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Abstract 47 

Building the Tree of Life (ToL) is a major challenge of modern biology, requiring major advances in 48 

cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to 49 

benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-50 

scale phylogenetic analysis spawned by High-throughput sequencing (HTS). Such signals include those 51 

most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those 52 

reticulate processes emerging with greater frequency, such as recombination and introgression. We 53 

suggest that methods of data acquisition and the types of markers used in phylogenomics will remain 54 

restricted until a posteriori methods of marker choice are made possible with routine whole-genome 55 

sequencing of taxa of interest. We discuss limitations and potential extensions of a major model 56 

supporting innovation in phylogenomics today, the multispecies coalescent model. Macroevolutionary 57 

models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building 58 

phylogenies increasingly rely, and suggest that assimilating such heterogeneity is an important goal 59 

moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process 60 

of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic 61 

data, as well as a culture that values contributors to each step, are essential for progress.  62 

 63 
KEYWORDS: gene flow, genome, multispecies coalescent model, retroelement, speciation, 64 
transcriptome.   65 
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I. Introduction  66 

Charles Dickens famously wrote in A Tale of Two Cities “It was the best of times it was the worst of 67 

times.” The same could be said about phylogenomics today. Phylogenomics has been invigorated with the 68 

introduction of high-throughput sequencing (HTS) and increased breadth of phylogenomic sampling, 69 

which have allowed researchers interested in the Tree of Life to scale up in several dimensions, placing 70 

both fields squarely in the era of ‘big data’. Additionally, conceptual advances and improvements of 71 

statistical models used to analyze these data are helping bridge what some have perceived as a gap 72 

between phylogenetics and phylogeography (e.g., Felsenstein, 1988; Huson, 2006; Edwards et al., 2016a). 73 

However, as datasets become larger, researchers are inevitably faced with a plethora of heterogeneous 74 

signals that often appear to depart from a dichotomously-branching phylogeny (Kunin, Goldovsky & 75 

Darzentas, 2005; Jeffroy et al., 2006; Mallet, Besansky & Hahn, 2015). These signals cover an 76 

increasingly large array of biological processes at the level of genes and genomes, as well as individual 77 

organisms and populations, including processes such as recombination, hybridization, gene flow, and 78 

polyploidization. These heterogeneous signals can be thought of as conflicting, but in truth, they are 79 

simply a record of the singular history that we commonly refer to as the Tree of Life. One of the grand 80 

challenges of evolutionary biology is deciphering this history, whether at the level of genes, populations, 81 

species, or genomes. In this perspective piece, we argue that unabashedly embracing this heterogeneity 82 

conceptually and analytically will lead to increased insight into the Tree of Life and its underlying 83 

processes. 84 

A key concept introduced by the scaling up from phylogeography to phylogenomics is the 85 

continuum of processes and analytical methods, – the so-called phylogeography-phylogenetics continuum 86 

(Edwards et al., 2016a). We argue here that bridging this continuum is critical for advancing 87 

phylogenetics. This can be done by either developing phylogenomic approaches that acknowledge and 88 

explicitly account for phylogeographic processes, or by determining the regions of parameter space (e.g., 89 

branch lengths in tree, level of gene flow) if any, where such within-species processes are not relevant. 90 
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For example, the choice of markers in a given phylogenomics project is currently guided more by 91 

convenience and cost than by evaluating the biological properties and phylogenomic signals in those data; 92 

but comparisons of signals across various types of markers (e.g., transcriptomes, noncoding regions) 93 

reveal that marker choice is a critical step toward shedding light on the history of populations and 94 

unraveling potential processes underlying such history (Rokas et al., 2003; Cutter, 2013; Jarvis et al., 95 

2014; Reddy et al., 2017). On the analysis side, we are in desperate need of methods that can handle the 96 

increasingly large data sets being produced by empiricists, but at the same time there is a desire to include 97 

increasingly diverse sources of signal in estimates of divergence times, biogeographic history, and models 98 

of diversification (Delsuc, Brinkmann & Philippe, 2005; Jeffroy et al., 2006; Kumar et al., 2012). Finding 99 

the balance between breadth, depth, and computational feasibility in project design and statistical analysis 100 

is crucial for the field today. 101 

A general issue in thinking about the future of phylogenomics is – what do researchers want in 102 

the realm of phylogenomics? What does society want? Researchers in phylogenomics are motivated by 103 

many factors. Some are excited about building the Tree of Life. Others are less interested in the tree itself, 104 

but instead are focused on studying conservation, ecological, and evolutionary processes within a 105 

phylogenetic framework. Society will likely benefit from results and archiving practices for data and 106 

genetic resources that ensure longevity, reproducibility, and relevance to societal problems. Are the 107 

priorities that society places on the many disciplines feeding into scientific efforts toward the Tree of Life 108 

