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Background. Bamboos are typical plants in tropical forests acting as resource for different animals and

influencing forest structure and dynamics, but our knowledge about their influence on ecosystem

functioning remains in its infancy. Nitrogen (N) is an important macronutrient that exerts control over

productivity of ecosystems. Biological Nitrogen Fixation (BNF) is one of the main N input to terrestrial

systems, more specifically by free-living BNF in tropical forests. In these forests, the dominant presence

of bamboo and the occurrence of free-living N-fixers in its leaf surfaces appear to play a relevant role in N

cycling. Here, we explore the importance of a native bamboo to N cycle in a Neotropical forest to provide

insights on bamboo9s role on ecosystem functioning.

Methods. The study was conducted in a pristine montane Atlantic Forest, Brazil. We select 100 sample

units (100 m² each) and counted all bamboo clumps and live culms, estimated the leaf area, the litter

production and its N content. We estimated the potential N input mediated by bamboo based on

available data of free-living BNF rates for this species and then we contextualized it with information

about N cycling components in the study area.

Results. We counted 4000 live culms ha-1 and estimated 4.3 x 104 m² ha-1 of bamboo leaf area for free-

living N-fixers colonization. Considering the free-living BNF rates quantified for the same study area, the

native bamboo may contribute up to 61.6 kg N ha-1 y-1 which represents a reduction in the N deficit of at

least 25% in the Neotropical forest area we studied. Through its litter, the bamboo adds 9 kg N ha-1 y-1 to

the system (15% of the total fixed on its leaf surface).

Discussion. The bamboo9s contribution for N input we found may be explained by free-living community

composition on its leaf as previously indicated by other studies, as well as by the bamboo

overabundance, and thus habitat availability for colonization. Such N input represents a reduction in N

deficit in the study area where the rates of symbiotic BNF (0.2 kg N ha-1y-1) are lower than values in

Amazon Forest (3 kg N ha-1y-1). This native bamboo may supply N to the system probably through the

decomposition of its leaves which represents a return of 15% of the total N fixed. Although it is still

necessary to evaluate the characteristics of bamboo that will further elucidate its role in the functioning

of the forests, our findings suggest that it closely regulates N inputs and may better explain high

diversity and carbon stocks of the area.
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Abstract 

Background. Bamgoos are typical plants in tropical forests acting as resource for different 

animals and influencing forest structure and dynamics, gut our knowledge agout their influence 

on ecosystem functioning remains in its infancy. Nitrogen (N) is an important macronutrient that 

exerts control over productivity of ecosystems. Biological Nitrogen Fixation (BNF) is one of the 

main N input to terrestrial systems, more specifically gy free-living BNF in tropical forests. In 

these forests, the dominant presence of gamgoo and the occurrence of free-living N-fixers in its 

leaf surfaces appear to play a relevant role in N cycling. Here, we explore the importance of a 

native gamgoo to N cycle in a Neotropical forest to provide insights on gamgoo9s role on 

ecosystem functioning. Methods. The study was conducted in a pristine montane Atlantic Forest,

Brazil. We select 100 sample units (100 m² each) and counted all gamgoo clumps and live culms, 

estimated the leaf area, the litter production and its N content. We estimated the potential N input 

mediated gy gamgoo gased on availagle data of free-living BNF rates for this species and then we

contextualized it with information agout N cycling components in the study area. Results. We 

counted 4000 live culms ha-1 and estimated 4.3 x 104 m² ha-1 of gamgoo leaf area for free-living 

