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Among the most recognizable theropods are the tyrannosauroids, a group of small to large

carnivorous coelurosaurian dinosaurs that inhabited the majority of the northern

hemisphere during the Cretaceous and came to dominate large predator niches in North

American and Asian ecosystems by the end of the Mesozoic era. The clade is among the

best-represented of dinosaur groups in the notoriously sparse fossil record of Appalachia,

the Late Cretaceous landmass that occupied the eastern portion of North America after its

formation from the transgression of the Western Interior Seaway. Here, the prootic of a

juvenile tyrannosauroid collected from the middle-late Campanian Marshalltown Formation

of the Atlantic Coastal Plain is described, remarkable for being the first concrete evidence

of juvenile theropods in that plain during the time of the existence of Appalachia and the

only portion of theropod braincase known from the landmass. Phylogenetic analysis

recovers the specimen as an “intermediate” tyrannosauroid of similar grade to

Dryptosaurus and Appalachiosaurus. Comparisons with the corresponding portions of other

tyrannosauroid braincases suggest that the Ellisdale prootic is more similar to Turonian

forms in morphology than to the derived tyrannosaurids of the Late Cretaceous, thus

supporting the hypothesis that Appalachian tyrannosauroids and other vertebrates were

relict forms surviving in isolation from their derived counterparts in Eurasia.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26467v1 | CC BY 4.0 Open Access | rec: 29 Jan 2018, publ: 29 Jan 2018



1 Prootic anatomy of a juvenile tyrannosauroid from New Jersey and its implications for the 

2 morphology and evolution of the tyrannosauroid braincase  

3

4 Chase Brownstein, Research Associate, Stamford Museum and Nature Center 
5 chasethedinosaur@gmail.com 
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 Abstract. 
43

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26467v1 | CC BY 4.0 Open Access | rec: 29 Jan 2018, publ: 29 Jan 2018



44 Among the most recognizable theropods are the tyrannosauroids, a group of small to 

45 large carnivorous coelurosaurian dinosaurs that inhabited the majority of the northern 

46 hemisphere during the Cretaceous and came to dominate large predator niches in North 

47 American and Asian ecosystems by the end of the Mesozoic era. The clade is among the best-

48 represented of dinosaur groups in the notoriously sparse fossil record of Appalachia, the Late 

49 Cretaceous landmass that occupied the eastern portion of North America after its formation from 

50 the transgression of the Western Interior Seaway. Here, the prootic of a juvenile tyrannosauroid 

51 collected from the middle-late Campanian Marshalltown Formation of the Atlantic Coastal Plain 

52 is described, remarkable for being the first concrete evidence of juvenile theropods in that plain 

53 during the time of the existence of Appalachia and the only portion of theropod braincase known 

54 from the landmass. Phylogenetic analysis recovers the specimen as an “intermediate” 

55 tyrannosauroid of similar grade to Dryptosaurus and Appalachiosaurus. Comparisons with the 

56 corresponding portions of other tyrannosauroid braincases suggest that the Ellisdale prootic is 

57 more similar to Turonian forms in morphology than to the derived tyrannosaurids of the Late 

58 Cretaceous, thus supporting the hypothesis that Appalachian tyrannosauroids and other 

59 vertebrates were relict forms surviving in isolation from their derived counterparts in Eurasia.

60

61

62

63

64 Introduction. 

65 During the Campanian Stage of the Late Cretaceous, taxa from the clade 

66 Tyrannosauroidea had emerged as dominant large predators of terrestrial ecosystems in the 
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67 northern hemisphere (e.g., Holtz, 2004; Brusatte et al., 2010; Holtz, 2012; Loewen et al., 2013 

68 Brusatte and Carr, 2016; Carr et al., 2017). In western North America, members of the derived 

69 Tyrannosauridae inhabited the Campanian landmass Laramidia, whereas intermediate-grade 

70 species did so on Appalachia (e.g, Schwimmer, 1997; Holtz, 2004; Carr et al., 2005; Brusatte et 

71 al, 2011; Brusatte and Carr, 2016; Carr et al., 2017). The latter are among the best-represented 

72 dinosaurs in Appalachian faunas, with comparatively abundant teeth and bones assignable to 

73 them described from many deposits in the American East (e.g., Baird & Horner, 1979; 

74 Schwimmer et al., 1993; Schwimmer, 1997; Carr et al., 2005; Brusatte et al., 2011; Ebersole & 

75 King, 2011; Schwimmer et al., 2015; Brownstein, 2017). The majority of recently described 

76 tyrannosauroid material has come from Campanian deposits in the southeastern United States, 

77 including the holotype juvenile partial skeleton and other elements assigned to Appalachiosaurus 

78 (Schwimmer et al., 1993; Carr et al., 2005; Ebersole & King, 2011; Schwimmer et al., 2015). 

