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High-throughput phenotype assays are a cornerstone of systems biology as they allow

direct measurements of mutations, genes, strains, or even different genera. High-

throughput methods also require data analytic methods that reduce complex time-series

data to a single numeric evaluation. Here, we present the Growth Score, an improvement

on the previous Growth Level formula. There is strong correlation between Growth Score

and Growth Level, but the new Growth Score contains only essential growth curve

properties while the formula of the previous Growth Level was convoluted and not easily

interpretable. Several programs can be used to estimate the parameters required to

calculate the Growth Score metric, including our PMAnalyzer pipeline.
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10 Abstract

11 High-throughput phenotype assays are a cornerstone of systems biology as they allow direct 

12 measurements of mutations, genes, strains, or even different genera. High-throughput methods 

13 also require data analytic methods that reduce complex time-series data to a single numeric 

14 evaluation. Here, we present the Growth Score, an improvement on the previous Growth Level 

15 formula. There is strong correlation between Growth Score and Growth Level, but the new 

16 Growth Score contains only essential growth curve properties while the formula of the previous 

17 Growth Level was convoluted and not easily interpretable. Several programs can be used to 

18 estimate the parameters required to calculate the Growth Score metric, including our 

19 PMAnalyzer pipeline.

20 Introduction

21 Bacterial growth of homogenous cultures is commonly described through the Monod growth 

22 phases (Monod, 1949). Specifically, the three major phases of growth are lag phase, where 

23 growth rate is zero and bacterial density is constant at the initial measurement; exponential 

24 phase, where growth rate is at its maximum value; and stationary phase, where growth rate is 

25 zero and bacterial density is constant at its maximum yield. The Growth Level (GL) has been 

26 used to quantitatively measure the amount of growth displayed by a bacteria liquid culture 

27 (Cuevas & Edwards, 2017). In PMAnalyzer it is calculated following the least-squares fitting of 

28 the Zwietering logistic model (Zwietering et al., 1990):

29 .ÿ = ÿ0 +
ý 2 ÿ0

1 + exp[4ÿý (ÿ 2 ý) + 2]

30 Using the modeled growth curve ( ), the starting absorbance ( ), and the biomass yield value ÿ ÿ0

31 (A), GL can be calculated as 
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32 ÿÿ =
ÿÿ3ÿ 1ýÿ

, 

33 .where ýÿ = (ÿÿ 2 ÿ0) + ÿÿýýÿýÿýÿ = (ÿÿ 2 ÿ0) + (ý 2 ÿ0)

34 GL is a variation on the harmonic mean where the logistic growth curve is weighted by the 

35 amount of biomass the bacteria culture attained, or the difference in bacterial density, during the 

36 course of the experiment (represented as amplitude in the GL formula). This amplitude-weighted 

37 metric performs well for differentiating growing data from growth curves that display no growth. 

38 The GL provides threshold values that can be used to ascribe qualitative labels or classes to 

39 growth, ranging from no growth to very high growth.

40 There are several mathematical drawbacks of the GL formula. The harmonic mean is 

41 commonly used to average values of rates; however, absorbance data are not rate measurements. 

42 In addition, using the entire growth curve in GL is implicitly affected by the lag time of the 

43 bacteria that is dependent on numerous biological properties including ageing of cells, activation 

44 of enzymes, metabolic adaptation, and other regulatory mechanisms (Monod, 1949; Robinson et 

45 al., 1998; Rolfe et al., 2012). The simplicity of the three phase growth curve is lost in the GL 

46 calculation.

47 Here, we propose a new calculation to simplify the quantitative meaning of the level of 

48 growth. The Growth Score, GS, is defined by three parameters of the Zwietering (Zwietering et 

49 al., 1990) bacterial growth curve

50 .ÿÿ = (ý 2 ÿ0) + 0.25ÿ
51 GS uses the starting absorbance, , biomass yield, A, and the maximum growth rate, , to ÿ0 ÿ
52 compute a score for a growth curve. Without any explicit dependency on the fitted values or 

53 implicit dependencies on lag time, GS is clearly understood by its growth parameters. In 
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54 addition, GS performs similarly to GL, primarily because of GLs strong dependency on yield in 

55 defining a quantitative measurement of growth.

56 Simulating growth curves

57 A set of 1,000 growth curves were generated using a total time  and the Zwietering ý = 50 hours

58 logistic model. Uniformly-distributed random values were selected for each growth curve 

59 parameter. Distribution ranges for each parameter are: starting absorbance,  lag ÿ0 = [0.05, 0.10];

60 time,  biomass yield,  and maximum growth rate, . ÿ = [0, 20]; ý = [0.1, 1.2]; ÿ = [ý/ý, 1.1ý]
61 Growth rate range is limited by the biomass yield to provide a realistic result. The first value 

62 represents an organism achieving the biomass yield at the end of the experiment; when A is large 

63 this simulates very slow growth. The second value represents a rate where yield is obtained 

64 within one hour; when A is large this simulates very fast growth. For cases when A is small, 

65 growth rate is negligible, therefore has minimal influence on GS.