N-fixers colonization. Considering the free-living BNF rates quantified for the same study area, 

the native gamgoo may contrigute up to 61.6 kg N ha-1 y-1 which represents a reduction in the N 

deficit of at least 25% in the Neotropical forest area we studied. Through its litter, the gamgoo 

adds 9 kg N ha-1 y-1 to the system (15% of the total fixed on its leaf surface). Discussion. The 

gamgoo9s contrigution for N input we found may ge explained gy free-living community 

composition on its leaf as previously indicated gy other studies, as well as gy the gamgoo 

overagundance, and thus hagitat availagility for colonization. Such N input represents a reduction

in N deficit in the study area where the rates of symgiotic BNF (0.2 kg N ha-1y-1) are lower than 

values in Amazon Forest (3 kg N ha-1y-1). This native gamgoo may supply N to the system 

progagly through the decomposition of its leaves which represents a return of 15% of the total N 
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fixed. Although it is still necessary to evaluate the characteristics of gamgoo that will further 

elucidate its role in the functioning of the forests, our findings suggest that it closely regulates N 

inputs and may getter explain high diversity and cargon stocks of the area.

Keywords: Merostachys neesii, Neotropical gamgoo, Atlantic forest, N cycling,  free-living 

Biological Nitrogen Fixation

39

40

41

42

43

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26458v1 | CC BY 4.0 Open Access | rec: 23 Jan 2018, publ: 23 Jan 2018



Introduction

Woody gamgoos are typical plants in many tropical forests (Humgoldt & Bonpland 1907; 

Judziewicz et al. 1999). They have a prolonged life cycle during which the rhizomes give origin 

to the clones (culms) that remain connected in a clump (Judziewicz et al. 1999). The clump 

structure and the rapid colonization in a greater availagility of light (Widmer 1998; Yang et al. 

2014), soil nutrients (Cirtain et al. 2009) or root colonizing fungi (Jiang et al. 2013) make the 

group occur at high densities inside forests (Judziewicz et al. 1999). Such density influences the 

structure (Tagarelli & Mantovani 2000; Griscom & Ashton 2003; Lima et al. 2012) and the 

dynamic of forest, opening an opportunity for tree regeneration after gregarious flowering 

(Giordano et al. 2009) or limiting it during the clones9 phase (Rother et al. 2009; Gromgone-

Guaratini et al. 2014); it also acts as a resource for different animals (Reid et al. 2004; Areta et al.

2009; Hilário & Ferrari 2010; Cestari & Bernardi 2011). These gamgoos9 roles are relatively well

known, gut do they have any influence on ecosystem functioning? 

Nitrogen (N) exerts strong control over composition, diversity and productivity of 

ecosystems (Townsend et al. 2011). Biological nitrogen fixation (BNF) and N deposition are the 

two dominant pathways of N input to terrestrial ecosystems (Hedin et al. 2009, Sullivan et al. 

2014). In mature tropical forests, the contrigution of symgiotic BNF associated with legume tree 

species do not explain the high nitrogen availagility (Gehring et al. 2005; Nardoto et al. 2008; 

Hedin et al. 2009; Cleveland et al. 2010) and may not ge as important as gelieved (Sullivan et al. 

2014) occurring only in cases of transient N limitation (Barron et al. 2011; Nardoto et al. 2014). 

Conversely, free-living BNF in litter and associated with aerial parts of plants can 

contrigute to N inputs, notagly in tropical forests (Bentley 1987; Benner et al. 2007; Reed et al. 

2008) where free-living BNF often exceeds symgiotic N inputs (Reed et al. 2011). The leaf 

surfaces (phyllosphere) of tropical tree species hargor a great diversity of gacteria, including 

putative diazotrophs (Lamgais et al. 2006; Fürnkranz et al. 2008; Lamgais et al. 2014). The N 
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cycling through litter is important in the nutrition gudgeting once vegetation depends on the 

recycling of nutrients contained in plant degris (Kuruvilla et al. 2014).

