library from raw data): in this step the raw reads are cleaned and assembled into 447 

contigs (de novo assembly); Orange box (2. reference based assembly with custom 448 

reference library): the contigs from the previous step are used for reference-based 449 

assembly, enabling allele phasing and additional quality control options, e.g. concerning 450 

read-coverage. Black boxes show SECAPR commands and white boxes represent the 451 

input and output data of the respective function. Boxes marked in grey represent multiple 452 

sequence alignments (MSAs) generated with SECAPR, which can be used for 453 

phylogenetic inference.   454 
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 455 

Figure 2: Overview of FASTQc quality test results. a) Before and b) after cleaning and 456 

adapter trimming of sequencing reads with the SECAPR function clean_reads. This plot, 457 

as produced by SECAPR, provides an overview of the complete dataset and helps to 458 

gauge if the chosen cleaning parameters are appropriate for the dataset. The summary 459 

plots show the FASTQc test results, divided into three categories: passed (green), 460 

warning (blue) and failed (red). The x-axis of all plots contains the eleven different 461 

quality tests (see legend). The bar-plots (left panels) represent the counts of each test 462 

result (pass, warning or fail) across all samples. The matrix plots (right panels) show the 463 

test result of each test for each sample individually (y-axis). This information can be used 464 

to evaluate both, which specific parameters need to be adjusted and which samples are 465 

the most problematic.  466 
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 467 

Figure 3: Reference-based assembly including heterozygous sites. BAM-assembly file 468 

as generated with the SECAPR reference_assembly function, shown exemplarily for one 469 

exon locus (1/837) of one of the Geonoma samples (1/17). The displayed assembly 470 

contains all FASTQ sequencing reads that could be mapped to the reference sequence 471 

(top panel). The reference sequence in this case is the de-novo contig that was matched to 472 

the reference exon 'Elaeis 1064 3'. DNA bases are color-coded (A - green, C - blue, G - 473 

black, T - red). The enlarged section (bottom panel) contains a heterozygous site, which 474 

likely represents allelic variation, as we both variants A and G are found at approximately 475 

equal ratio.  476 

BAM assembly 

sample: Geonoma 1083 
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 477 

Figure 4: Overview of sequence yield for Geonoma sample data, produced with 478 

SECAPR. Each column in these matrix plots represents a separate exon locus a) for all 479 

loci targeted during sequence capture and b) for the selection of the 50 loci with the best 480 

read coverage, using the SECAPR function locus_selection (see Supplementary Table S5 481 

for loci-names corresponding to indices on x-axes). Top panels in a) and b) show if de 482 

novo contigs could be assembled (blue) or not (white) for the respective locus (column) 483 

and sample (row). Contig MSAs were generated for all loci that could be recovered for at 484 

least 3 samples (center row - green). The bottom panels of a) and b) show the read 485 

coverage (see legend) for each exon locus after reference-based assembly. The reference 486 

library for the assembly consisted of the consensus sequences of each contig MSA, and 487 

hence is genus specific for Geonoma. 488 
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