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Abstract. In modern as well as ancient ciphers of public key cryptography, substitution boxes find a permanent seat. Generation 

and cryptanalysis of 4-bit as well as 8-bit crypto S-boxes is of utmost importance in modern cryptography. In this paper, a 

detailed review of cryptographic properties of S-boxes has been illustrated. The generation of crypto S-boxes with 4-bit as well as 

8-bit Boolean functions (BFs) and polynomials over Galois field GF(pq) has also been of keen interest of this paper. The detailed 

analysis and comparison of generated 4-bit and 8-bit S-boxes with 4-bit as well as 8-bit S-boxes of Data Encryption Standard 

(DES) and Advance Encryption Standard (AES) respectively, has incorporated with example. Detailed analysis of generated S-

boxes claims a better result than DES and AES in view of security of crypto S-boxes. 
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1. Introduction. Substitution box or S-box is of utmost importance in block ciphers of public key cryptography from the initial 

days. A 4-bit S-box has been defined as a box of (24 =) 16 elements varies from 0 to F in hex, arranged in a random manner as 

used in Data Encryption Standard or DES [AT90][HF71][NT77][NT99]. Similarly for 8 bit S-box, number of elements are 28 or 

256 those varies from 0 to 255 as used in Advance Encryption Standard or AES [DR00][VM95]. So the construction of S-boxes 

is a major issue in cryptology from initial days. Use of irreducible polynomials to construct 8-bit S-boxes had already been 

adopted by crypto community. But the study of IPs has been limited to almost binary Galois field GF(2q) as used in AES S-boxes 

[DR00][VM95]. So it is important to study 4-bit BFs, 8-bit BFs and polynomials over Galois Field GF(pq) where p>2 in public 

key cryptography. A brief literature study on polynomials has been elaborated in sec.2.  
  A 4-bit Boolean Function (BF) gives 1-bit output for 4 input bits [AT90] and represented in the form of a 16-bit output 

(column) vector. The truth table of a 4-bit BF has been represented by a 16-bit output vector each of whose bit is an output bit 

corresponding to 16 possibilities of 4-bit sequential inputs from ‘0000’ to ‘1111’. The 16 rows of the 4-bit sequential inputs, each 

bit at the same column position comprises of 16 bits and thereby four 16-bit columns provide four 4-bit input vectors which are 

common for all 4-bit BFs. Since there are 16 output bits so there are 216 (=65536) different possibilities whose decimal equivalent 

vary between 0 and 65535 [AT90]. Hence, 4-bit BFs have four 16-bit input vectors and 65536 possible 16-bit output vectors. 

Where an 8-bit BF gives 1-bit output for 8 input bits [DR00] and represented in the form of a 256-bit output (column) vector. The 

truth table of a 8-bit BF is represented by a 256-bit output vector each of whose bit is an output bit corresponding to 256 

possibilities of 8-bit sequential inputs from ‘00000000’ to ‘11111111’. The 256 rows of the 8-bit sequential inputs, each bit at the 

same column position comprises of 256 bits and thereby eight 256-bit columns provide eight 8-bit input vectors which are 

common for all 8-bit BFs. The 256 output bits, there are 2256 different possibilities whose decimal equivalent vary between 0 and 

2256-1 [VM95]. Hence, 8-bit BFs have eight 256 bit long 8-bit input vectors and 2256 possible 256-bit output vectors. Hence for 

generation and security analysis of 4-bit or 8-bit S-boxes it is an urgent need to study cryptographic properties of S-boxes as well 

as security of S-boxes with 4-bit or 8-bit BFs. In other words a 4-bit S-box can be represented by a four valued 4-bit BF. If the 1st 

bit of the 4 output bits is taken sequentially for each element of the 16 elements of an S-box, one gets the 1st BF; 2nd sequence of 

output bit, the 2nd BF; 3rd sequence of output bit, the 3rd BF and 4th sequence of output bit, the 4th BF [AT90] respectively. Some 

cryptographic properties and security analysis of 4-bit S-boxes such as Output Bit Independence Criterion (BIC) of 4-bit S-boxes, 

SAC of 4-bit S-boxes, Higher order SAC of 4-bit S-boxes, Extended SAC of 4-bit S-boxes, Linear Cryptanalysis of 4-bit S-

boxes, Differential Cryptanalysis of 4-bit S-boxes, and Differential Cryptanalysis with 4-bit BFs of 4-bit S-boxes as well as 

Linear Approximation Analysis of 4-bit S-boxes has been reported below in brief. 

  A 4-bit S-box consists of four 4-bit BFs. In Output Bit Independence Criterion or BIC the difference or xored BFs of all 

two possible 4-bit BFs of the concerned S-box has been taken under consideration. If all 6 difference 4-bit BFs have been 

balanced then the criterion has been satisfied for the concerned S-box. Since all 6 difference 4-bit BFs have been balanced so the 

prediction of a bit value to be one or zero is in at most uncertainty [AT90]. A brief review of BIC of 4-bit as well as 8-bit S-boxes 

has been illustrated in subsec.3.1of sec 3. 

In Strict Avalanche Criterion, 4 IPVs of a 4-bit BF has been complemented one at a time. If in complemented four 4-bit 

BFs 8 bit values has been changed and 8 bit values remains same then the 4-bit BF has been said to satisfy Strict Avalanche 

Criterion of 4-bit BFs [AT90][CA90]. Complementing 4th IPV means interchanging each distinct 8 bit halves of a 4-bit Output 

BF, whereas complementing 3rd IPV means interchanging each distinct 4 bit halves of each distinct 8 bit halves, whereas 

complementing 2nd IPV means interchanging each distinct 2 bit halves of each distinct 4 bit halves of each distinct 8 bit halves  

and  complementing 1st IPV means interchanging each bit of all distinct 2-bit halves of a 16 bit long 4-bit BF. In this paper this 

shifting property has been used to construct an algorithm of SAC of 4-bit BFs. Another new algorithm with flip of index bits has 

also been introduced in this paper. If all four 4-bit BFs of a 4-bit S-box satisfy SAC for 4-bit BFs then the concerned S-box has 
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been said to satisfy SAC of 4-bit S-boxes [AT90][CA90]. A detailed Review of old algorithm and new algorithms of SAC has 

been described in subsec.3.2 of section 3.  

  In Higher Order Strict Avalanche Criterion (HO-SAC) of 4-bit BFs four IPVs of a 4-bit S-box have been 

complemented two or three at a time [BS96]. If in complemented ten 4-bit BFs 8 bit values has been changed and 8 bit values 

remains same then the 4-bit BF has been said to satisfy HO-SAC of 4-bit BFs. A detailed review of old as well as two new 

algorithms with previous shift method and flip of index bits method has been introduced in this paper in subsec.3.3. of sec.3. In 

this Paper a detailed review of a new algorithm entitled Extended HO-SAC has been introduced in which four IPVs have been 

complemented at a time. An Analogy of Extended HO-SAC and Differential Cryptanalysis of 4-bit S-boxes have also been 

elaborated in subsec.3.3. of section.3.  

In Differential Cryptanalysis of 4-bit crypto S-boxes the 16 distant input S-boxes have been obtained by xor operation 

with each of 16 input differences varies from 0 to F in hex to all 16 elements of input S-box one at a time. The 16 distant S-boxes 

have been obtained by shuffling the elements of the original S-box in a certain order in which the elements of the input S-boxes 

have been shuffled in concerned distant input S-boxes. The 16 elements of each S-box and the elements in corresponding position 

of corresponding distant S-box has been xored to obtain the Difference S-box. The Difference S-box may or may not be a Crypto 

S-box since it may not have all unique and distinct elements in it. The count of each element from 0 to F in Difference S-box 

have been noted and put in Difference Distribution Table (DDT) for security analysis of the S-box [HH96][HH02]. The concept 

has been reviewed in detail in subsec.3.4 of sec. 3.  

In this paper a review of the new algorithm using 4-bit BFs for Differential Cryptanalysis of 4-bit crypto S-boxes have 

been reviewed. An input S-box can be decomposed into four 4-bit Input Vectors (IPVs) with Decimal Equivalents 255 for 4th 

IPV, 3855 for 3rd IPV, 13107 for 2nd IPV, and 21845 for 1st IPV respectively. Now we complement all IPVs one, two, three and 

four at a time to obtain 16 4-bit Distant input S-boxes. Each of four Output BFs is shifted according to the Shift of four IPVs of 

input S-boxes to form four IPVs of Distant input S-boxes to obtain Distant S-boxes. The four 4-bit output BFs of S-boxes are 

xored bitwise with four 4-bit BFs of Distant S-boxes to obtain four 4-bit Difference BFs. For 16 Distant Output S-boxes there are 

64 Difference BFs. Difference BFs are checked for balanced-ness i.e. for at most uncertainty. The Table in which the balanced-

nesses of 64 Difference BFs have been noted has been called as Differential Analysis Table (DAT). The Theory has been 

elaborated in subsec. 3.5 of sec.3. 

In Linear Cryptanalysis of 4-bit crypto S-boxes, every 4-bit linear relations have been tested for a particular 4-bit 

crypto S-box. The presence of each 4-bit unique linear relation is checked by satisfaction of each of them for all 16, 4-bit unique 

input bit patterns and corresponding 4-bit output bit patterns, generated from the index of each element and each element 

respectively of that particular crypto S-box. If they are satisfied 8 times out of 16 operations for all 4-bit unique input bit patterns 

and corresponding 4-bit output bit patterns, then the existence of the 4-bit linear equation is at a stake. The probability of 

presence and absence of a 4-bit linear relation both are (= 8/16)  ½. If a 4-bit linear equation is satisfied 0 times then it can be 

concluded that the given 4-bit linear relation is absent for that particular 4-bit crypto S-box. If a 4-bit linear equation is satisfied 

16 times then it can also be concluded that the given 4-bit linear relation is present for that particular 4-bit crypto S-box. In both 

the cases full information is adverted to the cryptanalysts. The concept of probability bias was introduced to predict the 

randomization ability of that 4-bit S-box from the probability of presence or absence of unique 4-bit linear relations. The result is 

better for cryptanalysts if the probability of presence or absences of unique 4-bit linear equations are far away from ½ or near to 0 

or 1. If the probabilities of presence or absence of all unique 4-bit linear relations are ½ or close to ½, then the 4-bit crypto S-box 

has been said to be linear cryptanalysis immune, since the existence of maximum 4-bit linear relations for that 4-bit crypto S-box 

is hard to predict [HH96][HH02]. Heys also introduced the concept of Linear Approximation Table (LAT) in which the numbers 

of times, each 4-bit unique linear relation have been satisfied for all 16, unique 4-bit input bit patterns and corresponding 4-bit 

output bit patterns of a crypto S-box have been noted. The result is better for a cryptanalysts if the numbers of 8s in the table are 

less. If numbers of 8s are much more than the other numbers in the table then the 4-bit crypto S-box has been said to be more 

linear cryptanalysis immune [HH96][HH02].  

In another look an input S-box can be decomposed into four 4-bit Input Vectors (IPVs) with Decimal Equivalents 255 

for 4th IPV, 3855 for 3rd IPV, 13107 for 2nd IPV, and 21845 for 1st IPV respectively. The S-box can also be decomposed into 4, 

4-bit Output BFs (OPBFs). Each IPV can be denoted as a input variable of a linear relation and OPBF as a output variable and 

‘+’ as xor operation. Linear relations have been checked for satisfaction and 16-bit output variables (OPVs) due to linear relations 

have been checked for balanced-ness. Balanced OPVs indicates, out of 16 bits of IPVs and OPBFs, 8 bits satisfies the linear 

relation and 8 bits is out of satisfaction, i.e. best uncertainty. 256 4-bit linear relations have been operated on 4, 16-bit IPVs and 

4, 16-bit OPBFs and 256 OPVs have been generated. The count of number of 1s in OPVs have been put in Linear Approximation 

Table or LAT. Better the number of 8s in LAT, better the S-box security[HH96][HH02]. The concept has been reviewed in brief 

in subsec. 3.6. of sec.3.  

In this paper a detailed review of a new technique to find the existing Linear Relations or Linear Approximations for a 

particular 4-bit S-box has been reviewed. If the nonlinear part of the ANF equation of a 4-bit output BF is absent or calculated to 

be 0 then the equation is termed as a Linear Relation or Approximation. Searching for number of existing linear relations through 

this method is ended up with number of existing linear relations. I.e. the goal to conclude the security of a 4-bit crypto S-box has 

been attended in a very lucid manner by this method. The method has been reviewed in subsec.3.7. of sec.3. 

Polynomials over Finite field or Galois field GF(pq) have been of utmost importance in Public Key Cryptography 

[BS96]. The polynomials over Galois field GF(pq) with degree q have been termed as Basic Polynomials or BPs over Galois field 

GF(pq) and Polynomials with degree <q have been termed as Elemental Polynomials or EPs over Galois field GF(pq) [SJ15]. The 
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EPs over Galois field GF(pq) with only constant terms have been termed as Constant Polynomials or CPs over Galois field 

GF(pq). The BPs over Finite field or Galois field GF(pq) that cannot be factored into at least two non-constant EPs have been 

termed as Irreducible polynomials  or IPs over Finite field or Galois field GF(pq) and the rest have been termed as Reducible 

polynomials or RPs over Finite field or Galois field GF(pq) [SJ15]. The polynomials over Galois field GF(pq) with coefficient of 

the highest degree term as 1 have been termed as monic polynomials over Galois field GF(pq) and rest have been termed as non-

monic Polynomials over Galois field GF(pq) [SJ15].  

q bit crypto Substitution box or S-box have 2q elements in an array where each element is unique and distinct and 

arranged in a random fashion varies from 0 to 2q. Polynomials over Galois field GF(pq) have been termed as binary polynomials 

if p = 2. The binary number that has been constructed with binary coefficients of all q values with q = 0 at LSB and q = q at MSB  

has been termed as binary Coefficient Number or BCN of q+1 bits. The Binary Coefficient Number or BCN over Galois field 

GF(pq) has been similar with log 2 
q+1 bit BFs. The log 2 

q+1 bit S-boxes have been generated using log 2 
q+1 bit BCNs. In this paper 

crypto 4 and 8 bit S-boxes have been generated using BCNs and the procedure has been continued as a future scope to generate 

16 and 32 bit S-boxes. The non-repeated coefficients of BPs over Galois field GF(pq), where p = 2 (log 
2
 q+1) and q = p-1 have been 

used to generate log 2 
q+1 bit S-boxes. In this paper proper 4 and 8 bit S-boxes have been generated using BCNs and the procedure 

has been continued as a future scope to generate 16 and 32 bit S-boxes. In this paper polynomials over Galois Field GF(pq) and 

roll of IPs to construct substitution boxes have been reviewed in subsec. 4.1 and respectively of section.4. The generation of 4 

and 8 bit S-boxes using BCNs have been elaborated in subsec 4.2 of section 4.. The generation of 4-bit and 8-bit S-boxes with 

coefficients of non-binary Galois Field polynomials has been depicted in subsec.4.3 of section 4. The cryptographic and security 

analysis of 32 DES 4-bit S-boxes has been given in subsec.4.4 of sec.4. Detailed cryptographic and security analysis of generated 

10 4-bit S-boxes with discussed crypto related cryptographic properties and security criterion have also been given in subsec.4.4. 

of sec.4. Results have been discussed in Result and Discussion section in subsec.4.5 of sec.4.    

Concluding remarks, Acknowledgement and Reference has been given in section 5, 6 and 7 respectively.  

2. Literature Survey. In this section an exhaustive relevant literature survey with their specific references has been introduced 

to crypto literature on IPs and primitive polynomials. In early Twentieth Century Radolf Church initiated the search for 

irreducible polynomials over Galois Field GF(pq) for p = 2, 3, 5 and 7 and for p = 2, q = 1 through 11, for p =3, q = 1 through 7, 

for p = 5, q = 1 through 4 and for p = 7, q = 1 through 3 respectively. A manual polynomial multiplication among respected EPs 

gives RPs in the said Galois field. All RPs have been cancelled from the list of BPs to give IPs over the said Galois field GF(pq) 

[RC35]. Later The necessary condition for a BP to be an IPs had been generalized to Even 2 characteristics. It had also been 

applied to RPs and gives Irreducible factors mod 2 [RS62]. Next to it Elementary Techniques to compute over finite Fields or 

Galois Field GF(pq) had been descried with proper modifications [TD63]. In next the factorization of Polynomials over Galois 

Field GF(pq) had been elaborated [EB67]. Later appropriate coding techniques of Polynomials over Galois Field GF(pq) had been 

illustrated with example [TK68]. The previous idea of factorizing Polynomials over Galois Field GF(pq) [EB67] had also been 

extended to Large value of P or Large Finite fields [EB70]. Later Few Probabilistic Algorithms to find IPs over Galois Field 

GF(pq) for degree q had been elaborated with example [MR80]. Later Factorization of multivariate polynomials over Galois 

fields GF(p) had also been introduced to mathematics community [AL85]. With that the separation of irreducible factors of BPs 

[EB67] had also been introduced later [RM87]. Next to it the factorization of BPs with Generalized Reimann Hypothesis (GRH) 

had also been elaborated [LR88]. Later a Probabilistic Algorithm to find irreducible factors of Basic bivariate Polynomials over 

Galois Field GF(pq) had also been illustrated [DW90]. Later the conjectural Deterministic algorithm to find primitive elements 

and relevant primitive polynomials over binary Galois Field GF(2) had been introduced [MR90]. Some new algorithms to find 

IPs over Galois Field GF(p) had also been introduced at the same time [VS90]. Another use of Generalized Reimann Hypothesis 

(GRH) to determine irreducible factors in a deterministic manner and also for multiplicative subgroups had been introduced later 

[LR92]. The table binary equivalents of binary primitive polynomials had been illustrated in literature [MZ94]. The method to 

find roots of primitive polynomials over binary Galois field GF(2) had been introduced to mathematical community [IS96]. A 

method to search for IPs in a Random manner and factorization of BPs or to find irreducible factors of BPs in a random fashion 

had been introduced later [PX96]. After that a new variant of Rabin's algorithm [MR80] had been introduced with probabilistic 

analysis of BPs with no irreducible factors [GP97]. Later a factorization of univariate Polynomials over Galois Field GF(p) in sub 

quadratic execution time had also been notified [EV98]. Later a deterministic algorithm to factorize IPs over one variable had 

also been introduced [EJ01]. An algorithm to factorize bivariate polynomials over Galois Field GF(p) with hensel lifting had also 

been notified [GA02]. Next to it an algorithm had also been introduced to find factor of Irreducible and almost primitive 

polynomials over Galois Field GF(2) [BZ03]. Later a deterministic algorithm to factorize polynomials over Galois Field GF(p) to 

distinct degree factors had also been notified [SE04]. A detailed study of multiples and products of univariate primitive 

polynomials over binary Galois Field GF(2) had also been done [SM05]. Later algorithm to find optimal IPs over extended 

binary Galois Field GF(2m) [MS07] and a deterministic algorithm to determine Pascal Polynomials over Galois Field GF(2) 

[CF08] had been added to literature. Later the search of IPs and primitive polynomials over binary Galois Field GF(2) had also 

been done successfully [AA09]. At the same time the square free polynomials had also been factorized [CR09] where a work on 

divisibility of trinomials by IPs over binary Galois Field GF(2) [RW09] had also been notified. Later a probabilistic algorithm to 

factor polynomials over finite fields had been introduced [SM11]. An explicit factorization to obtain irreducible factors to obtain 

for cyclotomic polynomials over Galois Field GF(pq) had also been reported later [LQ12]. A fast randomized algorithm to obtain 

IPs over a certain Galois Field GF(pq) had been notified [JC13]. A deterministic algorithm to obtain factors of a polynomial over 

Galois field GF(pq) had also been notified at the same time [DM14]. A review of construction of IPs over finite fields and 

algorithms to Factor polynomials over finite fields had been reported to literature [GH14][NC14]. An algorithm to search for 

primitive polynomials had also been notified at the same time [WJ14]. The residue of division of BPs by IPs must be 1 and this 
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reported to literature a bit later [SJ15]. The IPs with several coefficients of different categories had been illustrated in literature a 

bit later [HJ16]. The use of zeta function to factor polynomials over finite fields had been notified later on [BP17] At last Integer 

polynomials had also been described with examples [EWNN]. 

3. Review of crypto relevant properties of 4-bit and 8-bit Crypto S-boxes. In this section crypto relevant property of 

4-bit BFs as well as 4-bit S-boxes has been reviewed. The subsec.3.1 has been dedicated to (Output) Bit Independence Criterion. 

In subsec. 3.2. Strict Avalanche Criterion (SAC) of 4-bit BFs and 4-bit S-boxes with new methods has been reviewed. The 

Higher order SAC or HO-SAC has been elaborated in subsec.3.3. A review of Differential Cryptanalysis of 4-bit S-boxes, 

Differential Cryptanalysis of 4-bit S-boxes with 4-bit BFs, Linear Cryptanalysis of 4-bit S-boxes and Linear Cryptanalysis of 4-

bit S-boxes with 4-bit BFs or Linear Approximation Analysis has been reviewed in subsec.3.4, subsec.3.5, subsec.3.6, and 

subsec.3.7 respectively. 

