
 

 

Morphohistological development of the somatic embryo of Typha domingensis 1 
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Abstract  22 

Background. The sustainable methods of propagation for Typha domingensis through somatic 23 

embryogenesis can help to mitigate its current condition of ecological marginalisation and 24 

overexploitation. Then, the hypothesis established that the variation of the concentration of auxin 25 

and light conditions in sequential stages of culture generate different morphogenetic routes that 26 

can be monitoring by morphohistological markers. 27 

Methods. Murashige and Skoog medium at half ionic strength, 3% sucrose and 0.1% ascorbic 28 

acid were used in the induction, proliferation and embryogenic maturation. Induction started with 29 

aseptic germinates cultured in 0.5 mg L
-1

 of 2,4-dichlorophenoxyacetic. Four concentrations of 0 30 

to 2 mg L
-1

 of 2,4-dichlorophenoxyacetic, that generated four embryogenic lines, were evaluated 31 

in darkness. Maturation of the somatic embryo took place, in each embryogenic line, without 32 

auxin and under light and dark conditions. 33 

Results. The yellow and brown callus, as well as oblong and scutellar somatic embryos were 34 

recorded in the methodological sequence. The embryogenic differentiation was described with 35 

histological analysis. The induced cultures produced both somatic embryos in a small proportion. 36 

The percentages of the yellow callus on the explant and of suspended cells in the embryogenic 37 

proliferation were greater with the three concentrations of 2,4-dichlorophenoxyacetic. While, the 38 

brown callus predominated without auxin. The somatic embryo developed under light and dark 39 

conditions, and presented globular, oblong, scutellar and sparsely coleoptilar stages. 40 

Discussion. The combined effect of auxin concentrations and light-dark conditions generated 41 

conditions that favoured the development of embryogenic calluses and somatic embryos 42 

(globular, oblong, scutellar and coleoptilar) in an asynchronous process with respect to the stages 43 

of embryogenic induction, proliferation, and maturation. Indeed, differentiation and cellular 44 
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organization of this process were compatible with descriptors of the embryogenic stages recorded 45 

by other aquatic and terrestrial monocotyledons. 46 

 Keywords: emerging aquatic macrophyte, embryogenic maturation, sustainable propagation, 47 

somatic embryogenesis, histodifferentiation 48 

 49 

Introduction 50 

Anthropogenic impacts on wetlands threaten environmental processes and services related to 51 

native aquatic vegetation. The emerging rooted macrophyte Typha domingensis Pers. (bulrush) is 52 

a frequent component of the herbaceous associations that dominate the wetlands of Central and 53 

North America (Reddy et al. 2010). This emerging rooted macrophyte sequesters and stores 54 

carbon from the atmosphere provides critical habitats that sustain a high biodiversity and purifies 55 

eutrophic and polluted water (Thorp et al. 2006; Mitsch et al. 2013).  56 

Typha populations invade commercial croplands located in flood areas, for which reason they are 57 

subject to control measures (Mora-Olivo et al. 2013; Harrison et al. 2017). One agricultural 58 

management strategy used in the case of Oryza sativa substitutes cultivars with genetically 59 

improved varieties that have an allelopathic effect on weeds (Jarchow & Cook 2009). 60 

Paradoxically, the genus Typha has been proposed as raw material in the production of biofuel 61 

due to its ideal fatty acids composition and lignocellulosic biomass, and it is planned to justify its 62 

use through a sustainable production model (Liu et al. 2012; He et al. 201; Ruiz-Carrera et al. 63 

2016). Therefore, its populations are threatened by fragmentation, changes in land use and 64 

agricultural practices in wetlands (Thorp et al. 2006; Erwin 2009; Palomeque et al. 2017).  65 
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The technological challenge to solve the uncertain future of T. domingensis will be to develop 66 

propagation methods that are independent of its extraction from the natural environment in order 67 

to sustain both its re-population and the supply of raw material. 68 

The in vitro technology of asexual or somatic embryogenesis is applied to conserve and 69 

propagate germoplasm, and to sustainably produce genetic varieties (von Arnold et al. 2002; 70 