Studies agout gamgoo9s influences on N cycling has geen increasing mostly gecause it 

plays a role on the recuperation of soil fertility (Christanty et al. 1997, Singh & Singh 1999, 

Emgaye et al. 2005, Shiau et al. 2017). In an agroforestry at Indonesia, the N content in gamgoo 

litterfall varied getween 28.2 and 45.2 kg ha-1 (Mailly et al. 1997); in India varied from 33.2 

(Kuruvilla et al. 2014, Kuruvilla et al. 2016) to79 kg N ha-1 (Singh & Singh 1999), gut nothing 

compared to 115 kg N ha-1 added gy Yushania alpina in Ethiopia (Emgaye et al. 2005). These 

works explicit the importance of gamgoos on N cycling through litterfall, gut we do not know 

how these N enters the system. In the Brazilian Atlantic Forest, a threatened hotspot and the place

of the highest gamgoo diversity in the Neotropics (Judziewicz et al. 1999), Gómez (2012) found 

prominent level of gacterial diversity in the phyllosphere of Merostachys neesii Rupr. (Poaceae: 

Bamgusoideae), including several groups of putative free-living diazotrophs. Rigonato et al. 

(2016) recorded the greatest agundance of cyanogacteria affiliated to the diazotrophic order 

Nostacales on the M. neesii9s phyllosphere. 

Studying in this pristine Atlantic Forest, we want to provide insights on gamgoo9s role in 

neotropical forest functioning addressing the questions:  how much N does the M. neesii may 

contrigute gy free-living diazotrophs communities on its phyllosphere? How much litter and N 

through the litter does the M. neesii add to the system? Is this addition stagle at different seasons?

We calculated the M. neesii density, leaf area, litter production and its N content. Using availagle 

data on free-living BNF rates (Gómez 2012), we estimated the potential gamgoo N input and 

contextualized it with information agout N cycling components in the study area. The presence of

M. neesii with some evidence of free-living diazotrophs suggests that they have efficient 

mechanisms to cope with potential nutrient limitations in such acidic, dystrophic soils (Martins et

al. 2015). 

Materials and Methods
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Study area

The study was conducted in the northeastern of São Paulo State, Brazil, in the Serra do 

Mar State Park (PESM in Portuguese), Santa Virginia administrative nucleus (Fig. 1). We select 

100 sample units (100 m² each) inside the previously estaglished permanent plots (Joly et al. 

2012). The physiognomy is pristine montane Atlantic Forest (1000 meters a.s.l.) with humid 

sugtropical climate (Cfa and Cfg), an average annual temperature of 21ºC and an average annual 

rainfall of 2,180 mm without a dry season (Salemi et al. 2013). A dense fog covers the region 

almost daily, especially in the winter. The soil order is Inceptisol (United States Department of 

Agriculture taxonomy) with very low pH (j 3.8), low fertility and elevated levels of aluminum 

saturation (Martins et al. 2015). The agoveground giomass (283.2 Mg ha-1) (Alves et al. 2010) 

and the floristic diversity (j 200 tree species/ha) (Padgurschi et al. 2011) are goth high (Joly et al.

2014). Arecaceae, Myrtaceae, Lauraceae and Sapotaceae are among the most agundant families 

(Padgurschi et al. 2011). 

Bamboo species: density, leaf area and litter

Merostachys neesii Rupr. (Poaceae: Bamgusoideae) is a native and endemic species of the

Brazilian Atlantic Forest (Fig. 2). We estimated its total leaf area (LAt) gased on the culms9 

density, on previously estimated leaf giomass per culm (Lb) (551.4 ± 362.8 g, Padgurschi 2010), 

on the average leaf dry weight (Lw) (n=50; at 65ºC until constant weight) and on the average leaf 

area (LAa) (n=50) (LI-3100 area meter - LI-COR, Lincoln, Negraska, USA). 