3.1 A Brief Review of (Output) Bit Independence Criterion (BIC) of 4, 8 bit S-boxes. A short description of a 4-bit 

crypto S-box has been given in subsec.3.1.1 of sec 3. The four Input Vectors (IPVs) and four Output Boolean Functions (OPBFs) 

and the derivation of four IPVs and four OPBFs from elements of Index of 4-bit crypto S-box and elements of 4-bit crypto S-box 

respectively have been illustrated in subsec.3.2.2.of sec.3. The (Output) Bit Independence Criterion (BIC) of 4-bit S-box has been 

described with example and Pseudo code in subsec.3.3. of sec.3.  

3.1.1 4-bit Crypto S-boxes. A 4-bit Crypto S-box can be written as follows in Table.1, where the each element of the first 

row of Table.1, entitled as index, have been the position of each element of the crypto S-box within the given crypto S-box and 

the elements of the 2nd row, and entitled as S-box have been the elements of the given Substitution box. It can be concluded that 

the 1st row is fixed for all possible crypto S-boxes. The values of each element of the 1st row are distinct, unique and vary 

between 0 to F in hex. The values of the each element of the 2nd row of a crypto S-box are also distinct and unique and also vary 

between 0 to F in hex. The values of the elements of the fixed 1st row are sequential and monotonically increasing where for the 

2nd row they can be sequential or partly sequential or non-sequential. Here the given Substitution box is the 1st 4-bit S-box of the 

1st S-box out of 8 of Data Encryption Standard [AT90][NT77][NT99].  

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

Table.1. 4-bit crypto S-box. 

3.1.2 Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit 

crypto S-box and the element itself has been a hexadecimal number and that can be converted into a 4-bit bit sequence that have 

been given in column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2 through 5 

and row 7 through A of each column from 1 through G of Table.2. shows the 4-bit bit sequences of the corresponding 

hexadecimal numbers of the index of each element of the given crypto S-box and each element of the crypto S-box itself. Each 

row from 2 through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a 16 bit long input 

vectors (IPVs) and 4-bit output BFs (OPBFs) respectively. column 1 through G of Row 2 has been termed as 4th IPV, Row 3 has 

been termed as 3rd IPV, Row 4 has been termed as 2nd IPV and Row 5 has been termed as 1st IPV whereas column 1 through G of 

Row 7 has been termed as 4th OPBF, Row 8 has been termed as 3rd OPBF, Row 9 has been termed as 2nd OPBF and Row A has 

been termed as 1st OPBF [AT90]. The decimal equivalent of each IPV and OPBF has been noted at column H of respective rows. 

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G H. Decimal 

Equivalent 1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255 

3 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855 

4 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107 

5 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845 

6 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7  

7 OPBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 42836 

8 OPBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 58425 

9 OPBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 36577 

A OPBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 13965 

 

   Table.2. Decomposition of 4-bit input S-box and given S-box (1st 4-bit S-box of 1st S-box out of 8 of DES) to 4-bit BFs. 

 

3.1.3. (Output) Bit Independence Criterion (BIC) of 4, 8-bit S-boxes. If all possible or total six xored 4-bit BFs or 

DBFs (Derived BFs) have been balanced for a particular 4-bit crypto S-box or 30 xored 8-bit DBFs have been balanced for a 

particular 8-bit crypto-S-box then the said 4-bit or 8-bit S-box has been said to satisfy output BIC of S-boxes [ST86][AT90]. The 

example of BIC of 4-bit S-boxes has been given in Table.3. below and Pseudo code with time complexity analysis have been 

given in subsec. 3.1.3.1 , 
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Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

2 OPBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 

3 OPBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 

4 OPBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 

5 OPBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 

6 DBF4,1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 

7 DBF4,2 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 

8 DBF4,3 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 

9 DBF3,2 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 

A DBF3,1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 

B DBF2,1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 

Table.3. BIC Analysis of 1
st
 4-bit S-box out of 4 of 1

st
 S-box of DES. 

 
In Table.3. each column from column 1 through G of row 1 represents each element of 1st 4-bit S-box of Data Encryption 

Standard or DES. Column 1 through G of each row 2 through 5 has been each of four OPBFs, OPBF4, OPBF3, OPBF2, OPBF1 

respectively. Column 1 through G of each row 6 through B has been each of six DBFs, DBF4,3, DBF4,2, DBF4,1, DBF3,2, 

DBF3,1 and DBF2,1 respectively. The analysis shows that 6 DBFs have been balanced i.e. consists of 8 0s and 8 1s, so at most 

uncertainty to determine the occurrence of 0 and 1 value in all four OPBFs. So the given 4-bit S-box has been said to satisfy 

(Output) Bit Independence Criterion of 4-bit S-boxes. 

3.1.3.1. Pseudo Code of BIC with time complexity Analysis. 

Start. 

Step 0: int BF[4][16], DBF[16]; // The two dimensional array BF[4][16] stores each OPBF of a 4-bit crypto S-box in each row 

and array DBF[16] stores Difference BFs. 

             int i,j; // Loop Variables. 

             Int count = 0; // Variable to count number of balanced DBFs. 

// In step 1. 6 possible two OPBFs have been xored to obtain DBFs.  

Step 1: for i=0:3; // 1st OPBF selection 

                for j = 3: (i+1) // 2nd OPBF selection 

                      DBF[16] = BF[i][16]^ BF[j][16]; // Derivation of DBFs from two OPBFs 

       If (DBF == Balanced). count++; // count number of balanced DBFs. 

 End for. 

            Enf for. 

Step 2. If (count ==6) then the crypto 4-bit S-box Satisfies BIC of 4-bit S-boxes; 

            else. does not satisfy BIC of 4-bit S-boxes; 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n2) since the body contains two 

nested loops. 

3.2. A brief Review on Strict Avalanche Criterion (SAC) of 4-bit BFs and SAC of 4-bit S-boxes [AT90][CA90]. The Strict 

Avalanche Criterion or SAC of 4-bit BFs with pseudo code have been reviewed in sec. 3.2.1.and the new technique to find SAC 

of 4-bit BFs with pseudo code has been described in sec.3.2.2. and another technique of SAC of 4-bit BFs and SAC of 4-bit S-

boxes with pseudo code has also been reviewed in sec.3.2.3  

3.2.1. A brief Review on Strict Avalanche Criterion (SAC) of 4-bit BFs.  A 4-bit BF has been said to satisfy SAC of 

4-bit BFs if distances of OPBF from the complemented OPBFs (COPBFs) after complementation of four IPVs individually have 

been balanced. In Strict Avalanche Criterion of 4-bit BFs, IPV4, IPV3, IPV2 and IPV1 that have been shown in column 1 

through G of row 2, 3, 4 and 5 in Table.2, have been complemented individually one at a time. If due to said operation on OPBF 

the number of bits has been changed for change of bits in each IPV in COPBF has been 8 or half of the number of bits in a 4-bit 

BF then the OPBF has been said to satisfy SAC of 4-bit BFs. 

 IPV4, CIPV4, IPV3, CIPV3, IPV2, CIPV2, IPV1, CIPV1 have been shown in column 2 thorough H of row 1, 

3, 7, 9 , D, F, J, L respectively of table.4. The OPBFs and COPBFs due to complementation of CIPV4, CIPV3, CIPV2 and 

CIPV1 have been shown in column 2 thorough H of row 2, 4, 8, A, E, G and K, M respectively. The Difference BFs or DBFs 

more specifically, DBF4, DBF3, DBF2, DBF1 have been shown in column 2 thorough H of row 5, B, H, N respectively. Now 

change in Number of bits in COPBFs from OPBF due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 have been 12, 8, 4, 

12. So the given OPBF does not satisfy SAC of 4-bit BFs. To Satisfy SAC of 4-bit BFs change in Number of bits in four 

COPBFs from OPBFs due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 must be 8, 8, 8, 8. If four OPBFs of a 

particular crypto S-box satisfy SAC of 4-bit BFs individually then the said crypto S-box has been said to satisfy SAC of 4-bit 

crypto S-boxes. 

Pseudo Code. Let BF[16].bit0 has been a bit level array of 16 bits of a 4-bit BF out of 65536 4-bit BFs. and BF[16] has been an array of 16 

bits of a 4-bit BF. CV[16].bit0 has been a bit level array of 16 bits to store either 00FF, 0F0F, 3333, 5555 in hex. CVC[16].bit0 has been a 
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bit level array of 16 bits to store either FF00, F0F0, CCCC, AAAA in hex. Here ^ represents Bitwise Xor operation. NL represents Number 

of bits changed in Lower Halves and NU represents Number of bits changed in Upper Halves. 

Start. 

Step 0A: For 1:16 BF[16].bit0 = BF[16].   

Step 0B: For 1:16 CV[16].bit0 = 00FF, 0F0F, 3333, 5555. 

Step 0C: For 1:16 CVC[16].bit0 = FF00, F0F0, CCCC, AAAA. 

// Next five steps demonstrates the algorithm. 

Step 01: wt{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)}= N= NL3 + NU3 .  

Step 02: wt{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}= N = NL2 +NU2 .  

Step 03: wt{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}=N= NL1 +NU1 .  

Step 04: wt{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}=N= NL0 + NU0 .  

Step 05: If N=8 for Step 01, Step 02, Step 03, Step 04.  

then BF[16].bit0 Satisfies SAC. 

else BF[16].bit0 Does not Satisfies SAC. 

Stop. 

Time complexity of the algorithm has been O(n). 

3.2.2. New Method for Strict Avalanche Criterion (SAC) of 4-bit BFs. Since complement of 4th IPV means 

interchanging each distinct 8 bit halves of 16 bit long 4th IPV so the 2, 8 bit halves of OPBF has been interchanged due to 

complement of 4th IPV or CIPV4 in COPBF. Next to it since complement of 3rd IPV means interchanging each distinct 4 bit 

halves of each distinct 8 bit halves of IPV3 in CIPV3 so each distinct 4 bit halves of each distinct 8 bit halves of OPBF have been 

interchanged due to complement of IPV3 in COPBF. Now complement of 2nd IPV means interchanging each distinct 2 bit halves 

of each distinct 4 bit halves of each distinct 8 bit halves of OPBF in COPBF and complement of 1st IPV means interchanging 

each bit of each distinct 2 bit halves of 16 bit long OPBF in COPBF. 

IPV4, CIPV4, IPV3, CIPV3, IPV2, CIPV2, IPV1, CIPV1 have been shown in column 2 thorough H of row 1, 3, 7, 9 , 

D, F, J, L respectively of table.4. The OPBFs and COPBFs due to complementation of CIPV4, CIPV3, CIPV2 and CIPV1 have 

been shown in column 2 thorough H of row 2, 4, 8, A, E, G and K, M respectively. The Difference BFs or DBFs more 

specifically, DBF4, DBF3, DBF2, DBF1 have been shown in column 2 thorough H of row 5, B, H, N respectively. Now change 

in Number of bits in COPBFs from OPBF due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 have been 12, 8, 4, 12. So 

the given OPBF does not satisfy SAC of 4-bit BFs. To Satisfy SAC of 4-bit BFs change in Number of bits in COPBFs from 

OPBFs due to change of bits in CIPV4, CIPV3, CIPV2 and CIPV1 must be 8, 8, 8, 8. If four OPBFs of a particular crypto S-box 

satisfy SAC of 4-bit BFs individually then the said crypto S-box has been said to satisfy SAC of 4-bit crypto S-boxes. 

Pseudo Code.  

Start. 

Step 00:  For 1:16 BF[16].bit0 = BF[16]. // Each bit of 16 bit long OPBF has been relocated to bit level array BF[16].bit0. 

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8); // OPBF has been circularly shifted by 8 bits and complemented BF or COPBF has been 

located to bit level array CBF[16].bit0. 

Step 1B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.  

Step 1C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted. 

Step 2A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); // Each distinct 8 bit halves of OPBF has been circularly shifted by 4 

bits and complemented BF or COPBF has been located to bit level 

array CBF[16].bit0. 

Step 2B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.  

Step 2C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted. 

// In next step Each distinct 4 bit halves of each distinct 8 bit halves of OPBF has been circularly shifted by 2 bits and complemented BF or 

COPBF has been located to bit level array CBF[16].bit0. 

Step 3A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2); 

Step 3B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF.  

Step 3C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted. 

// In next step each bit of each distinct 2 bit havles have been circularly shifted by 1 bits and complemented BF or COPBF has been located 

to bit level array CBF[16].bit0. 

Step 4A: CBF[16].bit0 = (BF[2A].bit0>>1)&&(BF[2B].bit0>>1)&&(BF[2C].bit0>>1)&&(BF[2D].bit0>>1)&& 

                (BF[2E].bit0>>1)&&(BF[2F].bit0>>1)&&(BF[2G].bit0>>1)&&(BF[2H].bit0>>1); 

Step 4B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF has been obtained by xor of each bit of OPBF and COPBF. 

Step 4C: Count = IF(DBF[16].bit0==1); // Number of 1s in DBF has been counted. 

Step 05 : IF Count = 8 for Step 1C, Step 2C, Step 3C, Step 4C. BF[16] Satisfies SAC of 4-bit BFs. 

        ELSE BF[16] does not Satisfy SAC of 4-bit BFs. // Test of SAC criterion. 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

3.2.3. Review of a new method of Strict Avalanche Criterion (SAC) of 4-bit BFs and 4-bit S-boxes 

[AT90][ST86]. Each and every column of 1 through G from row 2 through 5 and row 7 through A of 4 IPVs and 4 OPBFs in 

Table.2 constitutes 16 4-bit input binary numbers and 16 4-bit output binary numbers respectively. The binary value of OPBF 
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before and after flip of 16 input binary numbers sequentially in same position 1 bit at a time has been equated. If they are equal 8 

times [discarding same occurrences] and out of equality 8 times for flip of 1 bit at a time in the same position of 16 Input binary 

numbers sequentially for four positions one by one then the 4-bit BF has been said to satisfy SAC of 4-bit BFs. 

 All elements of the given S-box in hex, Index of each element of the given S-box in hex (INH) and 4 bit binary form 

(INB) have been given in column 2 through H of row 3, 1, 2 of Table.5 respectively. Each Output BF, OPBF1, OPBF2, OPBF3, 

OPBF4 has been shown in column 2 through H of row 4, 5, 6, 7 Table.5 respectively.  

Now 16 INBs before flip and 16 INBs after flip in one bits particularly in bit position 1, 2, 3, 4 have been shown in row 

2 through H of column 1, 2, 6, 7, B, C, G, H  respectively of Table.6. The each corresponding bits of OPBF1, OPBF2, OPBF3, 

OPBF4 before and after flip have been shown in row 2 through H of column 3, 4, 8, 9, D, E, I, J respectively in Table.6. 1 in any 

position in row 2 through H of column 5, A, F, K illustrate dissimilarity in bits in corresponding positions of OPBF1, OPBF2, 

OPBF3 and OPBF4 duly before and after flip in one bits in bit positions 1, 2, 3 and 4 respectively. 

 If out of 16 positions in each row from 2 through H column of column 5, A, F, K there are 8 1s and 8 0s then the given 

BF is said to Satisfy SAC of 4-bit BFs. If all four BFs of a given 4-bit crypto S-box satisfy SAC of 4-bit BFs then the S-box has 

been said to satisfy SAC of 4-bit S-boxes. Here in Table.6.  row I shows the number of bits changed in OPBF1, OPBF2, OPBF3, 

OPBF4 before and after flip in pos. 1, pos. 2, pos. 3 and pos. 4 respectively. Since the value is not equal to 8 in at least one 

position for the given OPBF so the concerned OPBF and the given 4-bit S-box does not satisfy SAC of 4-bit BFs and SAC of 4-

bit S-boxes respectively. 

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
3 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

4 COPBF 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

5 DBF 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 

6 Number of bits changed in COPBF 12 
  

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

7 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

8 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
9 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

A COPBF 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 

B DBF 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 

C Number of bits changed in COPBF 8 
 

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

D IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

E OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
F CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

G COPBF 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 

H DBF 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 

I Number of bits changed in COPBF 4 
 

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

J IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

K OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
L CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

M COPBF 0 1 0 1 1 0 1 1 1 0 1 0 1 0 0 0 

N DBF 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 

O Number of bits changed in COPBF 12 
 

Table.4. SAC Criterion for 4-bit BFs. 
R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

1 Hex Index 

Pos INB  

0 

4321 

1 

4321 

2 

4321 

3 

4321 

4 

4321 

5 

4321 

6 

4321 

7 

4321 

8 

4321 

9 

4321 

A 

4321 

B 

4321 

C 

4321 

D 

4321 

E 

4321 

F 

4321 

2 INB 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

3 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

4 OBF1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 

5 OBF2 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 

6 OBF3 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 

7 OBF4 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 

Table.5. S-box and OBFs for SAC Test of 4-bit BFs as well as 4-bit Crypto S-boxes. 
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Col | 

Row 

Flip of 1 bit of Index at Pos. 1 Flip of 1 bit of Index at Pos. 2 Flip of 1 bit of Index at Pos. 3 Flip of 1 bit of Index at Pos. 4 

1 2 3 4 5 6 7 8 9 A B C D E F G H I J K 

1 B-Flip A-Flip 1 1’ C B-Flip A-Flip 2 2’ C B-Flip A-Flip 3 3’ C B-Flip A-Flip 4 4’ C 

2 0000 0001 1 0 1 0000 0010 1 1 0 0000 0100 1 0 1 0000 1000 1 0 1 

3 0001 0000 0 1 1 0001 0011 0 0 0 0001 0101 0 1 1 0001 1001 0 1 1 

4 0010 0011 1 0 1 0010 0000 1 1 0 0010 0110 1 1 0 0010 1010 1 0 1 

5 0011 0010 0 1 1 0011 0001 0 0 0 0011 0111 0 1 1 0011 1011 0 1 1 

6 0100 0101 0 1 1 0100 0110 0 1 1 0100 0000 0 1 1 0100 1100 0 0 0 

7 0101 0100 1 0 1 0101 0111 1 1 0 0101 0001 1 0 1 0101 1101 1 1 0 

8 0110 0111 1 1 0 0110 0100 1 0 1 0110 0010 1 1 0 0110 1110 1 0 1 

9 0111 0110 1 1 0 0111 0101 1 1 0 0111 0011 1 0 1 0111 1111 1 0 1 

A 1000 1001 0 1 1 1000 1010 0 0 0 1000 1100 0 0 0 1000 0000 0 1 1 

B 1001 1000 1 0 1 1001 1011 1 1 0 1001 1101 1 1 0 1001 0001 1 0 1 

C 1010 1011 0 1 1 1010 1000 0 0 0 1010 1110 0 0 0 1010 0010 0 1 1 

D 1011 1010 1 0 1 1011 1001 1 1 0 1011 1111 1 0 1 1011 0011 1 0 1 

E 1100 1101 0 1 1 1100 1110 0 0 0 1100 1000 0 0 0 1100 0100 0 0 0 

F 1101 1100 1 0 1 1101 1111 1 0 1 1101 1001 1 1 0 1101 0101 1 1 0 

G 1110 1111 0 0 0 1110 1100 0 0 0 1110 1010 0 0 0 1110 0110 0 1 1 

H 1111 1110 0 0 0 1111 1101 0 1 1 1111 1011 0 1 1 1111 0111 0 1 1 

I  No of Bits Changed due to Flip 12 No of Bits Changed due to Flip 4 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 12 

 

Table.6. SAC Test of 4-bit BFs and 4-Bit Crypto S-boxes. 

Pseudo Code. The flipping of bits on particular positions are made by proposing 1-bit in four ev vectors as, e0 {0001}, 

e1 {0010}, e2 {0100} and e3 {1000}. The Algorithm can be written as,  
Start. 

Step 0A: For I=0:16 For J=0:16 D[I][J] = 0; // Initializing two dimensional array D[16][16]. 

Step 0B: ev[4] ={{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}}; // Initializing ev vextor 

Step 01: For S=0:4 For I=0:16 For J=0:16 t[S][I][J] = 16bt4x[S][I][J] ^ ev[S] // Array of input index after flip. 

Step 02: For S=0:4 For I=0:16 For J=0:16 r=16bt4bf[S][I][J] ^ 16bt4bf[t[S][I][J]]; // obtain DBFs by xor operation. 

Step 04: if (r==1) D[f][v]++; // Count of 1s in DBFs 

// Evaluation of SAC criterion. 

Step 05:  IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs. 

 ELSE 4-bit BF does not Satisfy SAC. 

Step 06:  IF all four BFs Satisfy SAC of 4-bit BFs then the given S-Box Satisfies SAC of 4-bit S-Box. 

 ELSE the given S-Box does not Satisfy SAC of 4-bit S-Box. 

Stop.  

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

3.3. A brief Review of old and new methods of Higher Order SAC (HO-SAC) and Extended SAC Criterion of 4-bit 

Crypto S-boxes [CF90]. The Method and algorithm of HO-SAC of 4-bit BFs has been reviewed in subsec 3.3.1. The two new 

methods and algorithms of HO-SAC of 4-bit BFs and HO-SAC of 4-bit crypto S-boxes have been described in subsec 3.3.2. The 

new SAC criterion entitled Extended SAC criterion of 4-bit BFs and 4-bit S-boxes has been illustrated with its review and 

algorithm in subsec. 3.3.3.   