66 Comparison of Growth Level and Growth Score

67 The distributions of GL and GS are illustrated in the Fig. 1 histograms. The range for GL is much 

68 larger than GS. Both metrics demonstrate a slight left-skewness but GL was slightly higher at 

69 0.143 compared to GS at 0.078. The growth score should be left skewed because a low 

70 asymptote correlates with low growth rates and results in a low growth score, but the reverse is 

71 not necessarily true, high growth score values may result from high or low growth rates.

72 Differences in metrics are displayed in Fig. 1 with GL shown along the x-axis and the 

73 corresponding GS value along the y-axis, along with a linear regression line, and growth classes. 

74 A strong correlation is shown between GL and GS with a Pearson correlation coefficient of 0.98 

75 (p-value < 0.001) (Fig. 1). The qualitative classes are defined in PMAnalyzer as value thresholds. 

76 Given these GL classes, GS class thresholds are also indicated in Fig. 1 as horizontal dotted lines. 
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77 A total of 191 out of the 1,000 growth curves were classified differently between the two 

78 metrics, however, only 20 growth curves had a change from <-= to <+= or vice versa. To further 

79 demonstrate the separation of the growth data, average growth curves are plotted according to 

80 their classification in Fig. 2. Growth curves were generated using the Python 3.6 programming 

81 language (Python Software Foundation. Python Language Reference, version 3.6. Available at 

82 https://www.python.org), NumPy version 1.13.1 (http://www.numpy.org/) (Walt, Colbert & 

83 Varoquaux, 2011), pandas version 0.20.3 (http://pandas.pydata.org) (McKinney, 2010), and 

84 Seaborn version 0.8.1 (http://seaborn.pydata.org/). See Supplementary Material 1 for the Python 

85 code that generates the random curves, Supplementary Material 2 for the Jupyter Notebook 

86 version, and Supplementary Material 3 for a PDF version of the Jupyter Notebook.

87 Biomass yield has been successful in discriminating growth from no growth using the GL 

88 formula. However, that calculation lacked direct incorporation of the maximum growth rate, a 

89 useful component in measuring fitness. Intuitively, faster growth rates should indicate a bacteria 

90 that is more capable of consuming nutrients and proliferating. Yet, a higher rate of growth does 

91 not solely demonstrate fitness, evidenced by the abundance of slow-growing bacteria throughout 

92 the environment (e.g., r and K growth strategies (Pianka, 1970)). Nor is it a strong feature to 

93 ultimately predict larger bacterial densities. For example, two bacteria with the same phenotype 

94 can reach the same density, even if one grows at half the rate of the other. Essentially, the ability 

95 to reach that potential at a faster rate indicates some biological advantage but has less 

96 significance than yield. In GS maximum growth rate is included at an amount of 25% in order for 

97 biomass accumulation to result in the primary component of growth. Faster growth rates can 

98 occur within a short time frame, resulting in low yield and high rate and, therefore, causing a 

99 disproportionate GS if the magnitude of the growth rate was not reduced.
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100 Here, we have introduced the Growth Score, a new parameter for describing bacterial 

101 growth in 96-well phenotypic assays. The Growth Score provides three distinct advantages over 

102 other metrics used to describe growth: First, it only uses growth curve properties (yield and 

103 growth rate) in its calculation, in contrast our previous Growth Level was averaged over time and 

104 was thus heavily influenced by the length of the experiment. Second, Growth Score can be used 

105 with results from other software that also performs growth curve modeling or parameterization 

106 (DuctApe (Galardini et al., 2014), GCAT (Bukhman et al., 2015), grofit (Kahm et al., 2010; 

107 Vaas et al., 2012), OmniLog Biolog Phenotype MicroArrays (Borglin et al., 2012; Vaas et al., 

108 2012) without the need for the raw data, whereas growth level would at least need lag time and 

109 /or the raw spectrophotometry data. Finally, the time independence of Growth Score is also a 

110 benefit over measurements like Area Under the Curve (AUC) employed by some software. AUC 

111 is subject to similar biases as growth level4longer experiments directly affect how lag time and 

112 growth rate mathematically influence the AUC calculation.

113
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114 Figure Legends

115 FIGURE 1. Growth Level and Growth Score correlation.  The linear relationship results in a 

116 Pearson correlation coefficient of 0.98. Distributions are plotted as marginal histograms for each 

117 metric. Point colors represent the GL classes whereas dotted lines represent the proposed GS 

118 lower thresholds for each colored class.

119

120 FIGURE 2.  Growth curves distributions.  Average growth curves colored by GL and GS 

121 classes. One hundred cycles of bootstrapping were performed for each class, indicated by the 

122 transparent traces surrounding the average line. A) GL classes. B) GS classes.

123
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Figure 1(on next page)

Growth Level and Growth Score correlation.

The linear relationship results in a Pearson correlation coefficient of 0.98. Distributions are

plotted as marginal histograms for each metric. Point colors represent the GL classes

whereas dotted lines represent the proposed GS lower thresholds for each colored class.
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Figure 2(on next page)

Growth curves distributions.

Average growth curves colored by GL and GS classes. One hundred cycles of bootstrapping

were performed for each class, indicated by the transparent traces surrounding the average

line. A) GL classes. B) GS classes.
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