79 Schwimmer (2002) and Schwimmer et al. (2015) noted the abundance of definite and likely 

80 small/juvenile tyrannosauroid elements from southeastern sites, the former proposing that the 

81 large crocodylian Deinosuchus may have actively been competing with tyrannosaurs for prey. 

82 Southeastern deposits have also preserved the remains of juvenile nodosaurids and hadrosauroids 

83 (e.g, Burns & Ebersole, 2016; Prieto-Márquez et al., 2016a, 2016b), evincing a possible 

84 preservation bias towards juvenile individuals in such geological units. 

85 Unfortunately, the record of juvenile dinosaurs in the Campanian of northeastern North 

86 America is limited. Gallagher (1995) described teeth from the Ellisdale site that he referred to 

87 juveniles of the tyrannosauroid Dryptosaurus, as well as several very small specimens of 

88 hadrosauroids. However, these teeth, all from the Ellisdale site, are either assignable to large 

89 dromaeosaurids or only to Theropoda indet. (pers. obs.). The few specimens of possible 
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90 hadrosauroids described from the Campanian of the Atlantic Coastal Plain (ACP) are less 

91 problematic, being at least an order of magnitude smaller than inferred adult material from the 

92 same deposits (Gallagher, 1995). Moreover, cranial material from Appalachian dinosaurs is also 

93 extremely rare compared to its frequency in Laramidian fossil record, with only a handful of 

94 specimens known from the eastern United States (Langston, 1960; Carpenter et al., 1995; 

95 Schwimmer, 1997; Fix & Darrough, 2004; Carr et al., 2005; Prieto-Márquez et al., 2006; 

96 Brusatte et al., 2011; Schwimmer et al., 2015; Burns & Ebersole, 2016; Prieto-Márquez et al., 

97 2016a, 2016b). 

98 In June 1994, a skull element was collected from the Campanian-age deposits of the

99 Ellisdale site of New Jersey, a locality notable for producing an extensive vertebrate microfauna 

100 (e.g., Grandstaff et al., 1992; Denton & O’Neill, 1995, 1998; Weishampel & Young, 1996; 

101 Denton et al., 2011). The fossil (NJSM 22738), identified as the prootic of a juvenile 

102 tyrannosauroid here, is especially well-preserved among dinosaur materials from the ACP. The 

103 prootic is the first definite occurrence of a juvenile theropod in the Atlantic Coastal Plain and the 

104 first element of a theropod braincase known from Appalachia. 

105 Methods. 

106 Permits. 

107 No permits were required for this study. Access to the collections of the NJSM was given by 

108 David Parris. 

109 Photography.

110 The specimen was photographed using a Canon G-12 camera and figures were cropped in Apple 

111 Preview. 

112 Institutional Abbreviations.
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113 NJSM, New Jersey State Museum collections, Trenton, NJ, United States; YPM VPPU, 

114 Princeton University collection in the Division of Vertebrate Paleontology, Yale Peabody 

115 Museum, New Haven, CT, United States. 

116 Phylogenetic analysis. 

117 In order to provide support for the assignment of NJSM 22738 to Tyrannosauroidea among 

118 Coelurosauria and test its relationships in detail among the former clade, the prootic was coded 

119 for and included in phylogenetic analyses using both the Theropod Working Group matrix of 

120 Brusatte et al. (2014) and the tyrannosauroid matrix of Carr et al. (2017). The parsimony analysis 

121 was run in TNT v. 1.5 with standard parameters for ratchet, tree drift, tree fuse, and sectorial 

122 search (Goloboff and Catalano, 2016). The most parsimonious trees (MPTs; 100 (overflow) in 

123 both) found were then subjected to traditional TBR branch swapping. Clade support was 

124 quantified by bootstrap values (100 replicates in TNT v. 1.5; Goloboff and Catalano, 2016) and 

125 Bremer supports. 

126 Results

127 Systematic Paleontology

128 Dinosauria Owen, 1842

129 Theropoda Marsh, 1881 

130 Tyrannosauroidea Osborn, 1905

131 Tyrannosauroidea indet. 

132 Material: NJSM 22738 (Fig. 1), prootic of a juvenile tyrannosauroid dinosaur. 

133 Geological Setting: NJSM 22738 was recovered from the Campanian Marshalltown Formation at 

134 the Ellisdale site in New Jersey. The Marshalltown Formation is Campanian in age (e.g., Miller 

135 et al., 2004), dated at 76.4-79.6 million years old at Ellisdale (Denton & Tashjian, 2012). The 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26467v1 | CC BY 4.0 Open Access | rec: 29 Jan 2018, publ: 29 Jan 2018



136 site has most recently been interpreted as an assemblage of both proximal and distal faunas 

137 deposited in the same area by storms (Denton & Tashjian, 2012). 