3.3.1 Review of Higher Order SAC of 4-bit BFs. If two or three IPVs have been complemented at a time and the Difference BF 

of complemented OPBFs and OPBF have been balanced for all possible 10 conditions then the OPBF has been said to satisfy 

HO-SAC of 4-bit BFs. If four OPBF of particular crypto S-box satisfy HO-SAC of 4-bit BFs individually then the concerned S-

box has been said to satisfy HO-SAC of 4-bit crypto S-boxes. The Given S-box and INB with position of each bits of it and a 

review of HO-SAC of 4-bit BFs have been illustrated in Table. 7. and Table.8. respectively.  
R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

1 Hex Index 

Pos INB  

0 

4321 

1 

4321 

2 

4321 

3 

4321 

4 

4321 

5 

4321 

6 

4321 

7 

4321 

8 

4321 

9 

4321 

A 

4321 

B 

4321 

C 

4321 

D 

4321 

E 

4321 

F 

4321 

2 INB 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

3 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

4 OPBF1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 

5 OPBF2 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 

6 OPBF3 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 

7 OPBF4 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 

Table.7. S-box and OBFs for HO-SAC Test of 4-bit BFs as well as 4-bit crypto S-boxes. 

 

R|C 8-A 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
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3 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
4 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

5 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

6 Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

7 Step 2 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 

8 COPBF 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 

9 DBF 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 

A Number of bits changed in COPBF 6 

  

R|C 8-B 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

3 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
4 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

5 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

6 Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

7 Step 2 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 

8 COPBF 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 

9 DBF 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 

A Number of bits changed in COPBF 12 

     

R|C 8-C 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

3 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
4 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

5 CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

6 Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

7 Step 2 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 

8 COPBF 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 

9 DBF 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

A Number of bits changed in COPBF 8 
 

R|C 8-D 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

2 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

3 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
4 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

5 CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

6 Step 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 

7 Step 2 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 

8 COPBF 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 

9 DBF 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 

A Number of bits changed in COPBF 8 

   

R|C 8-E 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

2 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

3 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
4 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

5 CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

6 Step 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 

7 Step 2 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 

8 COPBF 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 

9 DBF 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 
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A Number of bits changed in COPBF 12 

 

R|C 8-F 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

2 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

3 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
4 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

5 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

6 Step 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 

7 Step 2 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 

8 COPBF 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 

9 DBF 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 

A Number of bits changed in COPBF 8 

 

 

 

 

R|C 8-G 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

3 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

4 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
5 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

6 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

7 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

8 Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

  9 Step 2 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 

A Step 3 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 

B COPBF 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 

C DBF 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 

D Number of bits changed in COPBF 8 

 

R|C 8-H 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

3 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

4 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
5 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

6 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

7 CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

8 Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

  9 Step 2 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 

A Step 3 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 

B COPBF 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 

C DBF 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 

D Number of bits changed in COPBF 8 

 

R|C 8-I 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

3 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

4 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
5 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

6 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
7 CIPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

8 Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 
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  9 Step 2 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 

A Step 3 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 

B COPBF 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 

C DBF 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 

D Number of bits changed in COPBF 4 

 

R|C 8-J 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

2 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

3 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

4 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
5 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

6 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

7 CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

8 Step 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 

  9 Step 2 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 

A Step 3 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 

B COPBF 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 

C DBF 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 

D Number of bits changed in COPBF 8 

 

Table.8. Table of HO-SAC Test and Complement Method of HO-SAC Test of 4-bit BFs 

All elements of the given S-box, Index of each element of the given S-box in hex (INH) and 4 bit binary form (INB) 

with position of each bit from 1 to 4 have been given in column 2 through H of row 3, 1, 2 of Table.7 respectively. Each Output 

BF, OPBF1, OPBF2, OPBF3, OPBF4 has been shown in column 2 through H of row 4, 5, 6, 7 Table.7 respectively.  

  If 2 IPVs have been complemented at a time then the Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 2nd 

Order HO-SAC of 4-bit BFs illustrated in sub table 8-A to 8-F. If the Number of IPVs complemented at a time is 3 then the 

Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 3rd Order HO-SAC of 4-bit BFs illustrated in sub table 8-G to 8-J. 

 In 2nd Order HO-SAC, any 2 IPVs shown in column 2 through H of row 1, 2 of sub table 8-A to 8-F of Table.8 have 

been complemented at a time. The complemented IPVs or CIPVs have been shown in column 2 through H of row 4, 5 of sub 

table 8-A to 8-F of Table.8.The OPBF has been shown in column 2 through H of row 3 of sub table 8-A to 8-F of Table.8. Now 

due to complement of 1st IPV the resultant complemented OPBF has been shown in row column 2 through H of row 6 and due to 

complement of 2nd IPV at a time the resultant OPBF of the complemented OPBF have been shown in column 2 through H of row 

7 of sub table 8-A to 8-F of Table.8 respectively. The obtained complemented OPBF or COPBF and bitwise xor or Hamming 

distance (Difference BF or DBF) between OPBF and COPBF have been shown in column 2 through H of row 8, 9 of sub table 8-

A to 8-F of Table.8 respectively. The count of 1s in DBF or dissimilar bits in OPBF and COPBF due to complement of two IPVs 

at a time have been shown in sub table 8-A to 8-F of Table.8. For the given OPBF and for all 6 possible 2nd order HO-SAC tests 

the counts of 1s in DBF have been shown in row A of sub table 8-A to 8-F of Table.8 have been 8 then the given OPBF has been 

said to satisfy 2nd order HO-SAC of 4-bit BFs. But in table 8 all counts have not been equal to 8 so the given OPBF does not 

satisfy 2nd order HO-SAC of 4-bit BFs. 

 In 3rd Order HO-SAC, any 3 IPVs shown in column 2 through H of row 1, 2, 3 of sub table 8-G to 8-J of Table.8 have 

been complemented at a time. The complemented IPVs or CIPVs have been shown in column 2 through H of row 5, 6, 7 of sub 

table 8-G to 8-J of Table.8.The OPBF has been shown in column 2 through H of row 4 of sub table 8-G to 8-J of Table.8. Now 

due to complement of 1st IPV the resultant complemented OPBF has been shown in row column 2 through H of row 8 and due to 

complement of 2nd IPV at a time the resultant OPBF of the complemented OPBF have been shown in column 2 through H of row 

9 and for 3rd IPV COPBF has been shown in column 2 through H of row A of sub table 8-G to 8-J of Table.8 respectively. The 

obtained complemented OPBF or COPBF and bitwise xor or Hamming distance (Difference BF or DBF) between OPBF and 

COPBF have been shown in column 2 through H of row B, C of sub table 8-G to 8-J of Table.8 respectively. The count of 1s in 

DBF or dissimilar bits in OPBF and COPBF due to complement of three IPVs at a time have been shown in sub table 8-G to 8-J 

of Table.8. For the given OPBF and for all 4 possible 3rd order HO-SAC tests the counts of 1s in DBF have been shown in row D 

of sub table 8-G to 8-J of Table.8 have been 8 then the given OPBF has been said to satisfy 3rd order HO-SAC of 4-bit BFs. But 

in table 8 all counts have not been equal to 8 so the given OPBF does not satisfy 3rd order HO-SAC of 4-bit BFs. 

 If the given OPBF satisfy both 2nd order HO-SAC and 3rd Order HO-SAC for 4-bit BFs together then the Given OPBF 

has been said to satisfy total HO-SAC for 4-bit BFs. If Four BFs of a crypto 4-bit S-box satisfy total HO-SAC of 4bit BFs 

individually then the S-box has been said to satisfy HO-SAC of 4-bit Crypto S-boxes. 

Pseudo code. Let BF[16].bit0 has been a bit level array of 16 bits of a 4-bit BF out of 65536 4-bit BFs. and BF[16] has been an array of 16 

bits of a 4-bit BF. CV[16].bit0 has been a bit level array of 16 bits to store either 00FF, 0F0F, 3333, 5555 in hex. CVC[16].bit0 has been a 

bit level array of 16 bits to store either FF00, F0F0, CCCC, AAAA in hex. Here ^ represents Bitwise Xor operation. NL represents Number 

of bits changed in lower halves and NU represents Number of bits changed in upper halves. 
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Start. 

//Initialization of Variables. 

Step 0A: For 1:16 BF[16].bit0 = BF[16].   

Step 0B: For 1:16 CV[16].bit0 = 00FF, 0F0F, 3333, 5555. 

Step 0C: For 1:16 CVC[16].bit0 = FF00, F0F0, CCCC, AAAA. 

// Next 10 steps have been evaluated to obtain 10 complemented COPBFs and weight of DBFs  

Step 01: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}]      = N.  

Step 02: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}]    = N .  

Step 03: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 04: wt[{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}]  = N  

Step 05: wt[{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}  = N.  

Step 06: wt[{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 07: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)}  

 ^{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}]   = N.  

Step 08: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N 

Step 09: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

  ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}  

^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 10: wt[{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}  

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N. 

// Test of HO-SAC criterion. 

Step 11:  If N=8 for Step 01, to Step 15. Then BF[16].bit0 Satisfies HO-SAC of 4-bit BFs. 

ELSE BF[16].bit0 Does not Satisfies Extended HO-SAC of 4-bit BFs.. 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

3.3.2. Two new Methods of Higher Order SAC or HO-SAC of 4-bit BFs and 4-bit Crypto S-boxes.   The Shift Method to do 

HO-SAC test of 4 bit BFs has been described in section 3.3.2.1. The Flip Method to do the same test of 4-bit BFs and of 4-bit S-

boxes has been described in sec. 3.3.2.2.  

3.3.2.1 Shift Method of HO-SAC of 4-bit BFs and 4-bit Crypto S-boxes. Complement of IPV4 has been equivalent of 

interchanging two distinct 8 bit halves of OPBF. Complement of IPV3 has been equivalent of interchanging each distinct 4 bit 

halves of each distinct 8 bit halves of the given OPBF. Now Complement of IPV2 means interchanging each distinct 2 bit halves 

of each distinct 4 bit halves of each distinct 8 bit halves of given OPBF and finally Complement of IPV1 means interchanging 

each two distinct bits of all distinct two bit halves of given OPBF.  

 If two IPVs have been complemented at a time then the Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 

2nd Order HO-SAC of 4-bit BFs illustrated in sub table 8-A to 8-F. If the Number of IPVs complemented at a time has been three 

then the Higher Order SAC or HO-SAC of 4-bit BFs can be termed as 3rd Order HO-SAC of 4-bit BFs illustrated in sub table 8-G 

to 8-J. 

 In 2nd Order HO-SAC, any 2 IPVs shown in column 2 through H of row 1, 2 of sub tables 8-A to 8-F of Table.8 have 

been complemented at a time. The complemented or shifted IPVs or CIPVs have been shown in column 2 through H of row 4, 5 

of sub tables 8-A to 8-F of Table.8.The OPBF has been shown in column 2 through H of row 3 of sub tables 8-A to 8-F of 

Table.8. Now due to complement of 1st IPV the resultant OPBF have been shown in column 2 through H of row 6 after shift 

operation and due to complement of 2nd IPV at a time the complemented OPBF of the resultant OPBF of the first operation have 

been shown in column 2 through H of row 7 of sub tables 8-A to 8-F of Table.8 respectively. The obtained complemented OPBF 

or COPBF and bitwise xor or Hamming distance (Difference BF or DBF) between OPBF and COPBF have been shown in 

column 2 through H of row 8, 9 of sub tables 8-A to 8-F of Table.8 respectively. The count of 1s out of 16 bits in DBF or 

dissimilar bits in COPBF than OPBF due to complement of 2 IPVs at a time have been shown in row A of sub table 8-A to 8-F of 

Table.8. If for the given OPBF and for all 6 possible 2nd order HO-SAC tests the counts have been shown in A of sub table 8-A to 

8-F of Table.8 have been 8 then the given OPBF has been said to satisfy 2nd order HO-SAC of 4-bit BFs. But in table 8 all counts 

have not been equal to 8 so the given OPBF does not satisfy 2nd order HO-SAC of 4-bit BFs in this case. 

 In 3rd Order HO-SAC, any 3 IPVs shown in column 2 through H of row 1, 2 and 3 of sub tables 8-G to 8-J of Table.8 

have been complemented at a time. The complemented or shifted IPVs or CIPVs have been shown in column 2 through H of row 
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5, 6 and 7 of sub tables 8-G to 8-J of Table.8.The OPBF has been shown in column 2 through H of row 4 of sub tables 8-G to 8-J 

of Table.8. Now due to complement of 1st IPV the resultant OPBF have been shown in column 2 through H of row 8 after shift 

operation and due to complement of 2nd IPV at a time the complemented OPBF of the resultant OPBF of the first operation have 

been shown in column 2 through H of row 9 and the complemented OPBF of the resultant OPBF of the 2nd operation have been 

shown in column 2 through H of row A of sub tables 8-G to 8-J of Table.8 respectively. The obtained complemented OPBF or 

COPBF and bitwise xor or Hamming distance (Difference BF or DBF) between OPBF and COPBF have been shown in column 2 

through H of row B, C of sub tables 8-G to 8-J of Table.8 respectively. The count of 1s out of 16 bits in DBF or dissimilar bits in 

COPBF than OPBF due to complement of 3 IPVs at a time have been shown in row D of sub table 8-G to 8-J of Table.8. If for 

the given OPBF and for all 6 possible 2nd order HO-SAC tests the counts have been shown in D of sub table 8-G to 8-J of Table.8 

have been 8 then the given OPBF has been said to satisfy 3rd order HO-SAC of 4-bit BFs. But in table 8 all counts have not been 

equal to 8 so the given OPBF does not satisfy 3rd order HO-SAC of 4-bit BFs in this case. 

 If the given OPBF satisfy both 2nd order HO-SAC and 3rd Order HO-SAC for 4-bit BFs together then the OPBF has 

been said to satisfy Total HO-SAC for 4-bit BFs. If four 4-bit BFs of a Crypto 4-bit S-box satisfy total HO-SAC of 4bit BFs 

individually then the S-box has been said to satisfy HO-SAC of 4-bit crypto S-boxes. 

Start. 

Step 00:  For 1:16 BF[16].bit0 = BF[16].// Relocate the 16 bits of OPBF to bit level array BF[16].bit0. 

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 1B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

Step 1C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 1D: Count = IF(DBF[16].bit0==1);// Count Number of 1s in DBF. 

Step 2A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 2B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

Step 2C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 2D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 3A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 3B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 3C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 3D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 4A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 4B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

Step 4C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 4D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 5A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 5B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 5C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 5D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 6A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 6B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 6C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 6D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 7A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 7B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 7C: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

Step 7D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 7E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 8A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 8B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 8C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 8D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 8E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 
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Step 9A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 9B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 9C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 9D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 9E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 10A: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 10B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 10C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                  (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 10D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 10E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

// Evaluation of HO-SAC criterion. 

Step 11 : IF Count = 8 for Step 1D, TO 6D and 7E to 10E. BF[16] Satisfies HO-SAC of 4-bit BFs. 

   ELSE BF[16] does not Satisfy HO-SAC of 4-bit BFs. 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

3.3.2.2 Flip Method of HO-SAC of 4-bit BFs and 4-Bit Crypto S-boxes. In Flip Method two or three bits in all possible 

particular positions of all of 16 INBs have been flipped at a time. The bit values of OPBF before and after flip of bits in INB have 

been checked for equality. If they are same then in DBF the corresponding bit value appears as 0 else 1. If 10 DBFs have been 

balanced i.e. it contains equal number of 0s and 1s then the OPBF has been said to satisfy HO-SAC of 4-bit BFs. If four 4-bit BFs 

of a crypto S-box satisfy HO-SAC of 4-bit BFs individually then the concerned S-box has been said to satisfy HO-SAC of 4-bit 

crypto S-boxes. 

All the elements of the given S-box, Index of each element of the given S-box in hex (INH) and 4 bit binary form 

(INB) with position of each bit from 1 to 4 of each INB have been given in column 2 through H of row 3, 1, 2 of Table.7 

respectively. Each Output BF, OPBF1, OPBF2, OPBF3, OPBF4 has been shown in column 2 through H of row 4, 5, 6, 7 Table.7 

respectively. 

Now 16 INBs before flip and 16 INBs after flip in two and three bits at a time particularly in 16 INBs bit position 1, 2, 

3 and 4 have been shown in row 2 through H of column 1, 2, 6, 7, B, C, G, H  respectively of Table.9-A, Table.9-B and Table.9-

C respectively . The each corresponding bits of OPBF1, OPBF2, OPBF3, OPBF4 before and after flip have been shown in row 2 

through H of column 3, 4, 8, 9, D, E, I, J respectively in Table.9-A, Table.9-B and Table.9-C respectively. If flip occurs in 2 bit 

positions of INB at a time then the test has been termed as 2nd Order HO-SAC of 4-bit BFs and if flip occurs in 3 bit positions of 

INB at a time then the test has been termed as 3rd Order HO-SAC of 4-bit BFs. 

1 in any position in row 2 through H of column 5, A, F, K illustrate dissimilarity in bits in corresponding positions of 

OPBF1, OPBF2, OPBF3 and OPBF4 duly before and after flip in one bits in bit positions 1, 2, 3, 4 respectively. 

 If out of 16 positions in each row from 2 through H of column 5, A, F, K of table.9-A and table.9.B and from row 2 

through H of column 5, A of table.9.C, there are 8 1s and 8 0s then the given OPBF has been said to Satisfy HO-SAC of 4-bit 

BFs. If all four BFs of a given 4-bit crypto S-box satisfy HO-SAC of 4-bit BFs then the S-box has been said to satisfy HO-SAC 

of 4-bit S-boxes. Here in Table. 9.  row I shows the Number of Bits changed in OPBF1, OPBF2, OPBF3, OPBF4 before and after 

flip in pos. 1, pos. 2, pos. 3 and pos. 4 respectively. Since the value is 12 in all or at least one for the given OPBF so the 

concerned OPBF and the given 4-bit S-box does Satisfy HO-SAC of 4-bit BFs and HO-SAC of 4-bit S-boxes respectively. 

 

  
Table.9-A 

Col | 

Row 

Flip of 2 bit of INB at Pos. 21 Flip of 2 bits of INB at Pos. 31 Flip of 2 bits of INB at Pos. 41 Flip of 2 bits of INB at Pos. 32 

1 2 3 4 5 6 7 8 9 A B C D E F G H I J K 

1 B-Flip A-Flip 1 1’ C B-Flip A-Flip 2 2’ C B-Flip A-Flip 3 3’ C B-Flip A-Flip 4 4’ C 

2 0000 0011 1 0 1 0000 0101 1 1 0 0000 1001 1 1 0 0000 0110 1 1 0 

3 0001 0010 0 1 1 0001 0100 0 0 0 0001 1000 0 0 0 0001 0111 0 1 1 

4 0010 0001 1 0 1 0010 0111 1 1 0 0010 1011 1 1 0 0010 0100 1 0 1 

5 0011 0000 0 1 1 0011 0100 0 1 1 0011 1010 0 0 0 0011 0101 0 1 1 

6 0100 0111 0 1 1 0100 0001 0 0 0 0100 1101 0 1 1 0100 0010 0 1 1 

7 0101 0110 1 1 0 0101 0000 1 1 0 0101 1100 1 0 1 0101 0011 1 0 1 

8 0110 0100 1 1 0 0110 0011 1 0 1 0110 1111 1 0 1 0110 0000 1 1 0 

9 0111 0101 1 0 1 0111 0010 1 1 0 0111 1110 1 0 1 0111 0001 1 0 1 

A 1000 1011 0 1 1 1000 1101 0 1 1 1000 0001 0 0 0 1000 1110 0 0 0 

B 1001 1010 1 0 1 1001 1100 1 0 1 1001 0000 1 1 0 1001 1111 1 0 1 

C 1010 1001 0 1 1 1010 1111 0 0 0 1010 0011 0 0 0 1010 1100 0 0 0 
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D 1011 1000 1 0 1 1011 1100 1 0 1 1011 0010 1 1 0 1011 1101 1 1 0 

E 1100 1111 0 0 0 1100 1001 0 1 1 1100 0101 0 1 1 1100 1010 0 0 0 

F 1101 1110 1 0 1 1101 1000 1 0 1 1101 0100 1 0 1 1101 1011 1 1 0 

G 1110 1100 0 1 1 1110 1011 0 1 1 1110 0111 0 1 1 1110 1000 0 0 0 

H 1111 1101 0 0 0 1111 1010 0 0 0 1111 0110 0 1 1 1111 1001 0 1 1 

I  No of Bits Changed due to Flip 12 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8 

 
Table.9-B 

Col | 

Row 

Flip of 2 bit of INB at Pos. 42 Flip of 2 bits of INB at Pos. 43 Flip of 2 bits of INB at Pos. 321 Flip of 2 bits of INB at Pos. 421 