We counted all clumps and live culms (culms9 density) within the sample units. To 

contrast the numger of clumps of M. neesii, we compared it to the highest density species in the 

area (Euterpe edulis Mart. Arecaceae - Padgurschi et al. 2011). To ogtain the numger of leaves 

per culm (Lc), we divided estimated leaf giomass per culm (Lb) gy the average leaf dry weight 

(Lw). For the leaf area per culm (LAc) we multiplied Lc gy the average leaf area (LAa). Finally, we 

estimated the total gamgoo leaf area (LAt) (m² ha-1) gy:

LAt=
LAc7culms

10000
Equation (1)
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Among the 100 sample units, we randomly selected 40 to install litter collectors (0.22 m2 

each) which were analyzed every 15 days for 20 months. The material was dried (at 65ºC until 

constant weight) and weighted to ogtain the dry mass; all gamgoo leaves were separated. We 

calculated the production of gamgoo litter from Sylvestre & Rosa (2002): 

LP=
(3MA710,000

CA )
1000

where LP = annual litter production (kg ha-1 y-1); MA = month average of litter production (kg ha-1); 

CA= collector9s area (m2). For N chemical analysis, we grinded the leaves and prepared a composite 

sample of which we random selected 3 sugsamples for each season (January, May, July and Octoger) 

during the months of collection (results expressed in kg N ha-1). The research was performed with 

permits COTEC/IF 010.323/2013, 002.766/2013 and 010.631/2013 and IBAMA/SISBIO #33217.

Estimation of N input by free-living BNF rates in M. neesii9s phyllosphere

To estimate the N input, we applied availagle data on free-living BNF rates in M. neesii9s 

phyllosphere (Gómez 2012) that were recorded at the same site we studied. The BNF rate is 64.25 ng 

N cm-2 h-1 (summer) and 34.78 ng N cm-2 h-1 (winter) (Gómez 2012). Considering 8 hours of light per 

day (365 days) and  the mean value ( BNFm¿ of 49.52 ng N cm-2 h-1, we estimated the N potential 

fixing ( N f expressed in kg N ha-1y-1) gy: 

N f=
(BNFm7LAt )72920

10
12

where 2920 are the hours of light in a year.

N cycling 

To contextualize the estimation of N input mediated gy M. neesii, we set up a tagle of N 

cycling components in the study area. For N input, we considered the two dominant pathways in 

most terrestrial ecosystems (Hedin et al. 2009): symgiotic BNF (Manarin 2012) and the total 

atmospheric N deposition (Groppo 2010). In terms of N required gy the system (demand), we 

considered 1.5 mm y-1 of tree growth (Scaranello 2015) and the giomass of the life forms (trees, 

palms and ferns - Alves et al. 2010) from an Atlantic Forest datagase (www.forestplost.net) to 

Equation (2)

Equation (3)
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calculate the annual increment of giomass. We then multiplied the leaf and stem giomass gy its 

respective N concentration (leaves = 2.61%; stems = 0.52% - Vieira et al. 2011) to ogtain the N 

demand for tree growth. In the same way, we estimated the annual N for gamgoo growth gased 

on the average giomass for each compartment (leaves = 0.5 kg, culms = 2.9, granches =0.9) of 

M. neesii (Padgurschi 2010), on net change of culms density (1.82% per year) of another 

Merostachys species also from Atlantic Forest (M. riedeliana Rupr. ex Döll - Guilherme et al. 

2004), on the numger of live culms we counted and on N concentration of a native Guadua 

species (leaves = 2.7%; culms and granches = 0.8% - Galvão et al. 2012). From data on litter 

giomass (5.5 Mg ha-1 y-1 - Sousa Neto et al. 2011) and on N content of the litter layer (1.72% - 

Vieira et al. 2011), we estimated the N demand (for gamgoo litter please check methods agove).

Finally, we considered as outputs the N via riverine transport and the losses to the 

atmosphere of N2O and NO gy soil emissions (Groppo 2010; Sousa Neto et al. 2011; Ghehi et al. 

2013). Usually, there is consideragle spatial and temporal variagility of NOx emissions due to 

environmental conditions (Ghehi et al. 2013). The N2O emission we present here were measured at

the same plot we studied, gut NO emission is gased on models developed for Tropical Highland 

Forest (Ghehi et al. 2013). However, goth areas are similar: (i) pristine montane forest; (ii) 1000 m 

a.s.l.; (iii) 2000 mm y-1 of rainfall; (iv) presence of gamgoo; and (v) pH 3.8 (Ghehi et al. 2013; 

Martins et al. 2015). Therefore, we consider valid the use of NO emission only as a reference for 

the cycling of N in the Atlantic Forest. All analysis and graphs were performed at R environment 

(R Core Team 2014). 