138 Description: NJSM 22738 (Fig. 1A-C) is the prootic of an intermediate-grade tyrannosauroid 

139 dinosaur. Two unambiguous features support this referral: the presence of a deepened fossa on 

140 the lateral portion of the bone and the extension of the tympanic recess onto it (e.g., Brusatte et 

141 al., 2010; Brusatte et al., 2014; Brusatte & Carr, 2016; Carr et al., 2017). NJSM 22738 is 

142 assignable to a juvenile theropod dinosaur based on the presence of unfused sutures on all sides. 

143 The prootic is small, measuring less than 20 mm on its greatest axis (Table 1). The prootic is 

144 elongate dorsoventrally, and the articular surfaces for the parietal, blasisphenoid, and opisthotic-

145 exooccipital are all present and unfused, evincing that the prootic came from a juvenile 

146 tyrannosauroid dinosaur. It is likely that the animal to which NJSM 22738 belonged was very 

147 young, as the prootic is much smaller than the corresponding element in tyrannosauroids of 

148 similar size to Appalachiosaurus and Dryptosaurus (Brochu, 2003; Bever et al., 2013). 

149 The caudal process of the prootic, though not as developed as in Alioramus and other derived 

150 tyrannosauroids (e.g., Bever et al., 2013), is preserved and triangular in morphology (Fig. 1A). 

151 The otosphenoidal crest is preserved, with a rounded lateral edge (Fig. 1A). It is unclear whether 

152 the otosphenoidal crest runs along the caudal process in NJSM 22738. The presence of a “dull” 

153 otosphenoidal crest differentiates NJSM 22738 from the sharpened condition of the lateral 

154 surface of the crest in adult specimens of Daspletosaurus and Tyrannosaurus and was suggested 

155 by Bever et al. (2013) as a mark of immaturity. The preotic pendant (Fig. 1A) is present as in 

156 large tyrannosauroids and other theropods (e.g., Currie, 1997; Chure & Madsen, 1998; Norell et 

157 al., 2006; Sampson & Witmer, 2007; Bever et al., 2013). The superficial lamina appears as two 

158 eroded caudal processes (Fig. 1A), allying NJSM 22738 with derived tyrannosauroids rather than 
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159 with Dilong and Guanlong, the prootics of which lack the feature (Bever et al., 2013). The 

160 confluence of the dorsal of the two processes of the superficial lamina and the caudal process is 

161 not as sharp as in Alioramus (Bever et al., 2013). As in other tyrannosauroids, the lateral surface 

162 bears a deepened prootic fossa that sits between the caudal process and preotic pendant and 

163 houses both the foramen for the maxillomandibular branch of the trigeminal (V2/3) nerve and that 

164 for the facial (VII) nerve (Fig. 1A)(e.g, Witmer & Ridgely, 2009; Bever et al., 2013; Brusatte et 

165 al., 2014; Brusatte et al., 2016). The trigeminal (V2/3) nerve bifurcates within the prootic (Fig. 

166 1A-B) as in the intermediate-grade tyrannosauroid Timurlengia, but unlike the condition in 

167 derived tyrannosauroids where the nerve arrives in two separate branches from the endocast 

168 (Witmer & Ridgely, 2009; Bever et al., 2013; Brusatte et al., 2016). As observed in the braincase 

169 of Alioramus, two small foramina associated with the rostral tympanic sinus sitting in the prootic 

170 fossa dorsoventrally between the foramina for the openings of the trigeminal (V2/3) and facial 

171 (VII) nerves are present (Bever et al., 2013). Another foramen associated with the rostral middle 

172 cerebral vein and the rostral tympanic sinus that is present on the caudal process of Alioramus 

173 (Bever et al., 2013) is also identifiable on the caudal process of NJSM 22738 (Fig. 1A)/ The 

174 trigeminal (V2/3) nerve openings are large and rounded and contained in a larger, slight ovoid 