Sánchez-Chiang & Jiménez 2010; Reed et al. 2011). It has contributed greatly to explain the 71 

physiological, biochemical and molecular mechanisms of the sexual embryogenic process 72 

(Quiroz-Figueroa et al. 2006; Smertenko & Bozhkov 2014; Mahdavi-Darvari et al. 2015). 73 

However, its application in the case of aquatic monocotyledons has been scant. 74 

Somatic embryos (SE) develop from somatic cells and are similar to zygotic embryos (haploid or 75 

diploid), but differ among genotypes, in vitro induced embryogenic routes and the sequential 76 

development of the somatic embryogenesis method. Histological studies have helped understand 77 

these method-related differences (Máthé et al. 2000; Burris et al. 2009; Vega et al. 2009). 78 

Somatic embryogenesis is a multi-phases in vitro culture process that implies the previous 79 

installation of the cellular capacity to respond to external molecular signals (von Arnold et al. 80 

2002). During the inductive phase, the activation of signals by auxins causes cellular re-81 

programmation towards embryogenic differentiation (Elhiti et al. 2013; Fehér 2015). 82 

Embryogenic induction has been possible in aquatic species such as Phragmites australis (Máthé 83 

et al. 2000), Brasenia schreberi (Oh et al. 2008) and T. angustifolia (Rogers 2003), with stimuli 84 

from the 2,4-D auxin. However, in advanced stages, the elimination of or a reduced concentration 85 

of auxin favours the development of a competent embryo (von Arnold et al. 2002; Quiroz-86 

Figueroa et al. 2006; Smertenko & Bozhkov 2014). Also, the variation of light condition has 87 

influenced the formation and maturation of SE at the anatomical and biochemical levels (von 88 
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Aderkas et al. 2015; Klubicová et al. 2017). The SE passes through the same development stages 89 

as the zygotic embryo, and it is possible to follow its morphogenetic route on a map that details 90 

the cellular and tissue markers of the development stages of the somatic embryogenesis (Radoeva 91 

& Weijers 2014).  92 

The hypothesis was based on the factors that stimulate and regulate the process of somatic 93 

embryogenesis of T. domingensis in morphogenetic routes that can be monitoring by 94 

morphohistological markers. Therefore, the concentration of the embryogenic 2,4-D 95 

phytoregulator and the extreme conditions of light in the sequential stages of crop condition 96 

determine the expression of embryogenic competence and drive the somatic embryo 97 

morphogenesis. Thus, the purpose of the study was to describe the morphohistological process 98 

that leads to the maturation of the T. domingensis SE by modifying the process of embryogenic 99 

proliferation along a 2,4-D gradient and in contrasting light-dark conditions during maturation. 100 

 101 

Materials & Methods 102 

Preparation of the germinates 103 

Mature T. domingensis seeds were collected in the catchment area of the Grijalva river in the city 104 

of Villahermosa (17º59’ N and 92°57’ W), located in the basin of the Grijalva-Usumacinta rivers. 105 

Seeds with no perianth were obtained following the methods of  Lorenzen et al. (2000) and were 106 

pre-sterilized in 30% (v/v) ethanol for 10 min and thereafter sterilized in 10% (v/v) bleach 107 

(Cloralex, Mexico) solution for 10 min, rinsed three times in water sterile type 2 pure (México) 108 

and cultured under aseptic conditions. The seeds germinated in the sterile culture unit in a ratio of 109 

1:50 g mL
-1

 purified water.  The culture container was a 5 cm Ø 7 cm high glass flask with a 110 
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Magenta® polycarbonate lid, previously autoclaved with the aqueous medium at 121 °C and 104 111 

kPa every 25 min in Esterilizer SM300 (Yamato scientific, Japan). 112 

Phases of somatic embryogenesis 113 

The production of SE generally involves three main phases: (1) induction, (2) proliferation of 114 

embryogenic cultures and (3) development of embryos (von Arnold 2002; Saenz et al. 2006). The 115 

culture medium in the three embryogenic phases was prepared with the mixture of basic salts of 116 