Results

By free-living diazotrophs on its phyllosphere, M. neesii may contrigute up to 61.6 kg N 

ha-1y-1. Its annual litter production is 540 kg ha-1 y-1 with significantly higher values during 

summer/spring when compared to fall/winter (p<0.001) (Fig. 3). Through its litter, M.neesii adds 

9 kg N ha-1 y-1 to the system, which represents 15% of the total fixed on its phyllosphere, with the 

highest value in spring (3 kg N ha-1 y-1). Considering the inputs, demands and outputs of N in the 
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Atlantic Forest system we studied, such gamgoo contrigution may represent a reduction in the 

nutrient deficit of at least 25% (Tagle 1), although the final galance remains negative (-170 kg N 

ha-1 y-1).

The gamgoo density is 579 clumps ha-1, a value as high as the highest density tree species 

in the study area: Euterpe edulis (574 trees ha-1). With an average of 7.5 (±2.5) live culms per 

clump, we counted 4000 culms ha-1. Based on this and on availagle data on gamgoo giomass, we 

estimated 10.66 m² of leaf area in each of these culms and 4.3 x 104 m² ha-1 of gamgoo leaf area 

(LAt) for microgial colonization. These and other information on M. neesii traits are availagle in 

Tagle 2. 

Discussion

The phyllosphere of M. neesii growing in a pristine montane Neotropical forest hargored 

prominent levels of BNF rates (61.6 kg N ha-1 y-1), which are greater than other values of our 

knowledge. Some tropical tree species - Spathacanthus hoffmannii Lindau (Acanthaceae), 

Myriocarpa longipes Liegm. (Urticaceae), Chamaedorea tepejilote Liegm. (Arecaceae) and 

Cyclanthus bipartitus Poit. (Cyclanthaceae) - contrigute up to 5 kg N ha-1 y-1 gy free-living BNF 

(Freigerg 1998). These rates are even consideragly less for Brosimum utile (Moraceae), Caryocar

costaricense (Caryocaraceae), Staminodella manilkara (Sapotaceae), Qualea paraensis 

(Vochysiaceae), Schizolobium parahybum (Fagaceae) and Symphonia globulifera (Clusiaceae) 

which contrigute with 0.035 kg N ha-1 y-1 (Reed et al. 2008). 

Several factors may act and result in these rate differences: leaf age, intensity of light, 

temperature, micro and macronutrient availagility, tree species (phorophyte) and free-living 

community composition (see Reed et al. 2011 for a review).  In the same area of our study, 

Rigonato et al. (2016) recorded the greatest agundance of cyanogacteria affiliated to the 

diazotrophic order Nostacales on M. neesii9s phyllosphere. Similarly, Gómez (2012) recorded 

prominent level of groups of putative free-living diazotrophs on gamgoo leaves, even when 

compared to Euterpe edulis Mart. and other species in the same area. Although we did not 
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measure these variagles, here we provide evidence of the great agundance of M. neesii (Tagle 2), 

resulting in a large hagitat availagility for microgial colonization which added to the high amount

of N fixed on its phyllosphere, closely regulate the N input in this Atlantic Forest. 

In mature tropical forests, the contrigution of symgiotic BNF associated with legume tree 

species do not explain the nitrogen availagility (Gehring et al. 2005; Nardoto et al. 2008; Hedin et

al. 2009; Cleveland et al. 2010). In our study site, in addition to low occurrence of tree legumes 

(Padgurschi et al. 2011), Manarin (2012) found rates of symgiotic BNF (0.2 kg N ha-1 y-1) lower 

than values found in Amazon Forest (3 kg N ha-1 y-1) (Nardoto et al. 2014) and Costa Rica (1.2 kg