175 fossa, whereas that for the facial nerve is elliptical and deep. The tympanic recess projects 

176 slightly into the prootic. The medial surface is smooth with one exit point for the trigeminal 

177 (V2/3) nerve, and the entirety of the original bone surface is preserved (Fig. 1B). The dorsal 

178 tympanic recess, which sits on the lateral surface of the braincase just dorsal to the prootic (e.g., 

179 Witmer, 1997; Rauhut, 2004; Bever et al., 2013) is inferred present based on a smooth, concave 

180 portion of bone on the dorsomedial surface of the caudal process of the prootic (Fig.1B). This 
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181 feature unites the Ellisdale prootic with basal and intermediate-grade tyrannosauroids, such as 

182 Dilong, Guanlong, and Timurlengia (e.g., Bever et al., 2013; Brusatte et al., 2016). 

183 Discussion. 

184 Placement within Tyrannosauroidea. 

185 NJSM 22738 was resolved as a basal tyrannosauroid in the analysis of the bone in the 

186 matrix of Brusatte et al. (2014)(Fig. 2A), providing support for this referral (tree length = 3306, 

187 consistency index = 0.327, retention index = 0.757). NJSM 22738, when included in the matrix 

188 of Carr et al. (2017) for phylogenetic analysis among Tyrannosauroidea, was recovered as the 

189 sister taxon to all other tyrannosauroids more derived than Dilong (tree length = 782, consistency 

190 index = 0.571, retention index = 0.803; Fig. 2B). This corresponds to the results of previous 

191 phylogenetic analyses that have found Appalachian tyrannosauroids as of intermediate grade 

192 between basal taxa like Dilong, Eotyrannus, and the proceratosaurids and the derived 

193 tyrannosaurids and their closest relatives (e.g., Holtz, 2004; Carr et al., 2005; Brusatte et al., 

194 2010; Brusatte et al., 2011; Brusatte et al., 2014; Brusatte & Carr, 2016; Brownstein, 2017; Carr 

195 et al., 2017). The results of the phylogenetic analyses on NJSM 22738 undertaken herein also 

196 further support the hypothesis that Appalachia was a refugium for dinosaurs and other 

197 vertebrates (e.g, Grandstaff et al., 1992; Denton and O’Neill, 1995, 1998; Schwimmer, 1997; 

198 Schwimmer, 20002; Kiernan & Schwimmer, 2004; Carr et al., 2005; Brusatte et al., 2011; Prieto-

199 Márquez et al., 2016a, 2016b). 

200 Because NJSM 22738 is the first portion of a tyrannosauroid braincase known from 

201 Appalachia, it could not be compared morphologically with the other taxa from the landmass and 

202 is thus referred to Tyrannosauroidea indet. Fortunately, however, the braincase of the 

203 intermediate-grade tyrannosauroid Timurlengia is known (Brusatte et al., 2016). As noted, NJSM 
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204 22738 shares with Timurlengia a trigeminal (V2/3) nerve that bifurcates within the prootic (as 

205 opposed to the endocast)(Brusatte et al., 2016). Because NJSM 77238 was resolved as a close 

206 relative of other Appalachian tyrannosauroids in the phylogenetic analysis performed, it is likely 

207 that the prootic is to an extent representative of the general morphology of Appalachian genera. 

208 The prootic described herein also shows that many of the features of the same element in derived 

209 tyrannosauroids were already developed among tyrannosauroids of intermediate grade. These 

210 features include the presence of the superficial lamina as two caudal oriented processes. 

211 However, the prootic also shows that Appalachian tyrannosauroids retained many similarities 

212 with basal taxa in their braincase, such as the divergence of the two branches of the trigeminal 

213 (V2/3) nerve within the prootic and the presence of the tympanic recess (Bever et al., 2011; Bever 

214 et al., 2013; Brusatte et al., 2016). 

215 Taphonomic implications.

216 NJSM 27738 can be confidently identified as the prootic of a juvenile dinosaur based on 

217 the unfused sutures present on its borders with other portions of the braincase, its small size, and 

218 its reduced otosphenoidal crest (e.g., Bever et al., 2013). The prootic is thus important for being 

219 the first specimen of a dinosaur identifiable as a juvenile theropod from the the Atlantic Coastal 

220 Plain. In the southeastern United States, juvenile tyrannosauroids are represented by at least two 

221 immature specimens, the holotype of Appalachiosaurus and a partial metatarsal IV from the 

222 Blufftown Formation of Georgia assignable to a juvenile individual of that taxon based on its 

223 smaller size than the metatarsal IV of the holotype (Schwimmer et al., 1993; Carr et al., 2005). 