1 2 3 4 5 6 7 8 9 A B C D E F G H I J K 

1 B-Flip A-Flip 5 5’ C B-Flip A-Flip 6 6’ C B-Flip A-Flip 1 1’ C B-Flip A-Flip 2 2’ C 

2 0000 1010 1 0 1 0000 1100 1 0 1 0000 0111 1 1 0 0000 1011 1 1 0 

3 0001 1011 0 1 1 0001 1101 0 1 1 0001 0110 0 1 1 0001 1010 0 0 0 

4 0010 1000 1 0 1 0010 1110 1 0 1 0010 0101 1 1 0 0010 1001 1 1 0 

5 0011 1001 0 1 1 0011 1111 0 0 0 0011 0100 0 0 0 0011 1000 0 0 0 

6 0100 1110 0 0 0 0100 1000 0 0 0 0100 0011 0 0 0 0100 1111 0 0 0 

7 0101 1111 1 0 1 0101 1001 1 1 0 0101 0010 1 1 0 0101 1110 1 0 1 

8 0110 1100 1 0 1 0110 1010 1 0 1 0110 0001 1 0 1 0110 1101 1 1 0 

9 0111 1101 1 1 0 0111 1011 1 1 0 0111 0000 1 1 0 0111 1100 1 0 1 

A 1000 0010 0 1 1 1000 1100 0 0 0 1000 1111 0 0 0 1000 0011 0 0 0 

B 1001 0011 1 0 1 1001 1101 1 1 0 1001 1110 1 0 1 1001 0010 1 1 0 

C 1010 0000 0 1 1 1010 1110 0 1 1 1010 1101 0 1 1 1010 0001 0 0 0 

D 1011 0001 1 0 1 1011 1111 1 1 0 1011 1100 1 0 1 1011 0000 1 1 0 

E 1100 0110 0 1 1 1100 1000 0 1 1 1100 1011 0 1 1 1100 0111 0 1 1 

F 1101 0111 1 1 0 1101 1001 1 0 1 1101 1010 1 0 1 1101 0110 1 1 0 

G 1110 0100 0 0 0 1110 1010 0 1 1 1110 1001 0 1 1 1110 0101 0 1 1 

H 1111 0101 0 1 1 1111 1011 0 0 0 1111 1000 0 0 0 1111 0100 0 0 0 

I  No of Bits Changed due to Flip 12 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 4 

   Table.22. Description of Flip Method of HO-SAC Test of 4-bit BFs. 
Table.9-C 

Col | 

Row 

Flip of 2 bit of INB at Pos. 431 Flip of 2 bits of INB at Pos. 432 

1 2 3 4 5 6 7 8 9 A 

1 B-Flip A-Flip 3 3’ C B-Flip A-Flip 4 4’ C 

2 0000 1101 1 1 0 0000 1110 1 0 1 

3 0001 1100 0 0 0 0001 1111 0 0 0 

4 0010 1111 1 0 1 0010 1100 1 0 1 

5 0011 1110 0 0 0 0011 1101 0 1 1 

6 0100 1001 0 1 1 0100 1010 0 0 0 

7 0101 1000 1 0 1 0101 1011 1 1 0 

8 0110 1011 1 1 0 0110 1000 1 0 1 

9 0111 1010 1 0 1 0111 1001 1 1 0 

A 1000 0101 0 1 1 1000 0110 0 1 1 

B 1001 0100 1 0 1 1001 0111 1 1 0 

C 1010 0111 0 1 1 1010 0100 0 0 0 

D 1011 0110 1 1 0 1011 0101 1 1 0 

E 1100 0001 0 0 0 1100 0010 0 1 1 

F 1101 0000 1 1 0 1101 0011 1 0 1 

G 1110 0011 0 0 0 1110 0000 0 1 1 

H 1111 0010 0 1 1 1111 0001 0 0 0 

I  No of Bits Changed due to Flip 8 No of Bits Changed due to Flip 8 

Table.9. Description of Flip Method of HO-SAC Test of 4-bit BFs (Continued..). 

Start. 

Step 0A: For I=0:16 For J=0:16 D[I][J] = 0; // Initialization of two dimensional Array D[16][16]. 

// Initialization of  ev vector. 

Step 0B: ev[4] ={{0,0,1,1},{0,1,0,1},{1,0,0,1},{1,1,0,0},{1,0,1,0},{0,1,1,0},{0,1,1,1},{1,1,0,1},{1,1,1,0},{1,0,1,1}}; 

Step 01: For S=0:4 For I=0:16 For J=0:16 t[S][I][J] = 16bt4x[S][I][J] ^ ev[S]// Array of index after flip. 

Step 02: For S=0:4 For I=0:16 For J=0:16 r=16bt4bf[S][I][J] ^ 16bt4bf[t[S][I][J]]; // obtain DBFs 

Step 04: if (r==1) D[f][v]++; // count 1 in DBFs 

//In next two steps SAC criterion has been evaluated. 

Step 05:  IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs. 

ELSE 4-bit BF does not Satisfy SAC. 

Step 06:  IF all four BFs Satisfy SAC of 4-bit BFs then the given S-Box Satisfies SAC of 4-bit S-Box.  

ELSE the given S-Box does not Satisfy SAC of 4-bit S-Box. 

Stop. 
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Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

3.3.3. Extended HO-SAC Criterion of 4-bit BFs and 4-bit Crypto S-boxes. If one IPV out of four at a time, two IPVs out of 

four at a time, three IPVs out of four at a time and all of four IPVs have been complemented at a time or flip of one bit of INB at 

a time, flip of two bits of INB at a time or flip of three bits of INB at a time, and flip of all of four bits in INB at a time and all 

resultant DBFs have been balanced then the 4-bit BF has been said to satisfy Extended SAC of 4-bit BFs. If all four 4-bit BFs of 

a 4-bit crypto S-box satisfy Extended SAC of 4-bit BFs then the S-box has been said to satisfy Extended SAC of 4-bit S-boxes. 

Complement of one, two, or three bits at a time or flip of one, two or three INBs at a time is similar to table 6, 7, 8 and 9 

respectively for the given 4-bit BF. The rest Criterion of 4 IPVs have been complemented at a time have been shown in sub table 

10-A of table. 10. The rest flip of all INBs at a time have been shown in sub table 10-B of table. 10 . 

     

R|C 10-A 2 3 4 5 6 7 8 9 A B C D E F G H 

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

3 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

4 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

5 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 
6 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

7 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

8 CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
  9 CIPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

A Step 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

B Step 2 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 

C Step 3 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 

D Step 4 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 

E COPBF 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 

F DBF 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 

G Number of bits changed in COPBF 8 

    
10-B 

Col | 

Row 

Flip of 2 bit of INB at Pos. 4321 

1 2 3 4 5 

1 B-Flip A-Flip 3 3’ C 

2 0000 1111 1 0 1 

3 0001 1100 0 0 0 

4 0010 1101 1 1 0 

5 0011 1100 0 0 0 

6 0100 1011 0 1 1 

7 0101 1010 1 0 1 

8 0110 1001 1 1 0 

9 0111 1000 1 0 1 

A 1000 0111 0 1 1 

B 1001 0100 1 1 0 

C 1010 0101 0 1 1 

D 1011 0100 1 0 1 

E 1100 0011 0 0 0 

F 1101 0010 1 1 0 

G 1110 0001 0 0 0 

H 1111 0000 0 1 1 

I  No of Bits Changed due to Flip 8 

Table.10. Table of Extension to SAC and HO-SAC of 4-bit BFs and 4-bit Crypto 

S-boxes in both Complement and Flip Method. 

Pseudo code. Let BF[16].bit0 has been a bit level array of 16 bits of a 4-bit BF out of 65536 4-bit BFs. and BF[16] has been an array of 16 

bits of a 4-bit BF. CV[16].bit0 has been a bit level array of 16 bits to store either 00FF, 0F0F, 3333, 5555 in hex. CVC[16].bit0 has been a 

bit level array of 16 bits to store either FF00, F0F0, CCCC, AAAA in hex. Here ^ represents Bitwise Xor operation. NL represents Number 

of bits changed in lower halves and NU represents Number of bits changed in upper halves. 

Start. 

//Initialization of Variables. 

Step 0A: For 1:16 BF[16].bit0 = BF[16].   

Step 0B: For 1:16 CV[16].bit0 = 00FF, 0F0F, 3333, 5555. 

Step 0C: For 1:16 CVC[16].bit0 = FF00, F0F0, CCCC, AAAA. 
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// In next 15 steps DBFs and weight of DBFs have been obtained by xor of OPBF and COPBFs. 

Step 01: wt{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)}      = N 

Step 02: wt{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}      = N  

Step 03: wt{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}   = N 

Step 04: wt{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}  = N 

Step 05: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}]      = N.  

Step 06: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}]    = N .  

Step 07: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 08: wt[{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}]  = N  

Step 09: wt[{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}  = N.  

Step 10: wt[{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 11: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)}  

 ^{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}]   = N.  

Step 12: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

 ^{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)} 

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N 

Step 13: wt[{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)} 

  ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}  

^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 14: wt[{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

 ^{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}  

 ^{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}] = N.  

Step 15: wt{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)}  

^wt{(BF[16].bit0&0F0F)^(BF[16].bit0>>4&0F0F)}+WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}  

^wt{(BF[16].bit0&3333)^(BF[16].bit0>>2&3333)}+WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}        

^wt{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA) = N 

// In next step Extended SAC criterion has been evaluated.  

Step 16:  If N=8 for Step 01, to Step 15. Then BF[16].bit0 Satisfies Extended SAC of 4-bit BFs. 

ELSE BF[16].bit0 Does not Satisfies Extended SAC of 4-bit BFs.. 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

Pseudo code of Extended SAC of 4-bit BFs Using Shift Method. 

Start. 

Step 00:  For 1:16 BF[16].bit0 = BF[16]. 

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 1B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 1C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 2A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

Step 2B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 2C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 3A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2); 

Step 3B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 3C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 4A: CBF[16].bit0 = (BF[2A].bit0>>1)&&(BF[2B].bit0>>1)&&(BF[2C].bit0>>1)&&(BF[2D].bit0>>1)&& 

                (BF[2E].bit0>>1)&&(BF[2F].bit0>>1)&&(BF[2G].bit0>>1)&&(BF[2H].bit0>>1); 

Step 4B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 4C: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 5A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 5B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

Step 5C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 5D: Count = IF(DBF[16].bit0==1);// Count Number of 1s in DBF. 

Step 6A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 
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// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 6B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

Step 6C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 6D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 7A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 7B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 7C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 7D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 8A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 8B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

Step 8C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 8D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 9A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 9B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 9C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 9D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 10A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&& (BF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 10B: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 10C: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 10D: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 11A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 11B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 11C: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

Step 11D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs.  

Step 11E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 12A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 12B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 12C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 12D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 12E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 13A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 13B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 13C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 13D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 13E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 14A: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 14B: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 

Step 14C: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                  (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 14D: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 14E: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

Step 15A: CBF[16].bit0 = (BF[16].bit0>>8); // Circular shift of each distinct 8 bit halves of 16 bit long OPBFs. 

Step 15B: CBF[16].bit0 = (CBF[8A].bit0>>4)&& (CBF[8B].bit0>>4); //Circular shift of each distinct 4-bit halves of 4-bit OPBFs. 

// In next step Each distinct 2 bit halves of each distinct 4-bit Halves have been circularly shifted. 

Step 15C: CBF[16].bit0 = (CBF[4A].bit0>>2)&& (CBF[4B].bit0>>2)&& (CBF[4C].bit0>>2)&& (CBF[4D].bit0>>2); 

// In next step each bit of each distinct two bit halves has been circularly shifted. 
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Step 15D: CBF[16].bit0 = (CBF[2A].bit0>>1)&&(CBF[2B].bit0>>1)&&(CBF[2C].bit0>>1)&&(CBF[2D].bit0>>1)&& 

                  (CBF[2E].bit0>>1)&&(CBF[2F].bit0>>1)&&(CBF[2G].bit0>>1)&&(CBF[2H].bit0>>1); 

Step 15E: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0; // Difference BF have been obtained by bitwise xor of OPBFs and COPBFs. 

Step 15F: Count = IF(DBF[16].bit0==1); // Count Number of 1s in DBF. 

// In next step Extended SAC criterion has been evaluated. 

Step 16 : IF Count = 8 for Step 1C, TO 4C, 5D to 10D and 11E to 14E and 15F BF[16] Satisfies Extended-SAC of 4-bit BFs. 

   ELSE BF[16] does not Satisfy Extended SAC of 4-bit BFs. 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested loops. 

Pseudo code of Extended SAC of 4-bit BFs Using Flip Method. 

Start. 

Step 0A: For I=0:16 For J=0:16 D[I][J] = 0; // Initialization of two dimensional array D[16][16]. 

Step 0B: ev[4] ={{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0},// Initialization of ev vector 

           {0,0,1,1},{0,1,0,1},{1,0,0,1},{1,1,0,0}, 

           {1,0,1,0},{0,1,1,0},{0,1,1,1},{1,1,0,1}, 

           {1,1,1,0},{1,0,1,1},{1,1,1,1}}; 

Step 01: For S=0:4 For I=0:16 For J=0:16 t[S][I][J] = 16bt4x[S][I][J] ^ ev[S] // Array of index after flip. 

Step 02: For S=0:4 For I=0:16 For J=0:16 r=16bt4bf[S][I][J] ^ 16bt4bf[t[S][I][J]];// DBFs generation for 16 evs.  

Step 04: if (r==1) D[f][v]++; // count of 1s in DBF. 

// In next two steps Extended SAC criterion has been evaluated. 

Step 05:  IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs. 

ELSE 4-bit BF does not Satisfy SAC. 

Step 06:  IF all four BFs Satisfy Extended SAC of 4-bit BFs then the given S-Box Satisfies Extended SAC of 4-bit S-Box. 

ELSE the given S-Box does not Satisfy Extended SAC of 4-bit S-Box. 

Stop. 

Time complexity of the given pseudo code. Time complexity of the algorithm has been O(n) since the body contains no nested 

loops. 

3.4. A Brief Review of Differential Cryptanalysis of 4-bit S-boxes and a new Technique with Boolean 

Functions for Differential Cryptanalysis of 4-bit S-boxes. The given 4-bit Crypto S-box has been described in sub-

section 3.4.1. The relation Between 4-bit Crypto S-boxes and 4-bit BFs has been illustrated in subsec. 3.4.2., The Differential 

Cryptanalysis of 4-bit Crypto S-boxes and DDT or Differential Distribution Table has been illustrated in subsec. 3.4.3. The 

Differential Cryptanalysis of 4-bit S-boxes with 4-bit BFs has been described in subsec.3.4.4. 
  

3.4.1 4-bit Crypto S-boxes: A 4-bit Crypto S-box can be written as Follows in Table.11, where the each element of the first row 

of Table.11, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 2nd 

row, entitled as S-box are the elements of the given Substitution box. It can be concluded that the 1st row is fixed for all possible 

Crypto S-boxes. The values of each element of the 1st row are distinct, unique and vary between 0 to F in hex. The values of the 

each element of the 2nd row of a Crypto S-box are also distinct and unique and also vary between 0 to F in hex. The values of the 

elements of the fixed 1st row are sequential and monotonically increasing where for the 2nd row they can be sequential or partly 

sequential or non-sequential. Here the given Substitution box is the 1st 4-bit S-box of the 1st S-box out of 8 of Data Encryption 

Standard [AT90][NT77][NT99].  

 

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

Table.11. 4-bit crypto S-box. 

3.4.2 Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit 

Crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence that are given in 

column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2 through 5 and row 7 

through A of each column from 1 through G of Table.12. shows the 4-bit bit sequences of the corresponding hexadecimal 

numbers of the index of each element of the given Crypto S-box and each element of the Crypto S-box itself. Each row from 2 

through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a 16 bit long input vectors (IPVs) 

and 4-bit output BFs (OPBFs) respectively. column 1 through G of row 2 is termed as 4th IPV, Row 3 is termed as 3rd IPV, Row 4 

is termed as 2nd IPV and Row 5 is termed as 1st IPV whereas column 1 through G of Row 7 is termed as 4th OPBF, Row 8 is 

termed as 3rd OPBF, Row 9 is termed as 2nd OPBF and row A is termed as 1st OPBF [AT90]. The decimal equivalent of each IPV 

and OPBF are noted at column H of respective rows. 

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G H. Decimal 
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1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F Equivalent 

2 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255 

3 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855 

4 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107 

5 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845 

6 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7  

7 OPBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 42836 

8 OPBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 58425 

9 OPBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 36577 

A OPBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 13965 

 

   Table.12. Decomposition of 4-bit input S-box and given S-box (1st 4-bit S-box of 1st S-box out of 8 of DES) to 4-bit BFs. 

 

3.4.3 Review of Differential Cryptanalysis of 4-bit Crypto S-boxes [HH96][HH02]. In Differential Cryptanalysis of 4-

bit Crypto S-boxes, Elements of 4-bit input S-box (ISB) have been xored with a particular 4-bit Input Difference (ID) to obtain a 

Distant input S-box (DISB). The Distant S-boxes (DSB) have been obtained from original S-box (SB) by shuffling the elements 

of SB in such order in the way in which the elements of ISB have been shuffled to obtain DISB for a Particular ID. Each element 

of Difference S-box (DFSB) have been obtained by the xor operation of corresponding elements of SB and DSB. The Count of 

each Hexadecimal number from 0 to F have been put into the concerned cell of Differential Distribution Table or DDT. As the 

number of 0s in DDT increases, information regarding concerned Output Difference (OD) increases so the S-box has been 

determined as weak S-box. The 4-bit Sequence of each element of ISB, ID, DISB, DSB, DFSB have been given in BIN ISB, BIN 

ID, BIN DISB, BIN DSB, BIN DFSB respectively. 

The column.1. in Table.13. from row 1 through G shows the 16 elements of ISB in a monotonically increasing 

sequence or order. The ISB can also be concluded as an Identity 4-bit S-box. The elements of 1st 4-bit S-box, out of 4 of 1st S-box 

of Data Encryption Standard (DES) out of 8, has been considered as S-box (SB), in column 7 from row 1 through G. The 

elements of ID, DISB, DSB, DFSB has been shown in row 1 through G of column. 3, 5, 9 and C of Table.3 respectively. The 4-

bit Binary equivalents of each elements of ISB, ID, DISB, SB, DSB, DFSB, has been shown in row 1 through G of column. 2, 4, 

6, 8, A and B of Table.13 respectively. 

The review has been done in two different views; The S-box view has been described in subsec.3.4.3.1. in which the 

concerned column of interest are row 1 through G of column 1, 3, 5, 7, 9 and C respectively. The 4-bit binary pattern view has 

also been described in subsec.3.4.3.2 in which concerned column of interest are row 1 through G of column 2, 4, 6, 8, A and b 

respectively. The Pseudo Code of two algorithms with their time complexity comparison has been illustrated in subsec.3.4. 3.3. 

COL 1 2 3 4 5 6 7 8 9 A B C 

R 

O 

W 

I 

S 

B 

Bin 

ISB 

4321 

I 

D 

Bin 

ID 

4321 

D 

IS 

B 

Bin 

DISB 

4321 

S 

B 

Bin 

OSB 

4321 

D 

S 

B 

Bin 

DSB 

4321 

Bin 

DFSB 

4321 

D 

FS 

B 

1 0 0000 B 1011 B 1011 E 1110 C 1100 0010 2 

2 1 0001 B 1011 A 1010 4 0100 6 0110 0010 2 

3 2 0010 B 1011 9 1001 D 1101 A 1010 0001 7 

4 3 0011 B 1011 8 1000 1 0001 3 0011 0010 2 

5 4 0100 B 1011 F 1111 2 0010 7 0111 0101 5 

6 5 0101 B 1011 E 1110 F 1111 0 0000 1111 F 

7 6 0110 B 1011 D 1101 B 1011 9 1001 0010 2 

8 7 0111 B 1011 C 1100 8 1000 5 0101 1101 D 

9 8 1000 B 1011 3 0011 3 0011 1 0001 0010 2 

A 9 1001 B 1011 2 0010 A 1010 D 1101 0001 7 

B A 1010 B 1011 1 0001 6 0110 4 0100 0010 2 

C B 1011 B 1011 0 0000 C 1100 E 1110 0010 2 

D C 1100 B 1011 7 0111 5 0101 8 1000 1101 D 

E D 1101 B 1011 6 0110 9 1001 B 1011 0010 2 

F E 1110 B 1011 5 0101 0 0000 F 1111 1111 F 

G F 1111 B 1011 4 0100 7 0111 2 0010 0101 5 

            Table.13. Table of Differential Cryptanalysis of 1st 4-bit S-box of 1st S-box out of 8 of DES.  
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3.4.3.1 S-box View of Differential Cryptanalysis of 4-bit Crypto S-boxes. The S-box with a particular input 

difference or ID from 0 to F in which all elements have the same value ‘B’ in hex, is not a Crypto Box but an S-box and is shown 

in row 1 through G of column. 3. of Table.13. The Distant input S-box (DISB) is shown in row 1 through G of column.5 of the 

said table. In DISB each row element from row 1 through G is obtained by the xor operation of the elements in corresponding 

positions of each element of DISB from row 1 through G of column.1. (ISB) and Column.3. (ID) respectively. In ISB for each 

row element from row 1 through G of column.1.just in corresponding position from row 1 through G of column.7, there is an 

element of SB. Now in DISB the elements of ISB have been shuffled in a particular order and In DSB the corresponding 

elements of SB has also been shuffled in that particular order. Each element of the Difference S-box or DFSB from row 1 

through G of column.C. has been obtained by xor operation of each element in corresponding positions from row 1 through G of 

column.7. and row 1 through G of column.9. respectively. The repetition of each existing elements in DSB have been counted 

and put into Difference Distribution Table or DDT. It is shown in Table.14. as follows, 

 

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

1 DSB el 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 Count 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2 

Table.14. Count of repetition of each existing element in DSB. 