– fieldwork, museum collections, databases – appropriate for this grand mission? Although we cannot 109 

possibly answer all of these questions within the scope of this perspective, we hope to at least spur 110 

discussion on the wide range of field, laboratory, conceptual, and societal issues that allow 111 

phylogenomics to move forward. 112 

 113 

II. Data generation and data types in phylogenomics 114 
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One of the fundamental challenges in evolutionary biology is to estimate a Tree of Life for all species. 115 

The potential impact of such large phylogenies is reflected in their publication in the highest impact 116 

journals, but also in their broad contribution, which extends beyond big data, to methodological 117 

innovations and downstream understanding of macroevolutionary processes (e.g., coalescent methods of 118 

species tree inference; accounting for hybridization and unsampled species or localities in datasets; 119 

understanding community or genome evolution through large-scale phylogenetics). Hence, the 120 

phylogenomics community now places a high priority on very large-scale trees, whether in terms of 121 

number of taxa, number of genes, or both. The current need for large phylogenies and the high priority 122 

placed on them by high-impact journals can result in short-cuts, wherein large-scale phylogenetic trees 123 

are cobbled together from disparate existing sources, even taxonomy, but often without hard data behind 124 

the placement of many species (Jetz et al., 2012; Zanne et al., 2014; Faurby & Svenning, 2015). At the 125 

same time, however, hypothesis-testing in areas such as macroevolution, macroecology, biodiversity, and 126 

systematics require these large-scale trees, even as they present challenges being built on high quality 127 

data. The phylogenetic knowledge on which we lay a foundation for downstream analyses must be robust, 128 

and therefore it is essential that the input phylogenetic hypotheses themselves are robust (Pyron, 2015). 129 

Indeed, the current bottlenecks in large-scale phylogenomic data do not appear to be the sequencing, but 130 

rather the compilation of high quality, well-curated genomic resources that can fuel phylogenomics for 131 

the next century (e.g., Global Genome Initiative, www.mnh.si.edu/ggi/). 132 

 133 

Data quality 134 

Genome-scale data in the form of multiple alignments and other homology statements are the foundation 135 

of phylogenomics. A major challenge is the difficulty of comprehensive quality checks of data, given that 136 

HTS datasets are so large. As researchers collect datasets consisting of thousands of alignments across 137 

scores of species and data quality is a serious concern that is left for detection and handling primarily by 138 

computer algorithms. In addition to inherent systematic errors in the data (Kocot et al., 2017), several 139 
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examples of errors in phylogenomic data sets have been reported in the literature, including the use of 140 

unintended paralogous sequences in alignments (e.g., Struck, 2013); mistaking the genome sequence of 141 

one species for another (Philippe et al., 2011); and inclusion of genome sequence from parasites into the 142 

genome of the host (Kumar et al., 2013). However, the incidence of smaller errors in alignments that are 143 

not easily discerned from natural allelic variation, such as base miscalls or misplaced indels, are probably 144 

much more widespread than has been reported in the literature. Combined with the sensitivity of some 145 

phylogenomic datasets to individual loci or Single Nucleotide Polyorphisms (SNP) within loci (Shen, 146 

Hittinger & Rokas, 2017), such errors could have damaging consequences for phylogenomic studies, both 147 

for topologies and even more so for branch lengths of phylogenetic trees (Marcussen et al., 2014; 148 

Bleidorn, 2017).  149 

Sequencing high-quality samples from well-archived voucher specimens is a good first step to 150 

increase reproducibility and alleviate issues related to sample identity (Peterson et al., 2007; Pleijel et al., 151 

2008; Chakrabarty, 2010; Turney et al., 2015). For individual phylogenomic studies, wholesale manual 152 

inspection of every locus is unsustainable (Irisarri et al. 2017), but spot checks of a subset of the data 153 

(e.g., 5-10% of the alignments) is a recommended best practice (Phillipe et al., 2011) that is beginning to 154 

be encouraged in peer review and in published papers (Montague et al., 2014; Liu et al., 2017). Such 155 

checking is important not only for new data generated by a given study, but also for data downloaded 156 

from public repositories such as NCBI and Orthomam, which are well known to contain errors (Wesche, 157 