Murashige and Skoog (1962) at half the ionic strength (MS0.5), MS vitamins, 3% sucrose and 10 117 

mg L
-1

 ascorbic acid as antioxidant, all components of the medium were products Sigma-Aldrich 118 

(St. Louis, MO).  The culture medium was sterilised under the conditions described for the 119 

germination. The macroscopic embryogenic products described in the section of evaluated 120 

responses were transferred to a fresh medium using a 6” straight round-pointed tweezer in a 121 

laminar flow hood (VECO, Mexico), in order to satisfy the objectives of each somatic 122 

embryogenesis phase. The culture time of each phase was 28 days. 123 

Environmental control 124 

The cultures were incubated  under 16 h photoperiod with light intensity of 20 µmol m
-2

s
-1

 125 

(Quantum light meter, Spectrum Technologies, Inc), provided by cool white fluorescent lamps 126 

(Phillips, E.U.A) at 28±2 °C during the germination and throughout the experiments. The culture 127 

units with three germinates were stirred at 125 rpm. The cultures in darkness were kept in closed 128 

darkness. 129 

Embryogenic evaluation 130 

Two independent experiments were carried out to analyse the culture environment of the different 131 

stages of development of the somatic embryogenesis of T. domingensis. Embryogenic induction 132 

started with aseptic germinates (9 days) cultured in 0.5 mg L
-1

 of 2,4-D in a dark environment 133 
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(N=48). The first experiment evaluated the embryogenic proliferation at four concentrations: 0, 134 

0.5, 1 and 2 mg L
-1

 of 2,4-D and in darkness. Embryogenic lines of each treatment of 2,4-D were 135 

named to brown callus 0 mg L
-1

 of 2,4-D (BC0), yellow callus 0.5 mg L
-1

 of 2,4-D (YC1), yellow 136 

callus 1 mg L
-1

 of 2,4-D (YC2), and yellow callus 2 mg L
-1

 of 2,4-D (YC3). In the second 137 

experiment, the maturation of the SE took place starting from the cultures of the four 138 

embryogenic lines of the first experiment, but with no phytoregulator in the culture medium and 139 

under light (L) and dark (D) conditions, generating eight new embryogenic lines (BC0D, YC1D, 140 

YC2D, YC3D and BC0L, YC1L, YC2, YC3L). 141 

Evaluated responses 142 

The scale for absence and presence in the cultures of the products of embryogenic origin 143 

(percentage of adhered to the explant and of suspended) was used in the three embryogenic 144 

phases. Yellow callus, brown callus, oblong SE (oSE), scutellar SE (scSE) and cellular 145 

suspensions were identified according to their morphology and following Dodeman (1997), Fehér 146 

et al. (2003), von Arnold et al. (2002) and Quiroz-Figueroa et al. (2006).  These observations 147 

were made weekly with a Zeiss Stemi DV4 stereomicroscope (Zeiss, Göttingen, Germany).  148 

Description of the histological process 149 

The embryogenic products, adhered to the explant and suspended, were collected from 30% of 150 

the culture units at each phase. The embryogenic products representative of each treatment were 151 

preserved in a FAA (formaldehyde-acetic acid-ethanol) solution for 24 h, dehydrated in a graded 152 

ethanol series of 70 to 100% (30 min per step) and clarified with 1:1 ethanol-xylol and 100% 153 

xylol for 1 h (Filonova et al. 2000). The embryogenic structures were then embedded in 154 

xylol:paraffin (Paraplast®, Sigma-Aldrich, St. Louis, MO) using a Reichert-Jung Mod 8044 155 

automatic tissue embedding center (Cambridge Instruments GmbH, Buffalo, NY) in order to 156 
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obtain 6 µm thick serial cross-sections with a Reichert-Jung Mod. Hn 40 sliding microtome 157 

(Cambridge Instruments GmbH, West-Germany). Toluidine blue and hematoxylin-eosin, both at 158 