 

The count of each existing elements in DFSB have been put into Difference Distribution Table. as follows, in row 2 of Table.15. 

For Input Difference (ID) = ‘B’ and Output Difference from 0 through F of row 1.  

 

Row 1 Output Difference 

1 Input Difference 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 B 0 2 8 0 0 2 0 0 0 0 0 0 0 2 0 2 

Table.15. The Part of DDT with Input Difference ‘B’. 

 

3.4.3.2. 4-bit binary Pattern View of Differential Cryptanalysis of 4-bit Crypto S-boxes. The corresponding four bit 

bit patterns of input S-box elements (ISB) has been shown from row 1 through G of column.2 in Table.13. and termed as Bin 

ISB. The Particular Input Difference ‘1101’ is shown in each row from 1 through G of column. 4. in Table.13. The Distant 4-bit 

input bit patterns are shown from row 1 through G of column.6. (Bin DISB) are obtained by the xor operation of the elements in 

corresponding positions of each element of BIN DISB from row 1 through G of column.2. (Bin ISB) and Column.4. (Bin ID) 

respectively. In Bin ISB for each element from row 1 through G of column.2. in corresponding position from row 1 through G of 

column.8, there is an element of Bin SB. Now in Bin DISB the elements of ISB have been shuffled in a particular order and in 

Bin DSB the corresponding elements of SB has also been shuffled in that particular order. Each element from row 1 through G of 

column.11. has been obtained by xor operation of each element in corresponding positions from row 1 through G of column.8. 

and row 1 through G of column.10. respectively. The repetition of each existing elements in Bin DFSB have been counted and 

put into Difference Distribution Table or DDT. It is shown in Table.16. as follows, 

 
R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H 

1 DFSB el 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

2 Count 0 2 8 0 0 2 0 0 0 0 0 0 0 2 0 2 

 

Table.16. Count of repetition of each existing element in Bin DSB. 

 

The count of each existing elements in Bin DFSB have been put into the Differential Distribution Table. as follows, in row 2 of 

Table.17a. for Binary Input Difference (Bin ID) ‘1101’ and Output Difference from 0 through F of row 1.  

   

Row 1 Output Difference (In Hex) 

1 Input Difference 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 1101 0 2 8 0 0 2 0 0 0 0 0 0 0 2 0 2 

  

Table.17a. The Part of DDT with Input Difference ‘1101’. 
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The Total DDT or Difference Distribution table for 16 IDs for the given S-box has been shown below in table 17b. 

 

Table.7b 

DDT 

Output Difference 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

I 

n 

p 

u 

t 

D 

I 

f 

f 

e 

r 

e 

n 

c 

e 

 

n 

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0 

2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0 

3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4 

4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0 

5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2 

6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2 

7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4 

8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2 

9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0 

A 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0 

B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2 

C 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0 

D 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0 

E 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0 

  F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0 

 

Table.17b. Difference Distribution Table or DDT of the Given S-box. 

3.4.4 Pseudo Code for Differential Cryptanalysis of 4-bit Crypto S-boxes and its Time Complexity Analysis.  
The Pseudo Code of Algorithm for 4-bit binary pattern view with Time Complexity has been depicted in subsec. 3.4.4.1., the 

Pseudo Code  of algorithm for S-box view with Time Complexity has been depicted in subsec. 3.4.4.2. and The comparison of 

time complexity of two algos has been given in subsec 3.4.4.3. 

3.4.4.1 Pseudo Code of Algorithm of Differential Cryptanalysis 4-bit binary pattern view. 

The Pseudo Code has been given as follows, 

Start. // Start of Pseudo Code 

// Variable Declarations, Two Dimensional Array ISB[4][16] is for 4-bit bit patterns for Input S-box, IDIFF[4][16] is for 4-bit bit 

patterns of Input Difference, Three Dimensional Array ODIFF[4][16][16] is for all 4-bit bit patterns of Output Difference for 16 

IDIFFs.  

Step 0A:  int ISB[4][16]; int IDIFF[4][16]; int ODIFF[4][16][16]; 

// Variable Declarations, ISB’[4][16][16] is for 4-bit bit patterns of All elements of 16 distant ISBs. OSB[4][16] is for 4-bit bit 

patterns of the given S-box or Output S-box , OSB’[4][16][16] is for 4-bit bit patterns of All elements of 16 distant OSBs, 

DDT[16][16] is for Difference Distribution Table, and Count[16] is for count of each element in ODIFF for 16 OSBs. 

Step 0B:  int ISB’[4][16][16]; int OSB[4][16]; int OSB’[4][16][16]; int DDT[16][16]; int Count[16]; 

// Differential Cryptanalysis Block. 

Step 01:  For I =1:16 ; For J =1:16 ; For K =1:4; // Start of For Loop I, J, K respectively 

ISB’[K][I][J] = ISB[K][J]^IDIFF[K][I]; 

OSB’[K][I][J] = OSB[ISB’[K][I][J]]; 

ODIFF[K][I][J] = OSB[K][J]^ OSB’[K][I][J];  

End For K. End For J. End For I.// End of For loop K, J, I respectively 

// Generation of Difference Distribution Table. 

Step 02:  For I =1:16 For J =1:16 For K =1:4 // Start of For Loop I, J, K respectively 

DDT[I][J]= Count[ISB[K][J]]; 

End For K. End For J. End For I. // End of For loop K, J, I respectively 

Stop. // End of Pseudo Code 

 

Time Complexity of the Given Algorithm. Since Differential Cryptanalysis block contains 3 nested loops so the time 

Complexity of the Algorithm has been O(n3). 

3.4.4.2. Pseudo Code of Algorithm of Differential Cryptanalysis S-box View.  

The Pseudo Code has been given as follows, 

Start. // Start of Pseudo Code 

// Variable Declarations, One Dimensional Array ISB[16] is for for Input S-box in Hex, IDIFF[16] is for Input Difference in Hex, 

Three Dimensional Array ODIFF[16][16] is for all Output Difference in Hex for 16 IDIFFs.  

Step 0A: int ISB[16]; int IDIFF[16]; int ODIFF[16][16]; 

// Variable Declarations, ISB’[16][16] is for All elements in Hex of 16 distant ISBs. OSB[16] is for elements in Hex of the given 

S-box or Output S-box , OSB’[16][16] is for All elements in Hex of 16 distant OSBs, DDT[16][16] is for Difference Distribution 

Table, and Count[16] is for count of each element in ODIFF for 16 OSBs. 

Step 0B: int ISB’[16][16]; int OSB[16]; int OSB’[16][16]; int DDT[16][16]; int Count[16]. 
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// Differential Cryptanalysis block 

Step 01:  For I =1:16; For J =1:16; // For Loop I and J respectively. 

ISB’[I][J] = ISB[J]^IDIFF[I]; 

OSB’[I][J] = OSB[ISB’[I][J]]; 

ODIFF[I][J] = OSB[J]^ OSB’[I][J]; 

End For J. End For I.// End of For Loop J and I respectively. 

Step 02:  For I =1:16; For J =1:16 // For Loop I and J respectively. 

DDT[I][J]= Count[ISB[J]];  

End For J. End For I. // End of For Loop J and I respectively. 

Stop. // End of Pseudo Code 

Time Complexity of the Given Algorithm. Since Differential Cryptanalysis block contains 2 nested loops so the time 

Complexity of the Algorithm has been O(n2). 

3.4.4.3 Comparison of Time Complexity of Two views of Differential Cryptanalysis of 4-bit S-boxes. 

The Comparison of time complexity of two algos has been given in Table.17C as follows, 

View 4-bit BP View S-box View 

Time Complexity O(n3) O(n2) 

Table.17C. Time Complexity Comparison of Two Algos. 

It can be concluded from the comparison that the Execution Time reduces in S-box view than the 4-bit Binary Pattern view. So in 

can be concluded from above review work that the execution time of Differential Cryptanalysis depends upon the view of the 

algorithm and the S-box view has been proved to be a better algorithm than 4-bit binary pattern view algorithm.  

3.5 Differential Cryptanalysis of 4-bit Bijective Crypto S-boxes with 4-bit BFs. The Procedure to obtain four Input Vectors 

(IPVs) and Four Output BFs (OPBFs) from the elements of a particular 4-bit Crypto S-box has been described in sec.2.1. The 

procedure to obtain distant Input Vectors (DIPVs) and Distant Output BFs (DOPBFs) for a particular Input Difference (ID) of the 

said S-box has been described with example in sec.3.5.1. Generation of Difference 4-bit BFs, Analysis of Algorithm and 

Generation of Difference Analysis Algorithm in subsec.3.5.2, subsec.3.5.3 and subsec.3.5.4. respectively. The Differential 

Analysis Table of the given S-box, Pseudo Code of Algorithm with Time Complexity and Comparison of Time complexity of 

three Algos. have been given in subsec.3.5.5, subsec.3.5.6 and subsec.3.5.7. respectively. 

3.5.1. Distant Input BFs (DIBFs) and Distant Output BFs (DOBFs) Generation from IBFs and OBFs for a 

specific ID. Within 4 bits of binary input difference (Bin ID), 1 in position p means do complement of pth IPV and 0 means no 

operation on pth IPV. Similarly in the given example 1 in position 4 of Bin ID, as in position 4 from row 1 through G of column 4 

of table.13. indicates do complement of 4-bit IPV, IPV4 i.e. CIPV4 and 0 in position 3 as in position 3 from row 1 through G of 

column 4 of table.13. means no operation on 4-bit IPV, IPV3 (CIPV3) or CIPV3 = IPV3. Similarly 1 in respective positions 2 

and 1 as in positions 2 and 1 from row 1 through G of column 4 of table.13. means do complement 4-bit IPV, IPV2 (CIPV2) and 

do complement of 4-bit IPV, IPV1 (CIPV1) respectively. CIPV4, CIPV3, CIPV2 and CIPV1 for Input S-box (ISB) and Input 

Difference (ID) have been shown from row 1 through G of column.1. and column.3. of Table.13. respectively.  

Here the 4th OPBF has been taken as an example of OPBF and termed as OPBF. Since complement of 4th IPV means 

interchanging each 8 bit halves of 16 bit long 4th IPV so The 2, 8 bit halves of OPBF have been interchanged due to complement 

of 4th IPV. The resultant OPBF has been shown from column 1 through G of row 6 in Table.19. Again No Operation on 3rd IPV 

means CIPV3 = IPV3 so resultant OPBF is as same as STEP1 and has been shown from column 1 through G of row 7 in 

Table.19. Next to it, the complement of 2nd IPV means interchanging each 2 bit halves of each 4 bit halves of each 8 bit halves of 

resultant OPBF. The resultant OPBF has been shown from column 1 through G of row 8 in Table.19. Again the complement of 

1st IPV means interchanging each bit of each 2 bit halves of each 4 bit halves of each 8 bit halves of resultant OPBF, The 

resultant OPBF After operation has been shown in column 1 through G of row 9 in Table.19. The Complemented OPBF has been 

the resultant OPBF of STEP4 and has been shown from column 1 through G of row A in Table.19. 

ID 1 0 1 1 

Complement C N C C 

                                     Table.18. Complement of IPVs Due to a Particular ID 

Row | Col 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

2 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

3 CIPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

4 CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

5 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 

6 STEP1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

7 STEP2 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 

8 STEP3 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 

9 STEP4 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 

A COPBF 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 

Table. 19. Construction of DIBFs and DOBFs. 
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3.5.2 Generation of Difference Boolean Functions or DBFs for a certain ID. 
 The DBFs of each OPBF have been generated by bitwise Xor of OPBFs and the corresponding COPBFs. The 

corresponding DBFs of OBPF4, OBPF3, OBPF2, OPBF1 are denoted as DIFF4, DIFF3, DIFF2, DIFF1  respectively. Generation 

of 4th DBF of ID ‘1011’ has been shown in column 1 through G of row 3 of Table.20. 

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 

2 COPBF  1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 

3 DIFF 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 

     Table.20. DBF Generation. 

3.5.3 Analysis: 
 If the DBFs are balanced then the number of bits changed and remains unchanged among corresponding bits of OPBFs 

and COPBFs is maximum. So uncertainty of determining a particular change in bits is maximum. As the number of balanced 

DBFs are increased among 64 (=24×4) possible DBFs then the security will increase. The number of 1s or balanced-ness of the 

above DBF shown from row 1 through G of row 3 of table.20. has been shown in column. 2. of row 2 of table.21.  

 

 

  

 

 

Table. 21. Balanced-ness of DBFs. 

3.5.4  DBFs Generation and Derivation of a Particular Row of Differential Analysis Table (DAT) for a 

Certain ID. Four IPVs in the order IPV4, IPV3, IPV2 and IPV1 for the S-box given in Table.1. and four CIPVs, CIPV4, 

CIPV3, CIPV2 and CIPV1 for a certain ID ‘1011’ have been shown from column 1 through G of row 1, 2, 3, 4, 5, 6, 7 and 8 

respectively in Table.22. Four OPBFs in the order OPBF4, OPBF3, OPBF2 and OPBF1 for the S-box given in Table.11. and four 

COPBFs COPBF4, COPBF3, COPBF2 and COPBF1 for a certain ID ‘1011’ have been shown from column 1 through G of row 

9, A, B, C, D, E, F and G respectively in Table.22. The resultant DBFs, DIFF4, DIFF3, DIFF2, DIFF1, have been shown in 

column 1 through G of row H, I, J, K of Table.22. The number of 1s or Balanced-ness of four DBFs have been shown in row 

from column.2 through 5 of row 1 in Table.23.  

 

Row|Col 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 IBF4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 IBF3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

3 IBF2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

4 IBF1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

5 CIBF4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

6 CIBF3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

7 CIBF2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

8 CIBF1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

9 OBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 

A OBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 

B OBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 

C OBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 

D COBF4 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 

E COBF3 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 

F COBF2 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 

G COBF1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 

H DIFF4 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 

I DIFF3 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 

J DIFF2 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 

K DIFF1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 

 

Table. 22. Generation of a Particular Row of Differential Analysis Table (DAT). 

 

  

 

   

R|C 1 2 

1 Difference BF Total Number of 1s 

2 DIFF 4 
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R|C 1 2 3 4 5 

 Difference BFs DIFF4 DIFF3 DIFF2 DIFF1 

1 No. of ones. 4 8 C 8 

 

Table.23. Balanced-ness of four DBFs. 

 

3.5.5. Differential Analysis Table or DAT. The Balanced-ness of four DBFs for each ID have been shown from column 2 

through 5 of row 2 through H of DAT or Table.24.   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.24. DAT for 1
st
 4-bit S-box of 1

st
 S-box of DES 

3.5.6 Pseudo Code for Differential Cryptanalysis of 4-bit Crypto S-boxes and its Time Complexity Analysis.  
The Pseudo Code has been given as follows, 

Start. // Start of Pseudo Code 

// Variable Declarations, One Dimensional Array ISB[16] is for for Input S-box in Hex, IDIFF[16] is for Input Difference in Hex, 

Three Dimensional Array ODIFF[16][16] is for all Output Difference in Hex for 16 IDIFFs. Bin_ODIFF[4][16][16] is for all 4-

bit bit patterns of Output Difference for 16 IDIFFs. 

Step 0A: int ISB[16]; int IDIFF[16]; int ODIFF[16][16]; 

// Variable Declarations, ISB’[16][16] is for All elements in Hex of 16 distant ISBs. OSB[16] is for elements in Hex of the given 

S-box or Output S-box , OSB’[16][16] is for All elements in Hex of 16 distant OSBs, DAT[16][16] is for Difference Analysis 

Table, and Count[16] is for count of each element in ODIFF for 16 OSBs. 

Step 0B: int ISB’[16][16]; int OSB[16]; int OSB’[16][16]; int DAT[4][16]; int Count[16]. 

// Differential Cryptanalysis block 

Step 01:  For I =1:16; For J =1:16; // For Loop I and J respectively. 

ISB’[I][J] = ISB[J]^IDIFF[I]; 

OSB’[I][J] = OSB[ISB’[I][J]]; 

ODIFF[I][J] = OSB[J]^ OSB’[I][J]; 

 For K=1:4 Bin_ODIFF[K][I][J] = Hex to Binary(ODIFF[I][J])  

End For J. End For I.// End of For Loop J and I respectively. 

Step 03:  For I =1:4; For J =1:16; For K = 1:16 // For Loop I and J respectively. 

DAT[I][J]= Count[Bin_ODIFF[I][J][K]];  

End For J. End For I. // End of For Loop J and I respectively. 

Stop. // End of Pseudo Code 

Time Complexity of the Given Algorithm. Since Differential Cryptanalysis block contains 2 nested loops so the time 

Complexity of the Algorithm has been O(n2). 

3.5.7 Comparison of Time Complexity of Two views of Differential Cryptanalysis of 4-bit S-boxes and Differential 

Cryptanalysis with 4-bit BFs. 

The Comparison of time complexity of three algos has been given in Table.25 as follows, 

 

R|C 1 2 3 4 5 

1 ID in Hex DIFF1 DIFF2 DIFF3 DIFF4 

2 0 0 0 0 0 

3 1 8 8 8 C 

4 2 C 8 C 4 

5 3 8 8 8 C 

6 4 8 C 8 8 

7 5 8 8 8 8 

8 6 C 8 C 8 

9 7 8 C 8 8 

A 8 C C C C 

B 9 8 8 8 8 

C 10 4 8 4 C 

D 11 8 C 8 4 

E 12 C 4 C 8 

F 13 8 8 8 8 

G 14 4 8 4 8 

H 15 8 4 8 8 
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View 4-bit BP View S-box View With 4-bit BFs 

Time Complexity O(n3) O(n2) O(n2) 

Table.25. Time Complexity Comparison of Three Algos. 

It can be concluded from the comparison that the Execution Time reduces in S-box view and With 4-bit BFs than the 4-bit Binary 

Pattern view. So in can be concluded from above review work and new algorithm that the execution time of Differential 

Cryptanalysis depends upon the view of the algorithm and the S-box view has been proved to be a better algorithm than 4-bit 

binary pattern view algorithm. The With 4-bit BFs Algo has also been proved to be the better one since The DAT table 

construction is less time consuming than DDT construction since DDT constitutes of 256 entries while DAT constitutes of 64 

entries so in can also be concluded from comparison that Differential Cryptanalysis with 4-bit BFs has been proven to be the best 

algorithm among 3 Algorithms since it takes less execution time among three algorithms.  

3.6 A Brief Review of Linear Cryptanalysis of 4-bit Crypto S-boxes and a new Technique With Boolean 

Functions for Linear Cryptanalysis of 4-bit Crypto S-boxes or Linear Approximation Analysis. The review of 

related relevant property of 4-bit BFs, Algebraic Normal form of 4-bit BFs has been illustrated in subsec.3.6.1. The review of 

Linear Cryptanalysis of 4-bit Crypto S-boxes has been described in brief in subsec.3.6.2. At last the new technique to analyze 4-

bit S-boxes by 4-bit Linear Approximations or Linear Approximation Analysis has been described in brief in subsec. 3.6.3. 