Gaffney & Keightley, 2004; Ranwez et al., 2007; Douzery et al., 2014). Because several databases do not 158 

include the raw sequence data it is often impossible to evaluate whether oddities may derive from poor 159 

sequencing. Robust pipelines for flagging poorly aligned sites or non-homologous sequences, based on 160 

existing tools or novel scripts such as Gblocks (Castresana, 2000; Talavera & Castresana, 2007) or 161 

TrimAl (Capella-Gutiérrez, Silla-Martínez & Gabaldon, 2009) are gradually being put into practice 162 

(Marcussen et al., 2014; He et al., 2016; Irisarri et al., 2017). 163 
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Coding regions, whether derived from transcriptomes or whole-genome data, are particularly 164 

amenable to spot checking of alignments and to filtering out of low-quality data with bioinformatic 165 

pipelines (e.g., Dunn et al., 2013; Blom, 2015). Coding regions have the advantage of allowing amino 166 

acids to guide alignments, which is particularly useful for highly divergent sequences. Stop codons can 167 

help flag errors or genuine pseudogenes. Examining gene tree topologies is also widely used to detect 168 

paralogs in phylogenomic data (e.g., Betancur, Naylor & Ortí, 2014). Examining gene trees for aberrantly 169 

long branch lengths can also reveal misalignments (e.g., He et al., 2016); sensitivity analyses of various 170 

methods for indirectly detecting errors in alignments are sorely needed. 171 

 172 

Data generation and marker development 173 

Genome reduction methods: A growing number of genome reduction methods are now providing 174 

empiricists with the means to generate genomic subsets suitable for phylogenetic and phylogeographic 175 

inference (reviewed by McCormack et al., 2013; Leaché & Oaks 2017; Lemmon & Lemmon, 2013). For 176 

phylogenomics, most prominently featured are sequence-capture, focusing on highly conserved regions 177 

(e.g., Faircloth et al., 2012; Lemmon, Emme & Lemmon, 2012; reviewed by Jones & Good, 2016) and 178 

transcriptomes (e.g., Misof et al., 2014; Cohen et al., 2016; Fernández et al., 2014; Park et al., 2015; 179 

Simion et al., 2017; Irisarri et al., 2017), but phylogenomic trees have also been constructed based on 180 

restriction-digest methods that focus on single nucleotide polymorphisms or SNPs (Leaché, Chavez & 181 

Jones, 2015; Harvey et al., 2016) and analysis of transposable elements (e.g., Suh, Smeds & Ellegren, 182 

2015). This diversity of marker types for phylogenetics should be celebrated, but each marker type brings 183 

with it a list of pros and cons. For example, many questions in the higher level phylogenetics of animals 184 

and plants have so far relied almost exclusively on transcriptome data, for the simple reason that non-185 

coding portions of the genome are difficult if not impossible to align and analyze. However, the uncritical 186 

use of transcriptomes in phylogenetics is not without caveats. At high taxonomic levels, coding regions 187 

can exhibit extreme levels of among-taxon base composition, sometimes resulting in strong violations of 188 
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phylogenetic models (Romigiuer et al., 2016; Romiguier & Roux, 2017). Coding regions can exhibit 189 

reduced levels of incomplete lineage sorting (ILS) compared to noncoding regions (Scally et al., 2012). 190 

Such reduced ILS could in fact be helpful in building complex phylogenies with rapid radiations 191 

(Edwards, 2009b), but it will certainly distort estimated branch lengths when coalescent methods, which 192 

assume neutrality, are used. SNPs have been advocated by some authors (Leaché & Oaks, 2017), but the 193 

available methods for analyzing such data are still extremely limited. For example, concatenation and two 194 

coalescent methods (SNAPP and SVD quartets: Bryant et al., 2012; Chifman & Kubatko, 2014) have 195 

recently been highlighted as the main methods available for phylogenomic analysis of SNPs (Leaché & 196 

Oaks, 2017). But each of these methods has its shortcomings. It is likely that concatenation of SNPs will 197 

be misleading for many of the same reasons that concatenation of sequence-based markers are misleading 198 

(Kubatko and Degnan 2007). SNAPP, a coalescent method suitable for analysis of SNPs (Bryant et al., 199 