0.2%, were used for dyeing. The histological preparations were analysed using a Zeiss Axiostar 159 

Plus photo-microscope (Carl Zeiss, Göttingen, Germany) equipped with a Zeiss Axio Cam model 160 

MRc5 digital camera (Carl Zeiss, Göttingen, Germany). The analysis of the differentiation of 161 

embryogenic cells and tissues was qualitative and the descriptions were compared with 162 

histological markers described for species of the same order (Máthé et al. 2000; Meneses et al. 163 

2005; Burris et al. 2009; Vega et al. 2009). In addition to oSE and scSE, were identified as 164 

response variables to the embryogenic products globular SE (gSE) and coleoptilar SE (colSE).   165 

Statistical analyses 166 

Normality (Kolmogorov-Smirnov) and homocedasticity (Cochran) tests were applied to the 167 

embryogenic products of each experiment in order to decide on the application of univariate and 168 

multivariate parametric (ANOVA) and non parametric (Kruskal-Wallis) tests. The a posteriori 169 

comparison of averages was carried out using Fisher’s technique. The statistical probability value 170 

was p<0.05 Statistica (StatSoft V8, 2007). 171 

 172 

Results 173 

Embryogenic induction  174 

Of the induced cultures, 73% formed yellow calli, 30% brown calli and 50% suspended cells. 175 

The production of oSE (Figure 1g) and scSE (Figure 1j) occurred earlier in 6.25% of the cultures 176 

in this phase. 177 

Embryogenic proliferation 178 
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The proliferation of calli on the explant and of suspended cells was significant due to the 2,4-D 179 

(Table 1). The percentage of yellow calli adhered to the explant and of suspended cells was 180 

greater in the presence of 2,4-D; the number of cultures with oSE and scSE and all the embryos 181 

increased less with respect to the first stage (Table 1). In contrast, brown calli on the explant 182 

predominated without 2,4-D. 183 

Maturation of the somatic embryo 184 

With respect to the previous phase, light decreased the proliferation of yellow calli in the cultures 185 

and increased brown callus in the BC0L to YC2L embryogenic lines. In darkness, the yellow 186 

callus remained unchanged, except in embryogenic line YC3D which recorded a notable increase 187 

(Table 2). The cultures with suspended yellow calli were relatively similar among the 2,4-D 188 

embryogenic lines (p˂0.05), although both in light and darkness they produced abundant 189 

suspended cells due to the friability of this callus. In the absence of 2,4-D, the light and darkness 190 

controls presented the greater number of cultures with brown calli adhered to the explant, but no 191 

production of SE. In contrast, embryogenic line YC3L presented the greater percentage of 192 

cultures with total SE, dominating the scSE on the explant and the suspended oSE, which in turn 193 

coincided with the release of the brown callus of the explant. The same occurred in YC1, but to a 194 

lesser degree and with no formation of scSE. 195 

Histological descriptions 196 

The calli of T. domingensis presented embryogenic cells and early and late embryogenesis 197 

(Figure 1). The nodular yellow callus (Figure 1a) presented zones of great mitotic activity formed 198 

by small and isodiametric cells, with strongly dyed prominent nuclei (Figure 1b) and zones with 199 

acquisition of embryogenic adeptness (Figure 1c). The three culture phases promoted 200 

proembryogenesis and early and late embryogenesis (Figure 1). Proembryogenesis was 201 
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associated with the presence of nodular yellow calli through the formation of induced 202 

proembryogenic masses (PEM). The gSE originated in the PEM presenting radial development 203 

and differentiation of three primary meristematic tissues. The gSE (Figure 1e) presented the three 204 

fundamental meristems and the suspensor (Figure 1f). A reduction of the suspensor was observed 205 

in the embryogenic stages that followed. The elongation of the gSE was originated the oSE 206 