3.6.1 A review of Boolean Functions (BF) and its Algebraic Normal Form (ANF)   

A 4-bit Boolean Function (BF) accepts 4 bits as input {x1x2x3x4}having 16 combinations of decimal values varying 

between 0 and 15 and provides 1-bit output for each combination of input. The input-output relation is given in a Truth Table 

which provides 16-bit output vector corresponding to four 16-bit input vectors, each one attached to x1, x2, x3 and x4.  The 4-bit 

BF is a mapping from (0,1)4  to (0,1)1and its functional relation, F(x) can be expressed in Algebraic Normal Form (ANF) with 16 

coefficients as given in eq. (1) below, 

F(x) = a0 + (a1.x1 + a2.x2 + a3.x3 + a4.x4) + (a5.x1.x2 + a6.x1.x3 + a7.x1.x4
 + a8.x2.x3 + a9.x2.x4 + a10.x3.x4) + 

+ (a11.x1.x2.x3 +
 a12.x1.x2.x4 + a13.x1.x3.x4+ a14.x2.x3.x4) + a15.x1.x2.x3.x4 …  … (1) 

where x represents the decimal value or the hex value of 4 input bits represented by {x1x2x3x4}, BF assumes 1-bit output, ‘.’ and 

‘+’ represent AND and XOR operations respectively. Here a0 is a constant coefficient, (a1 to a4) are 4 linear coefficients, and (a5 

to a15) are 11 nonlinear coefficients of which (a5 to a10) are 6 non-linear coefficients of 6 terms with 2-AND-operated-input-bits, 

(a11 to a14) are 4 nonlinear coefficients of 4 terms with 3-AND-operated-input-bits and a15 is a non-linear coefficient of one term 

with 4-AND-operated-input-bits.  The 16 binary ANF coefficients, from a0 to a15 are marked respectively as anf.bit0 to anf.bit15 

in ANF representation and are evaluated from the 16-bit output vector of a BF designated as bf.bit0 to bf.bit15 using the 

following relations as given in eq.(2), 

anf.bit0   = bf.bit0;     

anf.bit1   = anf.bit0 + bf.bit8;     

anf.bit2   = anf.bit0 + bf.bit4;   

anf.bit3   = anf.bit0 + bf.bit2;    

anf.bit4   = anf.bit0 + bf.bit1;  

anf.bit5   = anf.bit0 + anf.bit1 + anf.bit2 + bf.bit12; 

anf.bit6   = anf.bit0 + anf.bit1 + anf.bit3 + bf.bit10;   

anf.bit7   = anf.bit0 + anf.bit1 + anf.bit4 + bf.bit9; 

anf.bit8   = anf.bit0 + anf.bit2 + anf.bit3 + bf.bit6; 

anf.bit9   = anf.bit0 + anf.bit2 + anf.bit4 + bf.bit5; 

anf.bit10 = anf.bit0 + anf.bit3 + anf.bit4 + bf.bit3; 

0anf.bit11 = anf.bit0 + anf.bit1 + anf.bit2 + anf.bit3 + anf.bit5 + anf.bit6 + anf.bit8   + bf.bit14; 

anf.bit12 = anf.bit0 + anf.bit1 + anf.bit2 + anf.bit4 + anf.bit5 + anf.bit7 + anf.bit9   + bf.bit13; 

anf.bit13 = anf.bit0 + anf.bit1 + anf.bit3 + anf.bit4 + anf.bit6 + anf.bit7 + anf.bit10 + bf.bit11; 

anf.bit14 = anf.bit0 + anf.bit2 + anf.bit3 + anf.bit4 + anf.bit8 + anf.bit9 + anf.bit10 + bf.bit7; 

anf.bit15 = anf.bit0 + anf.bit1 + anf.bit2 + anf.bit3 + anf.bit4 + anf.bit5 + anf.bit6   + anf.bit7  

+ anf.bit8 + anf.bit9 + anf.bit10 + anf.bit11 + anf.bit12 + anf.bit13 + anf.bit14 + bf.bit15        …      (2) 

The DEBF (Decimal Equivalent of BF) varies from 0 through 65535 and each decimal value is converted to a 16-bit binary 

output of the Boolean function from bf.bit0 through bf.bit15.  Based on the binary output of a BF, the ANF coefficients from 

anf.bit0 through anf.bit15 are calculated sequentially using eq. (2).  

 

3.6.2 A Review on Linear Cryptanalysis of 4-bit Crypto S-boxes [HH96][HH02]. The given 4-bit Crypto S-box has 

been described in sub-section 3.6.2.1. The relation of 4-bit S-boxes with 4 bit BFs and with Linear Approximations are described 

in sub-section 3.6.2.2 and 3.6.2.3 respectively. LAT or Linear Approximation Table has also been illustrated in sec 3.6.2.4. 

Algorithm of Linear Cryptanalysis with Time Complexity Analysis has been described in sec. 3.6.2.5.  
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3.6.2.1. 4-bit Crypto S-boxes: A 4-bit Crypto S-box can be written as Follows in Table.26, where the each element of the first 

row of Table.26, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 

2nd row, entitled as S-box, are the elements of the given Substitution box. It can be concluded that the 1st row is fixed for all 

possible Crypto S-boxes. The values of each element of the 1st row are distinct, unique and vary between 0 to F in hex. The 

values of the each element of the 2nd row of a Crypto S-box are also distinct and unique and also vary between 0 to F in hex. The 

values of the elements of the fixed 1st row are sequential and monotonically increasing where for the 2nd row they can be 

sequential or partly sequential or non-sequential. Here the given Substitution box is the 1st 4-bit S-box of the 1st S-box out of 8 of 

Data Encryption Standard [AT90][NT77][NT99].  

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

Table.26. 4-bit Crypto S-box. 

3.6.2.2. Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit 

Crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence that are given in 

column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2 through 5 and row 7 

through A of each column from 1 through G of Table.27. shows the 4-bit bit sequences of the corresponding hexadecimal 

numbers of the index of each element of the given Crypto S-box and each element of the Crypto S-box itself. Each row from 2 

through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a 16 bit long input vectors (IPVs) 

and 4-bit output BFs (OPBFs) respectively. column 1 through G of Row 2 is termed as 4th IPV, Row 3 is termed as 3rd IPV, Row 

4 is termed as 2nd IPV and Row 5 is termed as 1st IPV whereas column 1 through G of Row 7 is termed as 4th OPBF, Row 8 is 

termed as 3rd OPBF, Row 9 is termed as 2nd OPBF and Row A is termed as 1st OPBF [AT90]. The decimal equivalent of each 

IPV and OPBF are noted at column H of respective rows. 

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G H. Decimal 

Equivalent 1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255 

3 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855 

4 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107 

5 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845 

6 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7  

7 OPBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 42836 

8 OPBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 58425 

9 OPBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 36577 

A OPBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 13965 

 

   Table.27. Decomposition of 4-bit input S-box and given S-box (1st 4-bit S-box of 1st S-box out of 8 of DES) to 4-bit BFs. 

3.6.2.3. 4-bit Linear Relations. The elements of input S-box have been shown under column heading ‘I’ and the Input 

Vectors have been shown under field IPVs (Input Vectors) and subsequently under column headings 1, 2, 3 and 4. The 4th input 

vector has been depicted under column heading ‘4’, 3rd input vector has been depicted under column heading ‘3’, 2nd input vector 

has been depicted under column heading ‘2’ and 1st input vector has been depicted under column heading ‘1’. The elements of S-

box have been shown under column heading ‘SB’ and the Output 4-bit BFs are shown under field OPBFs (Output Boolean 

Functions) and subsequently under column headings 1, 2, 3 and 4. The 4th Output  BF has been depicted under column heading 

‘4’, 3rd Output  BF has been depicted under column heading ‘3’, 2nd Output  BF has been depicted under column heading ‘2’ and 

1st Output  BF has been depicted under column heading ‘1’ of table.28. 

  

I 
IPVs S 

B 

OPBFs 

4 3 2 1 4 3 2 1 

0 0 0 0 0 E 1 1 1 0 

1 0 0 0 1 4 0 1 0 0 

2 0 0 1 0 D 1 1 0 1 

3 0 0 1 1 1 0 0 0 1 

4 0 1 0 0 5 0 1 0 1 

5 0 1 0 1 9 1 0 0 1 

6 0 1 1 0 0 0 0 0 0 

7 0 1 1 1 7 0 1 1 1 

8 1 0 0 0 2 0 0 1 0 

9 1 0 0 1 F 1 1 1 1 
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A 1 0 1 0 B 1 0 1 1 

B 1 0 1 1 8 1 0 0 0 

C 1 1 0 0 3 0 0 1 1 

D 1 1 0 1 A 1 0 1 0 

E 1 1 1 0 6 0 1 1 0 

F 1 1 1 1 C 1 1 0 0 

       Table. 28. IPVs and OPBFs for given S-box 

The IPEs or Input Equations are all possible xored terms that can be formed using four IPVs 4, 3, 2 and 1. On the other hand 

OPEs are possible xored terms that can be formed using four OPVs 4, 3, 2 and 1. All possible IPEs and OPEs are listed under the 

column and also row heading (IPE = OPE) from row 2 through H and column 1 through G respectively. Each cell is a linear 

equation equating IPE to OPE. Such as L1+2+4,2+3 is the linear equation formed by IPE ‘1+2+3’ i.e. the xored combination of three 

IPVs 1, 2 and 4 and OPE ‘2+3’ i.e. the xored combination of two OPBFs 2 and 3. The 256 possible 4-bit Linear Equations are 

shown in Table 29. 

Rows Columns 1 2 3 4 5 6 7 8 9 A B 

1 IPE = OPE 0 1 2 3 4 1+2 1+3 1+4 2+3 2+4 3+4 

2 0 L0,0 L0,1 L0,2 L0,3 L0,4 L0,1+2 L0,1+3 L0,1+4 L0,2+3 L0,2+4 L0,3+4 

3 1 L1,0 L1,1 L1,2 L1,3 L1,4 L1,1+2 L1,1+3 L1,1+4 L1,2+3 L1,2+4 L1,3+4 

4 2 L2,0 L2,1 L2,2 L2,3 L2,4 L2,1+2 L2,1+3 L2,1+4 L2,2+3 L2,2+4 L2,3+4 

5 3 L3,0 L3,1 L3,2 L3,3 L3,4 L3,1+2 L3,1+3 L3,1+4 L3,2+3 L3,2+4 L3,3+4 

6 4 L4,0 L4,1 L4,2 L4,3 L4,4 L4,1+2 L4,1+3 L4,1+4 L4,2+3 L4,2+4 L4,3+4 

7 1+2 L1+2,0 L1+2,1 L1+2,2 L1+2,3 L1+2,4 L1+2,1+2 L1+2,1+3 L1+2,1+4 L1+2,2+3 L1+2,2+4 L1+2,3+4 

8 1+3 L1+3,0 L1+3,1 L1+3,2 L1+3,3 L1+3,4 L1+3,1+2 L1+3,1+3 L1+3,1+4 L1+3,2+3 L1+3,2+4 L1+3,3+4 

9 1+4 L1+4,0 L1+4,1 L1+4,2 L1+4,3 L1+4,4 L1+4,1+2 L1+4,1+3 L1+4,1+4 L1+4,2+3 L1+4,2+4 L1+4,3+4 

A 2+3 L2+3,0 L2+3,1 L2+3,2 L2+3,3 L2+3,4 L2+3,1+2 L2+3,1+3 L2+3,1+4 L2+3,2+3 L2+3,2+4 L2+3,3+4 

B 2+4 L2+4,0 L2+4,1 L2+4,2 L2+4,3 L2+4,4 L2+4,1+2 L2+4,1+3 L2+4,1+4 L2+4,2+3 L2+4,2+4 L2+4,3+4 

C 3+4 L3+4,0 L3+4,1 L3+4,2 L3+4,3 L3+4,4 L3+4,1+2 L3+4,1+3 L3+4,1+4 L3+4,2+3 L3+4,2+4 L3+4,3+4 

D 1+2+3 L1+2+3,0 L1+2+3,1 L1+2+3,2 L1+2+3,3 L1+2+3,4 L1+2+3,1+2 L1+2+3,1+3 L1+2+3,1+4 L1+2+3,2+3 L1+2+3,2+4 L1+2+3,3+4 

E 1+2+4 L1+2+4,0 L1+2+4,1 L1+2+4,2 L1+2+4,3 L1+2+4,4 L1+2+4,1+2 L1+2+4,1+3 L1+2+4,1+4 L1+2+4,2+3 L1+2+4,2+4 L1+2+4,3+4 

F 1+3+4 L1+3+4,0 L1+3+4,1 L1+3+4,2 L1+3+4,3 L1+3+4,4 L1+3+4,1+2 L1+3+4,1+3 L1+3+4,1+4 L1+3+4,2+3 L1+3+4,2+4 L1+3+4,3+4 

G 2+3+4 L2+3+4,0 L2+3+4,1 L2+3+4,2 L2+3+4,3 L2+3+4,4 L2+3+4,1+2 L2+3+4,1+3 L2+3+4,1+4 L2+3+4,2+3 L2+3+4,2+4 L2+3+4,3+4 

H 1+2+3+4 L1+2+3+4,0 L1+2+3+4,1 L1+2+3+4,2 L1+2+3+4,3 L1+2+3+4,4 L1+2+3+4,1+2 L1+2+3+4,1+3 L1+2+3+4,1+4 L1+2+3+4,2+3 L1+2+3+4,2+4 L1+2+3+4,3+4 

 

Rows Columns C D E F G 

1 IPE=OPE 1+2+3 1+2+4 1+3+4 2+3+4 1+2+3+4 

2 0 L0,1+2+3 L0,1+2+4 L0,1+3+4 L0,2+3+4 L0,1+2+3+4 

3 1 L1,1+2+3  L1,1+2+4  L1,1+3+4  L1,2+3+4  L1,1+2+3+4  

4 2 L2,1+2+3  L2,1+2+4  L2,1+3+4  L2,2+3+4  L2,1+2+3+4  

5 3 L3,1+2+3 L3,1+2+4 L3,1+3+4 L3,2+3+4 L3,1+2+3+4 

6 4 L4,1+2+3 L4,1+2+4 L4,1+3+4 L4,2+3+4 L4,1+2+3+4 

7 1+2 L1+2,1+2+3 L1+2,1+2+4 L1+2,1+3+4 L1+2,2+3+4 L1+2,1+2+3+4 

8 1+3 L1+3,1+2+3 L1+3,1+2+4 L1+3,1+3+4 L1+3,2+3+4 L1+3,1+2+3+4 

9 1+4 L1+4,1+2+3 L1+4,1+2+4 L1+4,1+3+4 L1+4,2+3+4 L1+4,1+2+3+4 

A 2+3 L2+3,1+2+3 L2+3,1+2+4 L2+3,1+3+4 L2+3,2+3+4 L2+3,1+2+3+4 

B 2+4 L2+4,1+2+3 L2+4,1+2+4 L2+4,1+3+4 L2+4,2+3+4 L2+4,1+2+3+4 

C 3+4 L3+4,1+2+3 L3+4,1+2+4 L3+4,1+3+4 L3+4,2+3+4 L3+4,1+2+3+4 

D 1+2+3 L1+2+3,1+2+3 L1+2+3,1+2+4 L1+2+3,1+3+4 L1+2+3,2+3+4 L1+2+3,1+2+3+4 

E 1+2+4 L1+2+4,1+2+3 L1+2+4,1+2+4 L1+2+4,1+3+4 L1+2+4,2+3+4 L1+2+4,1+2+3+4 

F 1+3+4 L1+3+4,1+2+3 L1+3+4,1+2+4 L1+3+4,1+3+4 L1+3+4,2+3+4 L1+3+4,1+2+3+4 

G 2+3+4 L2+3+4,1+2+3 L2+3+4,1+2+4 L2+3+4,1+3+4 L2+3+4,2+3+4 L2+3+4,1+2+3+4 

H 1+2+3+4 L1+2+3+4,1+2+3 L1+2+3+4,1+2+4 L1+2+3+4,1+3+4 L1+2+3+4,2+3+4 L1+2+3+4,1+2+3+4 

 Table.29. 256, 4-bit Linear Equations with input Equations (IPE) and output Equations (OPE). 

3.6.2.4 Linear Approximation Table (LAT) [6]. 

According to Heys each linear equation is tested for each of 16 4-bit patterns shown in each row under the field IPVs 

and subsequently under the column headings 1, 2, 3 and 4 and the corresponding 16 4-bit patterns under field OPBFs and 

subsequently under the column headings 1, 2, 3 and 4. If a linear equation satisfies 8 times out of 16 then the existence of the 
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linear equation is highly unpredictable. That is the probability is ½. If the numbers of satisfaction of each linear equation is noted 

in respective cells of Table.20. then it is called as Linear Approximation Table or LAT. The Linear Approximation Table for the 

given S-box has been shown in table.30. 

         

 

             

             

 

 

 

 

 

 

 

 

3.6.2.5 Pseudo Code of Algorithm with Time Complexity Analysis of Linear Cryptanalysis of 4-bit Crypto S-

boxes. The algorithm to execute the linear cryptanalysis for 4-bit Crypto S-boxes following Heys [HH96][HH02] considers 4–

bit Boolean variables Ai and Bj whose i and j are the decimal indices varying from 0 to 15 and Ai and Bj are taking 

corresponding bit values from [0000] to [1111]. The algorithm to fill the (16 x 16) elements of the LAT is,   

for(i=0;i<16;i++){ 

A=0;  

for(k=0;k<16;k++) A=A+(Ai0.Xk0+Ai1.Xk1+Ai2.Xk2+Ai3.Xk3)%2;   

for(j=0;j<16;j++){ 

B=0;  

for(k=0;k<16;k++)B= B+(Bj0.Yk0+Bj1.Yk1+Bj2.Yk2+Bj3.Yk3)%2;  

Sij  = (A+B)%2;  

if (Sij==0) Cij++; Nij  = Cij – 8;   

}   

} 

Time Complexity of the given Algorithm. Since the Pseudo Code contains two nested loops so the time complexity of the given 

algorithm has been O(n2). 

3.7 Linear Approximation Analysis: 
 A Crypto 4-bit S-box (1st 4-bit S-box out of 32 4-bit S-boxes of DES) has been described in sub-section 3.7.1. The 

Table for four input vectors, Output 4-bit BFs and corresponding ANFs has been depicted in sub-section 3.7.2. The analysis has 

been described in sub-section 3.7.3. The result of Analysis has been given in sub-section 3.7.4.   

3.7.1 4-bit Crypto S-boxes: A 4-bit Crypto S-box can be written as Follows in Table.31, where the each element of the first row 

of Table.31, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 2nd 

row, entitled as S-box, are the elements of the given Substitution box. It can be concluded that the 1st row is fixed for all possible 

Crypto S-boxes. The values of each element of the 1st row are distinct, unique and vary between 0 to F in hex. The values of the 

each element of the 2nd row of a Crypto S-box are also distinct and unique and also vary between 0 to F in hex. The values of the 

elements of the fixed 1st row are sequential and monotonically increasing where for the 2nd row they can be sequential or partly 

sequential or non-sequential. Here the given Substitution box is the 1st 4-bit S-box of the 1st S-box out of 8 of Data Encryption 

Standard [AT90][NT77][NT99].  

 

 

 

 

 

         Table.30. Linear Approximation Table (LAT) for given S-box 
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Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

Table.31. 4-bit Crypto S-box. 
3.7.2 Input Vectors (IPVs)-Output BFs (OPBFs)-Algebraic Normal Forms (ANFs). The elements of input S-box have been 

shown under column heading ‘ISB’ and the Input Vectors have been shown under the field IPVs (Input Vectors) and 

subsequently under column headings 1, 2, 3 and 4. The 4th input vector has been depicted under column heading ‘4’, 3rd input 

vector has been depicted under column heading ‘3’, 2nd input vector has been depicted under column heading ‘2’ and 1st input 

vector has been depicted under column heading ‘1’. The elements of S-box have been shown under column heading ‘OSB’ and 

the Output 4-bit BFs have been shown under field OPBFs (Output Boolean Functions) and subsequently under column headings 

1, 2, 3 and 4. The 4th Output  BF has been depicted under column heading ‘4’, 3rd Output  BF has been depicted under column 

heading ‘3’, 2nd Output  BF has been depicted under column heading ‘2’ and 1st Output  BF has been depicted under column 

heading ‘1’. The corresponding ANFs for 4 OPBFs, OPBF-4th , OPBF-3rd, OPBF-2nd , OPBF-1st, are depicted under field ‘ANFs’ 

subsequently under column heading 4, 3, 2 and 1 respectively of Table.32.. 

ISB 
IPVs 

OSB 
OPBFs ANFs 

4321 4321 4321 
0 0000 E 1110 1110 

1 0001 4 0100 1010 

2 0010 D 1101 0011 

3 0011 1 0001 1100 

4 0100 2 0010 1101 

5 0101 F 1111 0110 

6 0110 B 1011 0111 

7 0111 8 1000 0011 

8 1000 3 0011 1010 

9 1001 A 1010 0110 

A 1010 6 0110 1010 

B 1011 C 1100 1000 

C 1100 5 0101 0101 

D 1101 9 1001 0010 

E 1110 0 0000 1010 

F 1111 7 0111 0000 

 

Table32. Input and Output Boolean Functions 

With Corresponding ANF Coefficients of the given S-box. 

 

3.7.3 Linear Approximation Analysis (LAA). An Algebraic Normal Form or ANF equation is termed as Linear Equation 

or Linear Approximation if the Nonlinear Part or NP (i.e. The xored value of all product terms of equation 2 for corresponding 4 

bit values of IPVs, with column heading 4, 3, 2, 1) is 0 and The Linear part or LP for corresponding 4 bit values of IPVs, with 

column heading 4, 3, 2, 1 is equal to corresponding BF bit values. The corresponding ANF coefficients of output BFs F(4), F(3), 

F(2), and F(1) are given under row heading ANF(F4), ANF(F3), ANF(F2) and ANF(F1) respectively from row 2 through 5 and 

column 4 through J. In which Column 4 of row 2 through 5 gives the value of Constant Coefficient (a0 according to eqn.2.) of 

ANF(F4), ANF(F3), ANF(F2) and ANF(F1) respectively. Column 5 through 8 of row 2 through 5 gives the value of respective 

Linear Coefficients more specifically a1, a2, a3, a4 (according to eqn. 2.) of ANF(F4), ANF(F3), ANF(F2) and ANF(F1). They 

together termed as LP or Linear Part of the respective ANF Equation. Column 9 through J of row 2 through 5 gives the value of 

respective Non-Linear Coefficients more specifically a5 to a15 (according to eqn. 2.) of ANF(F4), ANF(F3), ANF(F2) and 

ANF(F1). They together termed as NP or Non-Linear Part of the respective ANF Equation. 