2012), works well only on relatively small data sets, and it is unclear how well SVD quartets performs on 200 

some data sets (Shi & Yang, 2018). Although SNPs do provide a helpful route around the oft-violated 201 

assumption in coalescent models of no recombination within loci (Bryant et al., 2012), and are widely 202 

seen as excellent markers for phylogeography and population genetics, it remains to be seen how 203 

powerful they are at high phylogenetic levels. 204 

Despite the diversity of marker types for phylogenomics, it remains unclear whether features 205 

specific to each marker type can ultimately result in phylogenomic datasets that can strongly mislead. For 206 

example, incongruence in the phylogeny of modern birds developed by Jarvis et al. (2014; 48 whole 207 

genomes) and Prum et al. (2015; 259 anchored phylogenomics loci, 198 species) has recently been 208 

attributed to differences in marker type rather than number of taxa (Reddy et al., 2017). Whereas Jarvis et 209 

al. (2014) used primarily noncoding loci because they observed gross incongruence when using coding 210 

regions, the loci used by Prum et al. (2015), although nominally focused on broadly “anchored” 211 

conserved regions, in fact was dominated by coding regions. Thus, at least one or the other marker type or 212 

their analysis are likely inappropriate when applied across modern birds. These data type effects can stem 213 
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from multiple sources. Selection on exons might lead to localized differences in effective population size 214 

across the genome and previous studies have highlighted base composition heterogeneity within exons 215 

across taxa (Figuet et al., 2015; Scally et al., 2012). On the other hand, alignment quality of introns and 216 

ultraconserved elements (UCEs) can sometimes be less than desired (Edwards, Cloutier & Baker, 2017). 217 

Clearly marker effects can potentially have substantial consequences on species tree estimates and need to 218 

be further evaluated and compared side-by-side by the phylogenetic community (Shen, Hittinger & 219 

Rokas, 2017).  220 

 221 

 A priori versus a posteriori selection of loci for phylogenomics: In an ideal world, phylogeneticists 222 

would have whole and fully annotated genomes of all taxa available, allowing them to select loci for 223 

phylogenomics based on the relative merits of different loci. This a posteriori selection of loci for 224 

phylogenomics is clearly a long-term goal that will yield greater choice and justification for specific loci 225 

over the a priori selection protocol that now dominates the field. Today, the loci for phylogenomics are 226 

based primarily on ease of collection and alignment but many potentially useful regions of the genome are 227 

ignored by each specific method, whether it is transcriptomes or hybrid-capture. Thus, an attractive aspect 228 

of whole-genome sequencing (WGS) for phylogenomics is to have the opportunity to select markers a 229 

posteriori once genomes are in hand (e.g., Edwards, Cloutier & Baker 2017; Fig. 1). WGS also allows for 230 

further expansion into different research fields and questions based on the same initial data. In constrast, a 231 

priori marker selection often limits the kinds of questions and methods that researchers can apply and 232 

represents a real constraint for phylogenomics and other disciplines. 233 

An important constraint for using WGS for downstream phylogenomic analyses is genome 234 

quality. Obtaining high-coverage well-assembled and thoroughly annotated genomes is still very 235 

expensive and time-consuming, and even low coverage genomes are still outside reach for large portions 236 

of the community. However, even low coverage genomes can yield a modest number of markers for 237 

phylogenomics, and in the short term might yield data sets allowing a broader diversity of markers for 238 
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analysis. Although we are fully aware of its constraints, we are particularly excited about the potential 239 

that we see in routinely using WGS to assemble phylogenomic data sets. 240 

 241 

More taxa versus more loci: The question of whether to add more genes or more taxa was a dominant 242 

theme in phylogenetics in the 1990s and early 2000s (e.g., Hillis, 1996; Kim, 1996), and remains an 243 

important theme guiding phylogenomics today. After much debate in the literature (e.g., Hillis, 1996; 244 

Graybeal, 1998; Hillis, 1998; Poe, 1998; Mitchell, Mitter & Regier, 2000), the initial consensus view 245 

from the Sanger sequencing era of phylogenetics, is that adding more taxa generally improves 246 

phylogenetic analysis more so than more markers (e.g., Hillis, 1996; Graybeal, 1998; Poe, 1998). 247 

However, phylogenomics is adding a new twist to this consensus, both from the standpoint of data 248 

acquisition and from theory (e.g., Rokas, 2005; Nabhan & Sarkar, 2012; Xi et al., 2012; Patel, Kimball & 249 