(Figure 1g), the oSE presented parenchyma with abundant amyloplasts (Figure 1i). The 207 

embryogenic stages that followed were the scSE (Figure 1j) and the colSE (Figure 1m), both with 208 

vascular cells, reserve parenchyma and a defined axis. The colSE was made evident by the 209 

presence of the coleoptile (Figure 1ñ). Late embryogenesis was demonstrated by the presence of 210 

polarity and tissue differentiation. However, the identification of the late embryogenic stages was 211 

difficult due to the abundance of embryos with aberrant morphologies (fused, doubled over the 212 

axis, with over-expression or suppression of structural components). 213 

The cellular-histogenic differentiation made it possible to create a roadmap of the somatic 214 

embryogenesis of T. domingensis (Figure 2), that helped establish the sequence and the degree of 215 

maturity of the somatic embryo generated by the embryogenic lines of T. domingensis based on 216 

the morphohistological information obtained (Figure S1).  217 

 218 

Discussion 219 

The somatic embryogenesis of T. domingensis presented stages of proembryogenesis and early 220 

and late embryogenesis. However, it recorded an asynchronous process during the phases of 221 

induction, proliferation and embryogenic maturation. The formation of embryos that started in 222 

the inductive stage may be explained considering that the redox effect of the ascorbic acid is an 223 

enhancer of the embryogenic process (Dan 2008; Becker et al. 2014). However, the effect of 224 
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ascorbic acid on T. domingensis needs to be optimised in order to standardise the quality and 225 

number of produced SE. 226 

In the case of emerging aquatic plants, somatic embryogenesis has varied in relation to the 227 

genotype, the explant, the culture medium and the culture technique used (Rogers 2003; Burris et 228 

al. 2009). In the species under study, it was possible to observe the embryogenic adeptness of the 229 

caulinar basis of the germinate and its potential in the production of embryogenic calli when 230 

stimulated by 2,4-D. Comparatively, the zygotic embryo of the Indica variety of Oryza sativa 231 

recorded a 35% formation of calli in 1.5 mg L
-1

 of 2,4-D with a minimum amount of necrotic 232 

material in a MS medium (Meneses et al. 2005). Germinates of T. angustifolia and inflorescences 233 

of Phragmites australis have produced embryogenic calli at concentrations below 2,4-D (Lauzer 234 

et al. 2000; Rogers 2003; Burris et al. 2009). In other species and explants, the yellow callus has 235 

been embryogenic at greater concentrations (Verdeil et al. 2001; Burris et al. 2009; Vega et al. 236 

2009). The embryogenic callus cultured with 2 mg L
-1

 of 2,4-D and moved to light conditions 237 

was more efficient in the massification of T. domingensis SE (von Arnold et al. 2002; Elhiti et al. 238 

2013). In two Phalaenopsis spp species, SE presented very low percentages with 70% and 90% 239 

oxidation over long periods of light (Gow et al. 2009). However, it is necessary to improve the 240 

process of maturation of the T. domingensis embryo in order to be able to increase the frequency 241 

of embryos of the best embryogenic line. 242 

Parallel to the morphogenetic process, the histological study showed that the cellular organisation 243 

and embryogenic differentiation of T. domingensis are compatible with the descriptors cited for 244 

aquatic monocotyledons such as Panicum virgatum (Burris et al. 2009), Oryza sativa (Bevitori et 245 

al. 2014; Vega et al. 2009) and Phragmites australis (Máthé et al. 2000), and terrestrial 246 

monocotyledons such as Cocus nucifera and Musa sp. (Strosse et al. 2006; Saenz et al. 2006). 247 
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The 2,4-D influenced the transition of the meristematic cell to an embryogenic cell and its 248 

resulting development towards a SE. The meristematic and embryogenic cells of the T. 249 

domingensis callus evolved to form nodules of meristematic tissue and proembryogenic masses. 250 

These histological characteristics have defined the proembryogenesis stage of Oryza sativa 251 

(Bevitori et al. 2014; Vega et al. 2009), Cocus nucifera (Saenz et al. 2006) and Musa sp. (Strosse 252 

et al. 2006). 253 

The stages of early and late embryogenesis of T. domingensis coincided with the globular, 254 

oblong, scutellar and coleoptilar sequential stages of the zygotic embryo in monocotyledons 255 