224 Schwimmer et al. (2015) reported teeth and other elements of Appalachiosaurus from the mid-

225 Campanian Coachman Formation of South Carolina that they suggested to be material from 

226 juveniles of the taxon based on size. Gallagher (1993, 1995) reported teeth from the Ellisdale site 
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227 he assigned to juveniles of the genus Dryptosaurus, though none can be confidently referred to 

228 any particular ontogenic stage. It should be noted that in the case of the majority of these reports 

229 of juvenile animals, the specimens come from microfossil sites (Grandstaff et al., 1992; 

230 Gallagher, 1993, 1995; Denton and O’Neill, 1995, 1998; Schwimmer et al., 2015). Nevertheless, 

231 it is intriguing that 50% of reported Conacian-Maastrichtian Appalachian dinosaur specimens 

232 that include cranial material (n = 14) are juveniles (n = 7)(Langston, 1960; Carpenter et al., 1995; 

233 Schwimmer, 1997; Fix & Darrough, 2004; Carr et al., 2005; Prieto-Márquez et al., 2006; 

234 Brusatte et al., 2011; Schwimmer et al., 2015; Longrich, 2016; Prieto-Márquez et al., 2016a, 

235 2016b; Burns & Ebersole, 2017; this paper). Juvenile dinosaurs are very well-represented in the 

236 Appalachian fossil record (e.g., Carpenter et al., 1995; Schwimmer, 1997; Prieto-Márquez et al., 

237 2016a, 2016b), and the fact that this pattern stands true for all groups of dinosaurs known from 

238 Appalachia suggests against competition with Deinosuchus being  the maturation-restricting 

239 factor (thought indeed this could account for the somewhat smaller size of Appalachian 

240 tyrannosauroids (e.g., Schwimmer, 2002; Schwimmer et al., 2015)). Schwimmer (1997) 

241 proposed a “bloat and float” model for the preservation of Appalachian dinosaur specimens, 

242 which he divided into three groups of preservation. The results of this study are certainly not at 

243 odds with that model, rather suggesting that the factor of being a juvenile was perhaps important 

244 in the preservation of Appalachian dinosaurs. 

245

246 Conclusions. 

247 The Ellisdale prootic is the first unambiguous occurrence of a juvenile theropod in the Late 

248 Cretaceous of the Atlantic Coastal Plain and the first portion of a theropod braincase known from 

249 Appalachia. The prootic has implications for the evolution of the braincase among 
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250 Tyrannosauroidea, showing that those of Appalachian tyrannosauroids shared features with both 

251 the derived tyrannosaurids and with more basal taxa. Finally, the prevalence of juvenile dinosaur 

252 remains in many Appalachian deposits suggests that the factor of being a juvenile was influential 

253 in the taphonomy of eastern North American specimens from the Late Cretaceous. 

254
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Figure 1(on next page)

Prootic of a juvenile tyrannosauroid
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Figure 1. Prootic NJSM 22738 in lateral (A), medial (B), and dorsal (C) views. Scale bar = 10 

mm. Abbreviations: otoc, otosphenoid crest; rmcv, rostral middle cranial nerve foramen; VII, 

foramen for facial nerve VII; ts, tympanic sinus foramina, cp, caudal process; V, foramina for 

branches of the trigeminal (V2/3) nerve; sl, superficial lamina; tr, space for tympanic recess. 
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Figure 2(on next page)

Results of phylogenetic analyses including NJSM 22738
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Figure 2. Results of phylogenetic analysis of Coelurosauria and Tyrannosauroidea including 

NJSM 22738. Strict consensus topology for the analysis of NJSM 22738 in Coelurosauria 

(Brusatte et al., 2014)(A), strict consensus topology for the analysis of NJSM 22738 in 

Tyrannosauroidea (Carr et al., 2017)(B). Numbers to the left of slashes are Bremer support 

values. Blue arrows indicate resolved position of NJSM 22738. 
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Table 1(on next page)

Measurements of NJSM 22738
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Table 1. Measurements of NJSM 27738. 

Measurement (in mm)

Dorsoventral length 23

Proximodistal width (dorsal end) 15

Proximodistal width (confluence of caudal 

process and superficial lamina)

8

Proximodistal width (ventral end) 8

Mediolateral width (dorsal end) 10

Mediolateral width (ventral end) 7
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