Braun, 2013). Amassing large data sets, both in terms of more taxa and more loci, is still a guiding 250 

principle of phylogenomics. But with the ability now to bring together many different types of markers in 251 

a single analysis, and to analyze them in ways that were not previously available, the “more taxa vs. more 252 

genes” debate is becoming more nuanced (Nabhan & Sarkar, 2012). For example, recent work shows that 253 

this debate can be highly context-specific and model-dependent (e.g., Baurain, Brinkmann & Philippe, 254 

2006; Dell Ampio et al., 2013; Edwards et al., 2016b). Also, some phylogenetic methods, such as 255 

coalescent methods, appear to be more robust to limited taxon sampling than traditional methods like 256 

concatenation (Song et al., 2012; Liu, Xi & Davis, 2015). Some researchers favor “horizontal” data 257 

matrices, wherein the number of loci far exceeds the number of taxa, whereas other researchers favor 258 

“vertical” matrices, where many taxa are analyzed at just a few (1-5) loci. Whereas the PCR era of 259 

phylogenetics was often dominated by vertical matrices, HTS is allowing data matrices to become more 260 

horizontal (Fig. 2). Scaling up in both dimensions will be crucial for improved phylogenies, and the 261 

number of loci required to resolve a given phylogenetic problem, at least in a coalescent framework, is 262 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26449v3 | CC BY 4.0 Open Access | rec: 30 Jan 2018, publ: 30 Jan 2018



11 
 

often a function of the coalescent branch lengths in the phylogenetic tree being resolved, with longer 263 

branches requiring fewer loci (Edwards et al., 2007; Huang et al., 2010). 264 

To study how researchers have resolved challenges of balancing numbers of taxa versus numbers 265 

of loci, we quantified trends in phylogenomic data set size and structure over the past 13 years, drawing 266 

data from 164 data sets across diverse taxa (Supplementary Table S1). We found that, whereas the 267 

number of species per paper has not increased significantly over time (Fig. 2A), there were significant 268 

increases with time in number of loci (Fig. 2B), total length of sequence analyzed (Fig. 2C), as well as 269 

total data set size, as measured by the product of species times locus number (Fig. 2E) or species times 270 

total alignment length (Fig. 2F). These trends mirror similar trends evaluated for the size of data sets in 271 

phylogeography (Garrick et al., 2015). Surprisingly, we found no evidence for a tradeoff between the 272 

number of species investigated and the number of loci analyzed (Fig. 2D); perhaps HTS data sets have 273 

plateaued somewhat in terms of number of loci, whereas the number of species analyzed is more a 274 

function of the questions being asked and the clade being investigated. Regardless, we suspect that, in 275 

general, the number of loci and total alignment lengths in phylogenomic data sets are likely a function of 276 

resources and sequencing effort. The era of whole genome sequencing in phylogenomics is still dawning, 277 

given that most studies thus far have used targeted approaches for sampling loci (Supplementary Table 278 

S1). We suspect that once whole genome sequencing on a clade-wide basis become routine, we will 279 

witness yet another jump in the sizes of phylogenomic data sets. 280 

 281 

Filtering heterogeneous phylogenomic data sets: Recent studies show that the addition of more loci and 282 

more taxa can result in higher levels of gene-tree discordance (e.g., Smith et al., 2015; Shen, Hittinger & 283 

Rokas, 2017). This is not unexpected - as the number of taxa and loci increase, the greater the likelihood 284 

that the dataset will capture the heterogeneous evolutionary history (e.g., incomplete lineage sorting 285 

[ILS], lateral gene transfer [LGT], hybridization, gene duplication and loss [GDL]) and patterns of 286 

molecular evolution (e.g., noise/lack of signal in the sequences, and nonstationarity in base composition) 287 
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that can contribute to gene tree discord. At the same time, the variance in gene tree topologies could also 288 

have been caused by errors in gene tree estimation. Such observations have been used to argue that the 289 

accuracy of gene tree inference should be maximized or at least evaluated, but it is not clear what criteria 290 

should be used to filter sets of gene trees. For example, filters can be based on rates of molecular 291 

evolution (Klopfstein, Massingham & Goldman, 2017), levels of phylogenetic informativeness (Fong et 292 

al., 2012), or on the cause of gene-tree discord itself, if known (Huang et al., 2010). Chen, Liang & Zhang 293 