(Quiroz-Figueroa et al. 2006; Forestan  et al. 2010) and with the stages of development reported 256 

by Dodeman (1997), Filonova et al. (2000), Quiroz-Figueroa et al. (2006) and von Arnold et al. 257 

(2002). 258 

The observation of the suspensor in T. domingensis was a key point to determine the unicellular 259 

origin of the SE and its degree of development (Quiroz-Figueroa et al. 2006). The gSE presented 260 

a radial development plan with three fundamental tissues typical of a spermatophyte 261 

(Winkelmann 2016). The model species Zea mays and Arabidopsis thalliana have reported stages 262 

of transitory development or of cellular expansion, rather than of differentiation (Forestan et al. 263 

2010; Radoeva & Weijers 2014). The oSE of T. domingensis was characterised as a transition 264 

stage between the gSE and the scSE (Forestan et al. 2010; Smertenko & Bozhkov 2014). The 265 

cotyledonary structure with reserve parenchyma rich in amyloplasts made it possible to confirm 266 

that the degree of development reached by the SE of T. domingensis was of the scutellar type. In 267 

the case of the SE of O. sativa during the scutellar stage, protoderm changes in the epidermis and 268 

the vascular bundle may be observed, indicating that the next stage of development is starting 269 

(Bevitori et al. 2014). In T. domingensis, the scSE presented vascular cells in some cases, 270 
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suggesting its advance towards a colSE, with both embryogenic stages differentiated only by the 271 

coleoptile-radicle bipolarity of the last one, although the coleorhiza and the plumule were not 272 

observed - two basic structures of a mature embryo in monocotyledons (Winkelmann 2016; 273 

Forestan et al. 2010). The high morphological variability of the SE made it possible to distinguish 274 

between a normal embryo and an abnormal or aberrant embryo resulting from the lack or over-275 

expression of one or more structural elements that form it, particularly during the late stages 276 

(Hoenemann et al. 2010). In the case of the date palm, the problem of the production of aberrant 277 

embryos in the routine propagation through SE and the change to seedling were solved by 278 

applying a period of drying in polyethylene glycol (El Dawayati et al. 2012).  279 

 280 

Conclusions 281 

In the present study were defined the optimal culture conditions and morphohistological path of 282 

Typha domingensis, that culminated in the formation of mature somatic embryos. In the stages of 283 

embryogenic induction and proliferation, 2,4-D in low concentrations, the somatic embryo 284 

showed an indirect and unicellular embryogenic route. The multistage monitoring of the cellular-285 

histogenic differentiation made it possible to create a roadmap of the somatic embryogenesis of 286 

T. domingensis that helped establish the sequence and the degree of maturity of the somatic 287 

embryo. However, the embryogenic structures presented asynchrony and the presence of 288 

abnormal embryos. The model of embryogenic development for this species will be useful to 289 

deepen the reproductive metabolism for different biotechnological applications. 290 

 291 
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Table 1. Percentage of cultures with proliferation of embryogenic products of Typha 426 

domingensis. Phase 2 of somatic embryogenesis. 427 

Level 
Dependent 

variable 

% of cultures  

Embryogenic line 

BC0 YC1 YC2 YC3 

Explant Yellow callus 8.33
b
 75.75

a
 86.11

a
 75.00

a
 

Brown callus 86.11
a
 9.09

b
 11.11

b
 25.00

b
 

oSE 0.00 8.33 16.66 13.88 

scSE 0.16 0.00 0.08 0.41 

Medium Yellow callus 16.66 45.45 33.33 27.77 

Brown callus 8.33 0.00 0.00 0.00 

oSE 0.00 16.66 13.88 5.55 

scSE 8.33 0.00 0.00 0.00 

 