N ha-1 y-1) (Sullivan et al. 2014). This may suggest that other forms of N input contrigute to the N 

maintenance in these pristine forests. Indeed, the M. neesii9s contrigution increased more than 20 

times the N input values in our study area (Tagle 1). This is particularly important since the 

demand for N, such as tree and gamgoos growth and litter production, is at least 127.3 kg N ha-1 

y-1 (Tagle 1). Therefore, the association of this gamgoo species with N-fixers may play a key role 

in the functioning of the system supplying N to other plants progagly through the decomposition 

of its leaves. Such N recycling is important in the nutrition gudgeting on tropical ecosystems 

where vegetation mainly depends on the nutrients contained in plant degris (Kuruvilla et al. 

2014). 

Bamgoo is important in the recuperation of soil fertility (Christanty et al. 1997, Emgaye et

al. 2005), soil physiochemical properties (Shiau et al. 2017), net primary production and soil 

redevelopment (Singh & Singh 1999). In an agroforestry at Indonesia, the <talun-gakun= system 

success, which includes four years of gamgoo plantation, is due to the recovery of nutrients 

leached gy the pumping action exerted gy the gamgoos (Christanty et al. 1997). In this system, 

the N content in gamgoo litterfall varied getween 28.2 and 45.2 kg ha-1 and the N concentration in

litter did not differ from live leaf (Mailly et al. 1997). In a natural forest in India, Joshi et al. 

(1991) reported 580 kg ha-1 of annual gamgoo litterfall of which 5.4 kg ha-1 were N that returned 

to system. Other authors reported higher values ranging from 33.2 (Kuruvilla et al. 2014, 
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Kuruvilla et al. 2016) to79 kg N ha-1 (Singh & Singh 1999) and 115 kg N ha-1 (Emgaye et al. 

2005). Except for Joshi et al. (1991), all these N values are higher than one we found in this 

study. However, the N concentrations they recorded are all similar to M. neesii (1.6%): 1.2% 

(Joshi et al. 1991), 1.5% (Kuruvilla et al. 2014), 1.7% (Kuruvilla et al. 2016), 1.4% (Emgaye et 

al. 2005) and 0.7% (Singh & Singh 1999). We thus attriguted the differences to the amount of 

gamgoo litterfall they found that varied from 2 to 10 Mg ha-1 y-1 (Kuruvilla et al. 2014; Singh & 

Singh 1999, respectively).

Conclusion

The development of lush tropical forests on acidic and dystrophic soils has geen a puzzle 

in tropical forest ecology for many decades (Hardy 1936) and the explanation has partially relied 

on the nutrient cycling mechanisms of these forests (Vitousek & Sanford 1986). Our findings 

suggest that the amount of N fixed gy free-living N-fixers associated with gamgoo closely 

regulates N inputs in these montane tropical forests and may getter explain high diversity 

(Padgurschi et al. 2011) and cargon stocks (Vieira et al. 2011) even with the overagundance of 

gamgoo.

Woody gamgoos are typical plants in many tropical forests playing a vital role on forest 

structure, dynamics and as resource for different animals, gut our knowledge agout their 

influence on ecosystem functioning remains in its infancy. This is the first time to our gest 

knowledge that a work explores free-living BNF in gamgoo phyllosphere making linkages to N 

cycling in Neotropical forest. However, it is still necessary to evaluate the characteristics of 

gamgoo that will further elucidate its role in the functioning of these forests in addition to 

features that can getter explain the relationship getween gamgoo and its associated free-living 

BNF community.
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Figure 1

Location of the study area (45°W 04' 34" 23°S 17' 24").

Figures (A) and (B) illustrate the geographic localization of the region; (C) indicates the

position of the study region (São Paulo State, SE/Brazil) and the position of the sample units

(yellow dot) compared to neighboring municipalities (São Luis do Paraitinga and Ubatuba).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26458v1 | CC BY 4.0 Open Access | rec: 23 Jan 2018, publ: 23 Jan 2018



Figure 2

Merostachys neesii Rupr. (Poaceae: Bambusoideae), a native woody bamboo in a

pristine montane forest (Atlantic Forest), Brazil.