 The 4th, 3rd, 2nd, 1st IPV for the given S-box have been noted in the Field ‘IPVs’ under column heading 4, 3, 2, 1 

respectively from row 8 through M of Table.23. The 4 output BFs F4, F3, F2, F1 are noted at column 4, 8, C, G from row 8 

through M respectively. The corresponding LP, NP, Satisfaction (SF) values (LP = BF)are noted at column 5 through 7, 9 

through B, C through F and H to J from row 8 through M respectively of Table.33. 
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R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H I J 

1 Co-Effs C LP NP 

2 ANF(F4) 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 

3 ANF(F3) 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 

4 ANF(F2) 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 

5 ANF(F1) 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 

6 I 

D 

IPVs S 

B 

F L 

P 

N 

P 

S 

F 

F L 

P 

N 

P 

S 

F 

F L 

P 

N 

P 

S 

F 

F L 

P 

N 

P 

S 

F 7 4321 4 3 2 1 

8 0 0000 E 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 

9 1 0001 4 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 

A 2 0010 D 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 

B 3 0011 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 

C 4 0100 2 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 

D 5 0101 F 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 

E 6 0110 B 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 

F 7 0111 8 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 

G 8 1000 3 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 

H 9 1001 A 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 

R|C I 

D 

IPVs 

4321 

S 

B 

F 

4 

L 

P 

N 

P 

S 

F 

F 

3 

L 

P 

N 

P 

S 

F 

F 

2 

L 

P 

N 

P 

S 

F 

F 

1 

L 

P 

N 

P 

S 

F 

I A 1010 6 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 

J B 1011 C 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 

K C 1100 5 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 

L D 1101 9 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 

M E 1110 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 

N F 1111 7 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 

Table.33. Linear Approximation Analysis 

3.7.4. Result 

 

No. of LA with BF1 No. of LA with BF2 No. of LA with BF3 No. of LA with BF4 

7 4 2 8 

Total Number of Existing Linear Approximations: 21. 

 

3.7.5  Pseudo Code with Time Complexity Analysis of the Linear Approximation Analysis Algorithm: The 

Nonlinear Part for the given analysis has been termed as NP. The ANF coefficients are illustrated through array anf[16]. IPVs are 

termed as x1, x2, x3, x4 for IPV1, IPV2, IPV3, IPV4 respectively. The Pseudo Code of algorithm of the above analysis is given 

below, 

 

Start. 

Step 1. NP = (anf[5].&x1&x2)^(anf[6]&x1 &x3)+( anf[7]&x1 &x4)+(anf[8] &x2 
&x3)+(anf[9]&x2 &x4)+(anf[10]&x3 &x4)(anf[11]&x1 &x2 &x3)+(anf[12]&x1 &x2 
&x4)+(anf[13]&x1 &x3 &x4) +(anf[14] &x2 &x3 &x4)+(anf[15]&x1 &x2 &x3 &x4)) 

Step 2. LP= anf[0] ^(anf[1].&x1)^ (anf[2].&x2)^ (anf[3].&x3)^ (anf[4].&x4). 

Step 3. if(NP==0&& BF(x1x2x3x4) == LP) then Linear equation. 

     else Nonlinear equation. 

Stop. 

Time Complexity. Since the analysis contains no loops so the Time complexity of the algorithm has been O(n). 

3.7.6. Comparison of Execution time Complexity of Linear Cryptanalysis of 4-bit Crypto S-boxes and Linear 

Approximation Analysis of 4-bit S-boxes. The Comparison of time complexity of two algorithms has been given in 

Table.34 as follows, 

 

View 4-bit LC 4-bit LA 

Time Complexity O(n2) O(n) 

Table.34. Time Complexity Comparison of Two Algos. 
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It can be concluded from the comparison that the Execution time reduces in Linear Approximation Analysis than the Linear 

Cryptanalysis of 4-bit Crypto S-boxes. So in can be concluded from above review work that the execution time of 4-bit LA 

Algorithm is much less that 4-bit LC Algorithm so 4-bit LA algorithm has been proved to be much better algorithm. 

4. S-box Generation. In this section polynomials over Galois Field GF(pq) and roll of IPs to construct substitution 

boxes have been reviewed in subsec. 4.1 of section.4. The generation of 4 and 8 bit S-boxes using BCNs have been elaborated in 

subsec 4.2 of section 4.. The generation of 4-bit and 8-bit S-boxes with Coefficients of non-binary Galois Field Polynomials has 

been depicted in subsec.4.3 of section 4. The cryptographic and security analysis of 32 DES 4-bit S-boxes has been given in 

subsec.4.4 of sec.4. Detailed cryptographic and security analysis of generated 10 4-bit crypto S-boxes with discussed crypto 

related cryptographic properties and security criterion have also been given in subsec.4.4. of sec.4. Results have been discussed 

in Result and Discussion section in subsec.4.5 of sec.4.    

 

4.1. Polynomials over Galois field GF(p
q
) and log 2 

q+1 
bit S-boxes. In this section the sub section 4.1.1. has been 

devoted to a small review of Polynomials. The sub section 4.1.2. has been of utmost importance since in it a four bit crypto or 

proper S-box has been defined in brief. At last in sub section 4.1.3. The equation among 215 Galois field Polynomials and a 4-bit 

crypto S-box has been elaborated in details. 

4.1.1. Polynomials over Galois field GF(p
q
). Polynomials over Galois field GF(pq) have been of utmost importance in 

cryptographic applications. Polynomials with degree q have been termed as Basic Polynomials over Galois field GF(pq) and 

Polynomials with degree less than q have been termed as Elemental Polynomials over Galois field GF(pq). Polynomials with 

leading coefficient as 1 have been termed as Monic Polynomials irrespective of BPs and EPs over Galois field GF(pq). An 

example, of the said criteria have been described as follows, the Example of Basic Polynomial or BP over Galois field GF(pq) has 

been given below, 

 

BP(x) = coq x
q + coq-1 x

q-1 + coq-1 x
q-2 +…………………….+ co2 x

2 + co1 x
1 + a0………………………………(i) 

 

In equation (i) BP(x) has been represented as Basic Polynomial or BP over Galois field GF(pq) since the highest degree term of 

the said polynomial over Galois field GF(pq) has been q. The BP has been called as a Monic BP over Galois field GF(pq) if coq = 

1. The number of Terms in a BP over Galois field GF(pq) has been (q+1). The number of possible values of a particular 

coefficient coq, where 0≤p≤q has been from 0 to p i.e. (p+1). If the value of q has been ˂q then The polynomial over Galois field 

GF(pq) has been termed as Elemental Polynomial or EPs over Galois field GF(pq). If a BP or EP contains only constant term then 

the polynomial has been termed as Constant Polynomial or CP over Galois field GF(pq). If a BP over Galois field GF(pq) can be 

factored into two non-constant EPs then the BP can be termed as Reducible Polynomials or RPs over Galois field GF(pq). If the 

two factor of a BP over Galois field GF(pq) have been the BP itself and a constant Polynomial or CP then The BP have been said 

as an Irreducible Polynomial or IP over Galois field GF(pq). 

4.1.2. 4-bit Crypto S-boxes: A 4-bit crypto S-box can be written as Follows, where the each element of the first row of 

Table.35, entitled as index, are the position of each element of the S-box within the given S-box and the elements of the 2nd row, 

entitled as S-box, are the elements of the given Substitution box. It can be concluded that the 1st row is fixed for all possible 

crypto S-boxes. The values of each element of the 1st row are distinct, unique and vary between 0 and F. The values of the each 

element of the 2nd row of a crypto S-box have also been distinct and unique and also vary between 0 and F. The values of the 

elements of the fixed 1st row are sequential and monotonically increasing where for the 2nd row they can be sequential or partly 

sequential or non- sequential. Here the given Substitution Box is the 1st 4-bit S-box of the 1st S-box out of 8 of Data Encryption 

Standard [AT90][NT77][NT99].  

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

Table.35.  4-bit bijective Crypto S-box. 

4.1.3 Relation between 4-bit S-boxes and Polynomials over Galois field GF (2
15

). Index of Each element of a 4-bit 

crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence. From row 2 

through 5 and row 7 through A of each column from 1 through G of Table.36. shows the 4-bit bit sequences of the corresponding 

hexadecimal numbers of the index of each element of the given S-box and each element of the S-box itself. Each row from 2 

through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a Basic Polynomial or BP over 

Galois field GF(215). column 1 through G of Row 2 has been termed as 4th IGFP, Row 3 has been termed as 3rd IGFP, Row 4 has 

been termed as 2nd IGFP and Row 5 has been termed as IGFP whereas column 1 through G of Row 7 has been termed as 4th 

OGFP, Row 8 has been termed as 3rd OGFP, Row 9 has been termed as 2nd OGFP and Row A has been termed as 1st OGFP. The 

decimal equivalents of each IGFP and OGFP have been noted at column H of respective rows. Here IGFP stands for Input Galois 

Field Polynomial and OGFP stands for Output Galois Field Polynomials. The respective Polynomials have been shown in Row 1 

through 8 of column 3 of Table.3. 
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Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G H. Decimal 

Equivalent 1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 IGFP4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255 

3 IGFP3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855 

4 IGFP2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107 

5 IGFP1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845 

6 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7  

7 OGFP4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 42836 

8 OGFP3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 58425 

9 OGFP2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 36577 

A OGFP1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 13965 

Table.36. Input and Output BCNs of the Substitution Box 

   

Col 

Row 

1 2 3 

Index DCM Eqv. Polynomials over Galois Field GF(215). 

1 IGFP4 00255 BP(x) = x7+x6+x5+x4+x3+x2+x1+1. 

2 IGFP3 03855 BP(x) = x11+x10+x9+x8+x3+x2+x1+1. 

3 IGFP2 13107 BP(x) = x13+x12+x9+x8+x5+x4+x1+1. 

4 IGFP1 21845 BP(x) = x14+x12+x10+x8+x6+x4+x2+1. 

5 OGFP4 42836 BP(x) = x15+x13+x10+x9+x8+x6+x4+ x2. 

6 OGFP3 58425 BP(x) = x15+x14+x13+x10+x5+x4+x3+1. 

7 OGFP2 36577 BP(x) = x15+x11+x10+x9+x7+x6+x5+1. 

8 OGFP1 13965 BP(x) = x13+x12+x10+x9+x7+x3+x2+1. 

Table.37. Respective Polynomials of IGFP4 through IGFP1 and OGFP4 through OGFP1 

4.2 4 and 8 bit S-box Generation by respective BCNs over Binary Galois Field GF(2
q
) where q €(15 and 255) 

respectively. In this paper 4 and 8 bit identity S-boxes have been taken for example for generation of 4 and 8 bit S-boxes over 

binary Galois Fields GF(2q) where  q €(15 and 255) respectively. The generation of identity 4-bit S-box from four BCNs over 

binary Galois Field GF(215) have been elaborated in sub section 4.2.1 and The generation of identity 8-bit S-box from Eight 

BCNs over Binary Galois Field GF(2255) have been elaborated in sub section 4.2.2. The Algorithm for generation of log 2 
q+1 bit 

S-boxes over Binary Galois Field GF(2q) has been depicted with Time Complexity of the algorithm in sub section 4.2.3. 

4.2.1. Generation of 4-bit Identity Crypto S-box from four Polynomials over Binary Galois Field GF(215). 

The Concerned 4-bit identity S-box has been shown in table.38 where each element of the first row of Table.38, entitled as index, 

have been the position of each element of the S-box within the given S-box and the elements of the 2nd row, entitled as S-box, are 

the elements of the given identity Substitution box. It can be concluded that the 1st row has been fixed for all possible crypto S-

boxes. The values of each element of the 1st row are distinct, unique and vary between 0 and F. The values of the each element of 

the 2nd row of the identity crypto S-box have also been distinct and unique and also vary between 0 and F. The values of the 

elements of the fixed 1st row are sequential and monotonically increasing where for the 2nd row, they are also sequential and 

monotonically increasing for this identity S-box. Here the given Substitution Box is the 4-bit identity crypto S-box.  

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Table.38. 4-bit Identity Crypto S-box. 

 

Index of Each element of a 4-bit crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-

bit bit sequence. From row 2 through 5 and row 7 through A of each column from 1 through G of Table.39. shows the 4-bit bit 

sequences of the corresponding hexadecimal numbers of the index of each element of the given S-box and each element of the S-

box itself. Each row from 2 through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit sequence that is a Basic 

Polynomial over Galois field GF(215). column 1 through G of Row 2 has been termed as 4th IGFP, Row 3 has been termed as 3rd 

IGFP, Row 4 has been termed as 2nd IGFP and Row 5 has been termed as IGFP whereas column 1 through G of Row 7 has been 

termed as 4th OGFP, Row 8 has been termed as 3rd OGFP, Row 9 has been termed as 2nd OGFP and Row A has been termed as 

1st OGFP. The decimal equivalents of each IGFP and OGFP have been noted at column H of respective rows. Where IGFP stands 

for Input Galois Field Polynomials and OGFP stands for Output Galois Field Polynomials. The respective Polynomials have been 

shown in Row 1 through 8 of column 3 of Table.40. 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G H. Decimal 

Equivalent 1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 IBCN4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255 

3 IBCN3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855 

4 IBCN2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107 

5 IBCN1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26452v1 | CC BY 4.0 Open Access | rec: 22 Jan 2018, publ: 22 Jan 2018



6 S-box 0 1 2 3 4 5 6 7 8 9 A B C D E F  

7 OBCN4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255 

8 OBCN3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855 

9 OBCN2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107 

A OBCN1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845 

Table.39. Input and Output BCNs of the Identity Substitution Box 

 

Col 

Row 

1 2 3 

Index DCM Eqv. Polynomials over Galois Field GF(215). 

1 IGFP4 00255 BP(x) = x7+x6+x5+x4+x3+x2+x1+1. 

2 IGFP3 03855 BP(x) = x11+x10+x9+x8+x3+x2+x1+1. 

3 IGFP2 13107 BP(x) = x13+x12+x9+x8+x5+x4+x1+1. 

4 IGFP1 21845 BP(x) = x14+x12+x10+x8+x6+x4+x2+1. 

5 OGFP4 00255 BP(x) = x7+x6+x5+x4+x3+x2+x1+1. 

6 OGFP3 03855 BP(x) = x11+x10+x9+x8+x3+x2+x1+1. 

7 OGFP2 13107 BP(x) = x13+x12+x9+x8+x5+x4+x1+1. 

8 OGFP1 21845 BP(x) = x14+x12+x10+x8+x6+x4+x2+1. 

Table.40. Respective Polynomials of IGFP4 through IGFP1 and OGFP4 through OGFP1 

4.2.2 Generation of 8-bit Identity Crypto S-box from Eight Polynomials over Binary Galois Field GF(2255). 

The concerned 8-bit identity S-box has been shown in table.41 where each element of the first row of Table.41, entitled as index, 

are the position of each element of the S-box within the given S-box and the elements of the column 1 through G of  2nd to 17th  

row, entitled as S-box, have been the elements of the given 8-bit identity Substitution box sequentially. It can be concluded that 

the 1st row is fixed for all possible 8-bit bijective crypto S-boxes. The values of each element of the 1st row are distinct, unique 

and vary between 0 and F. The values of the each element of the column 1 through G of 2nd row to 17th row of the 8-bit identity 

crypto S-box are also distinct and unique and vary between 0 and 256. The values of the elements of the fixed 1st row are 

sequential and monotonically increasing where for the 2nd to 17th row, they can be sequential or partly sequential or non- 

sequential and for this case elements are sequential and monotonically increasing. Here the given substitution box has been the 8-

bit identity crypto S-box. 

  

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 

S-box 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

4 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

5 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63. 

6 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

7 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

8 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

9 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

10 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

11 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

12 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

13 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 

14 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 

15 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 

16 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 

17 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

Table.41. 8-bit identity crypto S-box. 

Index of Each element of an 8-bit crypto S-box and the element itself is a hexadecimal number and that can be converted into a 

256-bit long 8 bit bit sequence. From row 2 through 9 and row A through H of column 2 of Table.42. shows the 8-bit bit 

sequences of the corresponding hexadecimal numbers of the index of each element of the given S-box and each element of the S-

box itself. Each row from 2 through 9 and A through H of column 2 constitutes a 256 bit, bit sequence that is a Basic Polynomial 

over Galois field GF(2255). column 2 of Row 2 has been termed as 8th IGFP, Row 3 has been termed as 7th IGFP, Row 4 has been 

termed as 6th IGFP ,Row 5 has been termed as 5th IGFP, Row 6 has been termed as 4th IGFP, Row 7 has been termed as 3rd IGFP, 

Row 8 has been termed as 2nd IGFP and Row 9 has been termed as 1st IGFP whereas column 2 of Row A has been termed as 8th 

OGFP, Row B has been termed as 7th  OGFP, Row C has been termed as 6th  OGFP, Row D has been termed as 5th OGFP, Row E 

has been termed as 4th OGFP, Row F has been termed as 3rd OGFP, Row G has been termed as 2nd OGFP and Row H has been 

termed as 1st IGFP. The Binary Coefficient Number of each IGFP and OGFP from MSB [256th bit] to LSB [0th bit] have been 

given in corresponding rows of each IGFP and OGFP. Where IGFP stands for Input Galois Field Polynomials and OGFP for 

Output Galois Field Polynomials. The respective polynomial for IGFP8 and OGFP8 has been shown in Table.43 
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. 

Row Col. 
MSB                                     Polynomials (BCNs)[col.2]                                        LSB 

1 1 

2 IGFP8 

0000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000 

1111111111111111111111111111111111111111111111111111111111111111 

1111111111111111111111111111111111111111111111111111111111111111 

3 IGFP 7 

0000000000000000000000000000000000000000000000000000000000000000 

1111111111111111111111111111111111111111111111111111111111111111 

0000000000000000000000000000000000000000000000000000000000000000 

1111111111111111111111111111111111111111111111111111111111111111 

4 IGFP 6 

0000000000000000000000000000000011111111111111111111111111111111 

0000000000000000000000000000000011111111111111111111111111111111 

0000000000000000000000000000000011111111111111111111111111111111 

0000000000000000000000000000000011111111111111111111111111111111 

5 IGFP 5 

0000000000000000111111111111111100000000000000001111111111111111 

0000000000000000111111111111111100000000000000001111111111111111 

0000000000000000111111111111111100000000000000001111111111111111 

0000000000000000111111111111111100000000000000001111111111111111 

6 IGFP 4 

0000000011111111000000001111111100000000111111110000000011111111 

0000000011111111000000001111111100000000111111110000000011111111 

0000000011111111000000001111111100000000111111110000000011111111 

0000000011111111000000001111111100000000111111110000000011111111 

7 IGFP 3 

0000111100001111000011110000111100001111000011110000111100001111 

0000111100001111000011110000111100001111000011110000111100001111 

0000111100001111000011110000111100001111000011110000111100001111 

0000111100001111000011110000111100001111000011110000111100001111 

8 IGFP 2 

0011001100110011001100110011001100110011001100110011001100110011 

0011001100110011001100110011001100110011001100110011001100110011 

0011001100110011001100110011001100110011001100110011001100110011 

0011001100110011001100110011001100110011001100110011001100110011 

9 IGFP 1 

0101010101010101010101010101010101010101010101010101010101010101 

0101010101010101010101010101010101010101010101010101010101010101 

0101010101010101010101010101010101010101010101010101010101010101 

0101010101010101010101010101010101010101010101010101010101010101 

A OGFP8 

0000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000 

1111111111111111111111111111111111111111111111111111111111111111 

1111111111111111111111111111111111111111111111111111111111111111 

B OGFP 7 

0000000000000000000000000000000000000000000000000000000000000000 

1111111111111111111111111111111111111111111111111111111111111111 

0000000000000000000000000000000000000000000000000000000000000000 

1111111111111111111111111111111111111111111111111111111111111111 

C OGFP 6 

0000000000000000000000000000000011111111111111111111111111111111 

0000000000000000000000000000000011111111111111111111111111111111 

0000000000000000000000000000000011111111111111111111111111111111 

0000000000000000000000000000000011111111111111111111111111111111 

D OGFP 5 

0000000000000000111111111111111100000000000000001111111111111111 

0000000000000000111111111111111100000000000000001111111111111111 

0000000000000000111111111111111100000000000000001111111111111111 

0000000000000000111111111111111100000000000000001111111111111111 

   E OGFP 4 

0000000011111111000000001111111100000000111111110000000011111111 

0000000011111111000000001111111100000000111111110000000011111111 

0000000011111111000000001111111100000000111111110000000011111111 

0000000011111111000000001111111100000000111111110000000011111111 

F OGFP 3 

0000111100001111000011110000111100001111000011110000111100001111 

0000111100001111000011110000111100001111000011110000111100001111 

0000111100001111000011110000111100001111000011110000111100001111 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26452v1 | CC BY 4.0 Open Access | rec: 22 Jan 2018, publ: 22 Jan 2018



0000111100001111000011110000111100001111000011110000111100001111 

G OGFP 2 

0011001100110011001100110011001100110011001100110011001100110011 

0011001100110011001100110011001100110011001100110011001100110011 

0011001100110011001100110011001100110011001100110011001100110011 

0011001100110011001100110011001100110011001100110011001100110011 

H OGFP 1 

0101010101010101010101010101010101010101010101010101010101010101 

0101010101010101010101010101010101010101010101010101010101010101 

0101010101010101010101010101010101010101010101010101010101010101 

0101010101010101010101010101010101010101010101010101010101010101 

Table.42. BCNs for 8 IGFPs and OGFPs. 