Σ 

Suspended cells 8.33
b
 75.00

a
 66.66

a
 75.00

a
 

SE  8.49 24.99 30.62 19.84 

SE=somatic embryo, Σ SE=sum of SE adhered to the explant and suspended in the culture 428 

medium. Averages with same literals were not different (p˂0.05). 429 

Table 2. Percentages of cultures with embryogenic products of Typha domingensis in the phase of 430 

embryogenic maturation. 431 

Level 
Dependent 

variable 

% of culture 

Embryogenic line 

  BC0L YC1L YC2L YC3L BC0D YC1D YC2D YC3D 

Explant Yellow callus 0.00 33.33
bc

 26.66
bc

 66.66
ab

 0.00 66.66
ab

 60.00
ab

 93.33
a
 

 Brown callus 93.33
a
 39.99

cd
 40.00

cd
 0.00 86.66

ab
 20.00

cd
 46.66

bc
 0.00 

 
oSE 0.00 0.00 6.66 16.66 0.00 20.00 13.33 6.66 

scSE 0.00 0.00 6.66 33.33 0.00 0.00 0.00 0.00 

Medium Yellow callus 0.00 20.00
bc

 60.00
ab

 75.00
a
 0.00 60.00

ab
 26.66

abc
 73.33

a
 

Brown callus 33.33 0.00 0.00 41.66 6.66 13.33 0.00 0.00 

White callus 0.00 0.00 0.00 0.00 0.00 0.00 20.00 20.00 

oSE 0.00 20.00 6.66 25.00 0.00 20.00 0.00 0.00 

scSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.33 

Suspended cells 0.00 60.00
b
 80.00

ab
 100.0

a
 0.00 100.0

a
 100.00

a
 100.0

a
 

Σ ES 0 20 19.80 74.99 0 40.00 13.33 19.99 

SE=somatic embryo, Σ SE=sum of SE adhered to explant and suspended in the culture medium. 432 

Averages with same literals were not different (p˂0.05). 433 
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Figure 1. Embryogenic differentiation of Typha domingensis.  435 

Yellow callus: a) morphology (8x), b) cross-section (toluidine blue, 200x), c) meristematic and 436 

embryogenic region (toluidine blue, 400x); gSE: d) over yellow callus, e) cross-section 437 

(hematoxylin-eosin, 200x), f) radial pattern made by three meristems: protoderm, fundamental 438 

and procambium; oSE: g) over yellow callus of 56 days, h) longitudinal section showing the 439 

suspensor connected to calli (arrow with the letter x) and oSE (arrow with the letter y), i) tissue 440 

differentiation, reserve parenchyma cells (spherical and birefringent amyloplast) and 441 

procambium; scSE: j) suspended in the medium, k) cross-section (toluidine blue, 200x), l) scSE 442 

with procambium and some vascular cells; colSE; m) suspended in the medium, cross-section 443 

(toluidine blue, 200x) high histo-differentiation in the region near the embryo, along the 444 

scutellum formed by reserve parenchyma cells and defined axis with meristem of apex and root, 445 

ñ) detail of coleoptile and apical and radicular meristem. 446 

MZ: meristematic zone. EZ: embryogenic zone. EC: embryogenic cells. gSE: globular SE. oSE: 447 

oblong SE. scSE: scutellar SE. colSE: coleoptilar SE. FM: fundamental meristem. PD: 448 

protoderm. PC: procambium. S: suspensor. Pa: parenchyma. Rep: reserve parenchyma. Am: 449 

amyloplast. col: coleoptile. pa: procambial axis. esc: scutellum. r: radicula. e: embryo. 450 
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 451 

Figure 2. Histogenic model of the process of somatic embryogenesis of Typha domingensis 452 

compared with two model species: Arabidopsis thaliana a dicotyledon and Zea mays a 453 

monocotyledon. The illustrations are not to scale. Symbols: e-epicotyl, h-hypocotyl, cp-454 

coleoptile, cr-coleorhiza, p-plumule, r-radicle. Colour code: yellow-fundamental tissue, green-455 

procambium, blue-protoderm, orange-suspender, pink-zygote. 456 

 457 

Supplements 458 

Figure S1. Map of the embryogenic lines of Typha domingensis that sums up the morphological 459 

development of the somatic embryo. 460 

Table S1. Table of significance. 461 
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