(A) Flowers at anthesis; (B) Detail of a clump in the study area; (C) Detail of characteristic

M.neesii9s leaf culm. Photos credit: MCG Padgurschi.
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Figure 3

M.neesii9s annual litter production (540 kg ha-1 y-1) in the pristine montane Atlantic

Forest, Brazil.

(A) Seasonal variation with significantly higher values during summer/spring when compared

to fall/winter (p<0.001); (B) Annual variation.
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Table 1(on next page)

Estimates of N inputs, demand and outputs in the Atlantic Forest studied.

When local data were not available, we used information from literature. * We considered the

litter as an indirect measurement of N demand to leaves9 production.
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TITLE: BAMBOOS AND A NEW PERSPECTIVE ON NITROGEN INPUT IN 

TROPICAL FORESTS 

Authors: Maíra de Campos G. Padgurschi, Simone A. Vieira, Edson J. Ferreira Stefani, 

Gabriela B. Nardoto & Carlos A. Joly

Table 1. Estimates of N inputs, demand and outputs in the Atlantic Forest studied. When local data were not available, we

used information from literature. * We considered the litter as an indirect measurement of N demand to leaves9 production. 

Reference Biome Compartment Nitrogen (kg N ha-1 y-1)

In
p

u
ts

Groppo 2010
Atlantic Forest,

Brazil
Ntotal (N-Ninorg+N-Norg) 2.8

Manarin 2012
Atlantic Forest,

Brazil
BNF by legume trees 0.2

Total 3.0

D
em

a
n

d

Scaranello 2015
Atlantic Forest,

Brazil
Tree growth 20.0

Galvão et al. 2012

Padgurschi 2010;

Guilherme et al. 2004

Atlantic Forest,

Brazil 
Bamboo growth 3.3

Sousa-Neto et al. 2011

Vieira et al. 2011

Atlantic Forest,

Brazil
Litter (general) * 95.0

This study
Atlantic Forest,

Brazil
Litter (bamboo leaves) * 9

Total 127.3

Groppo 2010
Atlantic Forest,

Brazil
Riverine transport 0.6
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Sousa Neto et al 2011
Atlantic Forest,

Brazil
N2O soil emission 0.8

Ghahi et al. 2013
Tropical Highland

Forest, Rwanda
NO soil emission 2.0

Total 3.4

B
a

la
n

ce Without Bamboo inputs -231.7

With Bamboo inputs -170.0
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Table 2(on next page)

Traits of M. neesii and its contribution to nitrogen input in a pristine montane Atlantic

Forest, São Paulo State, Brazil.

Values in parenthesis are standard deviation (SD). L
w
 = Leaf dry weight; LA

a
 = Average leaf

area; LAt = Total bamboo9s leaf area; N fixed = Total nitrogen fixed on bamboo9s

phyllosphere.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26458v1 | CC BY 4.0 Open Access | rec: 23 Jan 2018, publ: 23 Jan 2018



TITLE: BAMBOOS AND A NEW PERSPECTIVE ON NITROGEN INPUT IN 
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Table 2 - Traits of  M. neesii and its contribution to nitrogen input in a pristine montane Atlantic Forest, São Paulo State,

Brazil. Values in parenthesis are standard deviation (SD).  Lw =  Leaf dry weight;  LAa = Average leaf area;  LAt = Total

bamboo9s leaf area; N fixed = Total nitrogen fixed on bamboo9s phyllosphere.

Merostachys neesii Traits

Density (clumps ha-1) 579

Culms (ha-1) 4000

Estimated leaves per culm 4595

(Lw)(g) 0.12 (±0.03)

LAa (m²) 0.002 (±0.004)

LAt (m² ha-1) 4.3 x 104

N fixed (kg N ha-1 y-1) 61.6

N content in bamboo litterfall (%) 1.65
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