 

BCNs of Polynomial 

IGFP8 &OGFP8 

x127+ x126+ x125+ x124+ x123+ x122+ x121+ x120+ x119+ x118+ x117+ x116+ x115+ x114+ x113+ x112+ 

x111+ x110+ x109+ x108+ x107+ x106+ x105+ x104+ x103+ x102+ x101+ x100+ x99+ x98+ x97+ x96+ 

x95+ x94+ x93+ x92+ x91+ x90+ x89+ x88+ x87+ x86+ x85+ x84+ x83+ x82+ x81+ x80+ 

x79+ x78+ x77+ x76+ x75+ x74+ x73+ x72+ x71+ x70+ x69+ x68+ x67+ x66+ x65+ x64+ 

x63+ x62+ x61+ x60+ x59+ x58+ x57+ x56+ x55+ x54+ x53+ x52+ x51+ x50+ x49+ x48+ 

x47+ x46+ x45+ x44+ x43+ x42+ x41+ x40+ x39+ x38+ x37+ x36+ x35+ x34+ x33+ x32+ 

x31+ x30+ x29+ x28+ x27+ x26+ x25+ x24+ x23+ x22+ x21+ x20+ x19+ x18+ x17+ x16+ 

x15+ x14+ x13+ x12+ x11+ x10+ x9+ x8+ x7+ x6+ x5+ x4+ x3+ x2+ x+ 1. 

Table.43. Respective Polynomial of IGFP8 and OGFP8 of the Given 8 bit S-box. 

4.2.3 Algorithm to generate S-box from Polynomials over Galois field GF(215) or GF(2255). 

START. 

Step OA. Choose 4 Galois field Polynomials over Galois field GF(215) or 8 Galois field Polynomials over Galois field GF(2255). 

Step.01. If Number of Terms in BCNs are Half of Number of total terms Then Step 02. Else Step 0A. 

Step.02. Convert to decimal the 4 or 8 bit binary number generated by bits in same position of 4 BCNs for Galois field 

Polynomials over Galois field GF(215) or 8 Galois field Polynomials over Galois field GF(2255). 

STOP. 

Time Complexity of the given Algorithm. O(n).  

 

4.3. 4 and 8 bit S-box Generation by respective BCNs over Non Binary Galois Field GF(1615) and Galois Field GF(256255) 

respectively. The coefficients of each polynomial over non binary Galois Field GF(1615) forms a 4-bit S-box. The Coefficient of 

highest or lowest degree term must be the 1st element in 4-bit S-box, the value of other elements are the value of coefficients with 

immediate degree less than or greater than the previous one. Let The Polynomial be, 

BP(x) = 0x15+1x14+2x13+3x12+4x11+5x10+6x9+7x8+8x7+9x6+10x5+11x4+12x3+13x2+14x+15…………..(ii) 

For the above Polynomial The Constituted 4-bit S-box have been given in Table 44. 

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Table.44. constituted 4-bit Crypto S-box. 

The Polynomial with coefficients in reverse order,  

BP(x) = 15x15+14x14+13x13+12x12+11x11+10x10+9x9+8x8+7x7+6x6+5x5+4x4+3x3+2x2+1x+0…………….(iii) 

For the above Polynomial The Constituted 4-bit S-box have been given in Table 45.  

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 S-box 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Table.45. constituted 4-bit Crypto S-box. 

 

 

The coefficients of each polynomial over non binary Galois Field GF(256255) forms an 8-bit S-box. The Coefficient of highest or 

lowest degree term must be the 1st element in 4-bit S-box, the value of other elements are the value of coefficients with 

immediate degree less than or greater than the previous one. Let The Polynomial be, Let the Polynomial be given in Table.46., 

 

 

Polynomial BP(x) = 

0.x255+ 1.x254+ 2.x253+ 3.x252+ 4.x251+ 5.x250+ 6.x249+ 7.x248+ 8.x247+ 9.x246+ 10.x245+ 11.x244+ 12.x243+ 13.x242+ 14.x241+ 15.x240+16.x239+ 

17.x238+ 18. x237+ 19.x236+ 20.x235+ 21.x234+ 22.x233+ 23.x232+ 24.x231+ 25.x230+ 26.x229+ 27.x228+ 28x227+ 29.x226+ 30.x225+ 31.x224+32. 

X223+ 33. x222+ 34.x221+ 35.x220+ 36.x219+ 37.x218+ 38.x217+39. x216+40. x215+ 41.x214+ 42.x213+ 43.x212+ 44.x211+ 45.x210+ 46.x209+ 

47.x208+48.x207+ 49.x206+ 50.x205+ 51.x204+ 52.x203+ 53.x202+ 54.x201+ 55.x200+ 56.x199+ 57.x198+ 58.x197+ 59.x196+ 60.x195+ 61.x194+ 
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62.x193+ 63.x192+ 64.x191+ 65.x190+ 66.x189+ 67.x188+68.x187+ 69.x186+ 70.x185+ 71.x184+ 72.x183+ 73.x182+ 74.x181+ 75.x180+ 76.x179+ 

77.x178+ 78.x177+ 79.x176+80.X175+ 81.x174+ 82.x173+ 83.x172+84. x171+ 85.x170+ 86.x169+ 87.x168+88. x167+ 89.x166+ 90.x165+ 91.x164+ 

92.x163+ 93.x162+ 94.x161+ 95.x160+96.x159+ 97.x158+ 98.x157+ 99.x156+ 100.x155+ 101.x154+ 102.x153+ 103.x152+ 104.x151+105.x150+106.x149+ 

107.x148+108. x147+109.x146+110. x145+ 111.x144+112.X143+113.x142+114.x141+115.x140+116.x139+117. x138+118. x137+119. x136+120. 

x135+121.x134+122.x133+123.x132+124.x131+125.x130+126.x129+127.x128+128.x127+129. x126+ 130.x125+131.x124+ 132.x123+133.x122+134.x121+ 

135.x120+ 136.x119+ 137.x118+ 138.x117+ 139.x116+ 140.x115+ 141.x114+ 142.x113+ 143.x112+144.x111+ 145.x110+ 146.x109+ 147.x108+ 

148.x107+ 149.x106+ 150.x105+ 151.x104+ 152.x103+ 153.x102+ 154.x101+ 155.x100+ 156.x99+ 157.x98+ 158.x97+ 159.x96+160.x95+ 161.x94+ 

162.x93+ 163.x92+ 164.x91+ 165.x90+ 166.x89+ 167.x88+ 168.x87+ 169.x86+ 170.x85+ 171.x84+ 172.x83+ 173.x82+ 174.x81+ 175.x80+176.x79+ 

177.x78+ 178.x77+ 179.x76+ 180.x75+ 181.x74+ 182.x73+ 183.x72+ 184.x71+ 185.x70+ 186.x69+ 187.x68+ 188.x67+ 189.x66+ 190.x65+ 

191.x64+192.x63+193. x62+ 194.x61+ 195.x60+ 196.x59+ 197.x58+ 198.x57+ 199.x56+ 200.x55+ 201.x54+ 202.x53+ 203.x52+ 204.x51+ 205.x50+ 

206.x49+ 207.x48+208.x47+ 209.x46+ 210.x45+ 211.x44+ 212.x43+ 213.x42+ 214.x41+ 215.x40+ 216.x39+ 217.x38+ 218.x37+219.x36+ 220.x35+ 

221.x34+ 222.x33+ 223.x32+224.x31+ 225.x30+ 226.x29+ 227.x28+ 228.x27+ 229.x26+ 230.x25+ 231.x24+ 232.x23+ 233.x22+ 234.x21+ 235.x20+ 

236.x19+ 237.x18+ 238.x17+ 239.x16+240.x15+ 241.x14+242. x13+ 243.x12+ 244.x11+ 245.x10+ 246.x9+ 247.x8+ 248.x7+ 249.x6+ 250.x5+ 

251.x4+ 252.x3+ 253.x2+ 254x+ 255. 

Table.46. Polynomial to Construct 8-bit Identity S-box. 

For the above Polynomial The Constituted 8-bit S-box have been given in Table 47.  

 

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G 

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F 

2 

S-box 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

4 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

5 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63. 

6 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

7 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

8 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

9 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

10 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

11 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

12 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

13 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 

14 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 

15 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 

16 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 

17 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

Table.47. Constituted Identity 8-bit S-box. 

Note. The 32-bit S-boxes can be constituted by polynomials over Galois field  GF[(232)(2^32-1)] and the 64-bit S-boxes can be 

constituted by polynomials over Galois field GF[(264)(2^64-1)]. 

4.4. Cryptographic analysis of 32 DES 4-bit S-boxes and 10 better 4-bit S-boxes with relevant cryptographic 

properties of 4-bit crypto S-boxes. In subsec.4.4.1.the cryptographic analysis procedures of the said cryptographic 

properties have been described. The cryptographic analysis of 32 DES 4-bit S-boxes has been evaluated in subsec.4.4.2. 

cryptographic analysis of 10 generated better S-boxes has been described in subsec.4.4.3 

4.4.1. Analysis Procedure. For SAC, HO-SAC and Extended SAC of 4-bit S-boxes as the numbers of satisfied COPBFs 

have been increased it will give better security and optimum value gives at most security. 

In Difference Distribution Table there have been 256 cells, i.e. 16 rows and 16 columns. Each row has been for each 

input difference varies from 0 to F. Each column in each row represents each output difference varies from 0 to F for each input 

difference. 0 in any cell indicates absence of that output difference for subsequent input difference. Such as 0 in 2nd cell of 

Table.7.b of relevant DDT means for input difference 0 the corresponding output difference o has been absent. If number of 0 is 

too low or too high it supplies more information regarding concerned output difference. So an S-box is said to be immune to this 

cryptanalytic attack if number of 0s in DDT is close to 128 or half of total cells or 256. In the said example of 1st DES 4-bit S-box 

total numbers of 0s in DDT are 168. That is close to 128. So the S-box has been said to be almost secure from this attack. 

As total number of balanced 4-bit BFs increases in Difference Analysis Table or DAT the security of S-box increases 

since balanced 4-bit BFs supplies at most uncertainty. Since Number of 0s and 1s in balanced 4-bit BFs are equal i.e. they are 

same in number means determination of each bit has been at most uncertainty. In the said example of 1st DES 4-bit S-

box total numbers of 8s in DAT are 36. That is close to 32 half of total 64 cells. So the S-box has been said to be almost less 

secure from this attack. 

In Linear Analysis Table or LAT there are 256 cells for 256 possible 4-bit linear relations. The count of 16 4-bit binary 

conditions to satisfy for any given linear relation has been put into the concerned cell. 8 in a cell indicate that the particular linear 

relation has been satisfied for 8 4-bit binary conditions and remain unsatisfied for 8, 4-bit binary conditions. That is at most 

uncertainty. In the said example of 1st DES 4-bit S-box total numbers of 8s in LAT have been 143. That is close to 128. So the S-

box has been said to be less secure from this attack. 
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The value of nCr has been maximum when the value of r is ½ of the value of n (when n is even). Here the maximum 

number of linear approximations is 64. So if the total satisfaction of linear equation is 32 out of 64 then the number of possible 

sets of 32 linear equations has been the largest. Means if the total satisfaction is 32 out of 64 then the number of possible sets of 

32 possible linear equations is 64C32. That is maximum number of possible sets of linear equations. If the value of total No of 

Linear Approximations is closed to 32 then it is more cryptanalysis immune. Since the number of possible sets of linear equations 

are too large to calculate. As the value goes close to 0 or 64 it reduces the sets of possible linear equations to search, that reduces 

the effort to search for the linear equations present in a particular 4-bit S-box. In this example total satisfaction is 21 out of 64. 

Which means the given 4-bit S-Box is not a good 4 bit S-Box or not a good Crypt analytically immune S-Box. 

If the values of total number of Existing Linear equations for a 4-bit S-Box are 24 to 32, then the lowest numbers of 

sets of linear equations are 250649105469666120. This is a very large number to investigate. So the 4-bit S-Box is declared as a 

good 4-bit S-Box or 4-bit S-Box with good security. If it is between 16 through 23 then the lowest numbers of sets of linear 

equations are 488526937079580. This not a small number to investigate in today’s computing scenario so the S-boxes are 

declared as medium S-Box or S-Box with medium security. The 4-bit S-Boxes having existing linear equations less than 16 are 

declared as Poor 4-bit S-Box or vulnerable to cryptanalytic attack. 

4.4.2. Cryptographic analysis of 32 DES 4-bit S-boxes. The cryptographic analysis of 32 DES 4-bit S-boxes with the 

said relevant cryptographic properties of 4-bit BFs has been given below in table.48. Here in table 48. column heading ‘noelr 

gives numbers of existing linear relations in a particular 4-bit crypto S-box. Column heading ‘nobal’ gives numbers of balanced 

DBFs in linear cryptanalysis. ‘n0dif’ gives numbers of 0s in difference distribution table or DDT and ‘nodif’ gives numbers of 8s 

in DAT. 'nosac’ gives numbers of COPBFs satisfy SAC of 4-bit BFs and ‘n3sac’,’n3sac’ and ‘nalsac’ gives numbers of COPBFs 

satisfy 2nd order SAC of 4-bit BFs, 3rd order SAC of 4-bit BFs and Extended SAC of 4-bit BFs respectively. 
S-box noelr nobal n0dif nodif nosac n2sac n3sac nalsac 

e4d12fb83a6c5907 21 143 168 36 7 15 11 36 

0f74e2d1a6cb9538 29 143 168 36 7 17 9 36 

41e8d62bfc973a50 23 138 168 36 8 15 11 36 

fc8249175b3ea06d 25 154 166 42 10 20 12 42 

f18e6b34972dc05a 24 132 162 30 6 12 9 30 

3d47f28ec01a69b5 21 143 166 30 8 12 7 30 

0e7ba4d158c6932f 31 143 166 21 4 10 6 21 

d8a13f42b67c05e9 20 126 168 36 8 12 12 36 

a09e63f51dc7b428 17 133 162 30 7 12 8 30 

d709346a285ecbf1 22 133 168 30 7 13 8 30 

d6498f30b12c5ae7 23 151 166 21 6 9 4 21 

1ad069874fe3b52c 28 158 174 30 6 11 10 30 

7de3069a1285bc4f 22 136 168 36 8 16 10 36 

d8b56f03472c1ae9 22 136 168 36 8 16 10 36 

a690cb7df13e5284 20 136 168 36 8 16 10 36 

3f06a1d8945bc72e 22 136 168 36 8 16 10 36 

2c417ab6853fd0e9 25 137 162 30 6 14 8 30 

eb2c47d150fa3986 20 143 166 36 8 16 9 36 

421bad78f9c5630e 30 130 160 27 6 11 7 27 

b8c71e2d6f09a453 21 134 166 18 3 7 6 18 

c1af92680d34e75b 30 141 159 36 8 16 10 36 

af427c9561de0b38 29 127 164 36 7 15 11 36 

9ef528c3704a1db6 24 127 168 18 5 7 5 18 

432c95fabe17608d 24 130 162 30 6 12 9 30 

4b2ef08d3c975a61 26 134 168 30 7 13 8 30 

d0b7491ae35c2f86 27 145 166 30 7 14 7 30 

14bdc37eaf680592 28 137 168 36 8 16 10 36 

6bd814a7950fe23c 25 135 173 0 0 0 0 0 

d2846fb1a93e50c7 23 144 161 30 8 14 7 30 

1fd8a374c56b0e92 20 147 174 27 9 12 4 27 

7b419ce206adf358 27 132 166 18 5 7 5 18 

21e74a8dfc90356b 28 138 168 39 8 16 12 39 

Table.48. Cryptographic analysis of 32 DES S-boxes. 

4.4.3. Cryptographic analysis of 10 generated better 4-bit S-boxes. The cryptographic analysis of 10 generated better 

4-bit S-boxes with the said relevant cryptographic properties of 4-bit BFs has been given below in table.49. Here in table 49. 

column heading ‘noelr gives numbers of existing linear relations in a particular 4-bit crypto S-box. Column heading ‘nobal’ gives 

numbers of balanced DBFs in linear cryptanalysis. ‘n0dif’ gives numbers of 0s in difference distribution table or DDT and 

‘nodif’ gives numbers of 8s in DAT. 'nosac’ gives numbers of COPBFs satisfy SAC of 4-bit BFs and ‘n3sac’,’n3sac’ and ‘nalsac’ 
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gives numbers of COPBFs satisfy 2nd order SAC of 4-bit BFs, 3rd order SAC of 4-bit BFs and Extended SAC of 4-bit BFs 

respectively. 

 
S-box noelr nobal n0dif nodif nosac n2sac n3sac nalsac 

01235b8694ca7def 33 162 189 39 16 7 16 39 
01235b86a4f97edc 33 200 206 45 16 13 16 45 
10324a967b8fced5 27 156 175 39 16 11 8 39 
103268957abcfde4 31 147 167 42 16 12 11 42 
0132c5794a86fbed 26 164 189 39 16 7 16 39 
1032c5684a97ebfd 28 162 189 39 16 7 16 39 
1032c56879a4dbfe 27 196 206 39 16 7 16 39 
1023c46a5b87e9fd 35 148 182 42 16 9 16 42 
0123c7495b86eadf 23 149 170 42 16 11 13 42 
103249adc65be87f 30 134 166 39 16 8 13 39 

Table.49. cryptographic analysis of 10 generated Better 4-bit S-boxes 

4.5. Results and Discussion. In table.48. out of 32 DES S-boxes 1 have 17, 3 have 21, 4 have 22, 1 have 23, 3 have 24, 3 

have 25, 1 have 26, 2 have 27, 3 have 28, 2 have 29, 2 have 30 and 1 have 31 Existing Linear Relations i.e. 24 S-boxes out of 32 

have been less secure from this attack and 8 out of 32 have been immune to this attack. Again out of 32 DES S-boxes 1 have 126, 

2 have 127, 2 have 130, 1 have 132, 2 have 133, 2 have 134, 1 have 135, 4 have 136, 2 have 137, 2 have 138, 1 have 141, 5 have 

143, 1 have 144, 1 have 145, 1 have 147, 1 have 151, 1 have 154 and 1 have 158 8s in LAT. That is All S-boxes are less immune 

to this attack. Again out of 32 DES S-boxes 1 have 159, 1 have 160, 1 have 161, 4 have 162, 1 have 164, 8 have 166, 13 have 

168, 1 have 173 and 2 have 174 0s in DDT. That is all S-boxes have been secured from this attack. At last out of 32 DES S-boxes 

1 have 0, 3 have 18, 2 have 21, 2 have 27, 10 have 30, 12 have 36, 1 have 39 and 1 have 42 8s in DAT i.e. they have been less  

secure to this attack. The comparative analysis has proved that Linear Approximation analysis has been the most time efficient 

cryptanalytic algorithm for 4-bit S-boxes. In ‘nosac’ the lowest value is 0 and maximum value is 10 where in ‘n2sac’, ‘n3sac’ and 

‘nalsac’ lowest values are 0, 0, 0 and maximum values are 16, 12 and 39 respectively. But numbers of optimum as well as better 

result i.e. 16 for ‘nosac’ is absent, close to 24 for ‘n2sac’, close to 16 for ‘n3sac’ and close to 64 for ‘nalsac’ has been very less in 

numbers. So the 32 DES 4-bit S-boxes has been observed to be less secure. 

But in table.49. out of 10 generated better 4-bit S-boxes range of ‘noelr’ has been 27 to 33 so it can be concluded that 

these S-boxes have been more immune to this attack. Now range of ‘nobal’ has been 134 to 200 i.e. very secure to linear 

cryptanalysis since number of 8s in LAT is very large in number. Again range of ‘n0dif’ has been 166 to 206 i.e. the result is very 

similar to 32 DES 4-bit S-boxes. Now All 10 4-bit S-boxes ‘nosac’ have been 16. i.e. they satisfy SAC of 4-bit S-boxes. Again 

the ranges of ‘n2sac’, ‘n3sac’, ‘nalsac’ have been 7 to 13, 13 to 16 and 39 to 45 respectively. I.e. most of them satisfies 3rd order 

SAC of 4-bit S-boxes and for 2nd order SAC of 4-bit S-boxes the results have been very similar to DES 4-bit S-boxes. In case of 

‘nalsac’ or Extended SAC the results are better than DES 32 4-bit S-boxes. 

Now it is to be noted that all non-crypto S-boxes and 16! Crypto S-boxes can be generated by these two procedures by 

IPs over Galois field GF(pq). The crypto S-boxes have then be chosen through the analysis of relevant cryptographic properties of 

4-bit S-boxes. The procedure is same for 8, 16, 32 and 64 bit S-boxes. The generated 8, 16, 32 or 64 bit S-boxes can be chosen 

like the way the way the 4-bit S-boxes have been chosen in this paper. 

5. Conclusion. From results and discussion it can be concluded that generated and analyzed 4-bit S-boxes are better S-boxes 

than the 32 4-bit DES S-boxes. All algorithms of cryptographic properties and S-box generation have been given in the paper. 

The review and algorithms have been presented in a very lucid manner in the paper for convenient understanding of readers. The 

generation of 4-bit and 8-bit S-boxes has been very easy and lucid and the chosen generated 4-bit S-boxes can be claimed to be 

the best 4-bit and 8-bit S-boxes.  
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