(2015) found that selecting genes whose trees contained a well-known uncontested long branch in a given 294 

species phylogeny was a better way to improve phylogenomic signal than selecting genes based on 295 

characteristics of sequence evolution. However, the effects of such culling on the distribution of gene 296 

trees, and whether it could distort the distribution so that it no longer conforms to models like the 297 

multispecies coalescent, are unknown, and potentially of concern (but see Huang et al., 2017). We need 298 

further studies on the effects of different types of phylogenomic filters on the properties of large-scale 299 

phylogenomic datasets. 300 

 301 

Heterozygosity and Intra-Individual Site Polymorphisms: One of the prevalent occurrences in organisms 302 

with multiple ploidies are intra-individual polymorphisms and heterozygosity is, of course, common in 303 

diploid organisms. However, confident identification of such polymorphism has always been challenging 304 

(Garrick, Sunnnucks & Dyer, 2010; Lischer, Excoffier & Heckel, 2014; Schrempff et al., 2016) and many 305 

data sets do not permit statistical approaches, such as PHASE (Stephens, Smith & Donnelly, 2001) to 306 

robustly determine haplotypes of different alleles (Garrick, Sunnnucks & Dyer, 2010). Consequently, in 307 

phylogenetics, heterozygosity and intra-specific polymorphic sites are either accommodated using UIPAC 308 

ambiguity codes or ignored entirely or by randomly selecting alleles (Iqbal et al., 2012). In fact, most 309 

“one allele per individual/species” phylogenomic data sets consists of haplotypes that in fact do not occur 310 

in nature, in so far as many methods yield single haplotypes consisting of consensus or other haplotype 311 

summaries from diploid organisms.  The fact that HTS produces several reads of the same region allows 312 
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the identification of heterozygosity and intra-specific polymorphic sites represents an untapped 313 

opportunity to incorporate intra-individual variation in our phylogenetic estimates (Lischer, Excoffier & 314 

Heckel, 2014; Schrempff et al., 2016; Andermann et al., 2018). Recent models have been proposed to 315 

improve calling and sorting such polymorphisms (De Maio, Schlötterer & Kosiol, 2013; Lischer, 316 

Excoffier & Heckel, 2014; Potts et al., 2014; Schrempff et al., 2016) and, although results of different 317 

studies vary (Kubatko, Gibbs & Bloomquist, 2011; Lischer et al. 2014), estimation of individual, 318 

naturally ocurring haplotypes has been shown to improve phylogenomic reconstructions based on 319 

genome-scale data (Andermann et al., 2018).  320 

        321 

Rare genomic changes: As noted above, molecular phylogenetics has primarily used alignments of 322 

sequence-level data for phylogenetic inference. This bias is perhaps driven by the notion that genome 323 

evolution occurs by aggregating small changes, such as point substitutions, over time, but more likely it is 324 

due to the challenges of characterizing rare genomic changes in genomes, such as indels, transpositions, 325 

inversions, and other large-scale genomic events (Rokas & Holland, 2000; Boore 2006; Bleidorn 2017). 326 

This emphasis on sequence data has produced a vast ecosystem of algorithms tailored to analyze such 327 

data, but most phylogeneticists would agree that rare genomic changes would be a welcome addition to 328 

the toolkit of phylogenomics, since they are generally regarded as highly informative markers, providing 329 

strong evidence of homology and monophyly (Boore 2006; Rogozin et al., 2008). With the increased 330 

availability and affordability of WGS, our view of genome plasticity has changed drastically in recent 331 

years and we are now capable of exploring other genomic features beyond the signals encapsulated in 332 

DNA or amino acid sequences. The question then arises of how to identify and utilize these rare genomic 333 

markers. Genome-level characters will likely have different evolutionary properties than sequence-based 334 

markers, suggesting that one of the biggest challenges we face for incorporating genomic changes into 335 

phylogenetic analyses is to find informative evolutionary models and tools suited for these kinds of data. 336 

 337 
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Gene order and synteny: Computational algorithms to use gene order and rearrangements as markers in 338 

phylogenetics (Tang et al., 2004; Ghiurcuta & Moret, 2014; Kowada et al., 2016) were spurred in part by 339 

the seminal paper by Boore, Daehler & Brown (1999) using mitochondrial gene rearrangements to 340 

understand the phylogeny of arthropods. Initially, algorithms for making use of gene order and synteny 341 

were applied primarily to microbial genomes, but recent efforts have extended such methods to the 342 

analysis of eukaryotes as well (see Lin et al., 2013). Gene order and synteny appear most promising at 343 

high phylogenetic levels, although we still do not know how informative gene order will be at many 344 

levels, such as within mammals. Chromosomal rearrangements appear highly dynamic in some groups, 345 

such as mammals, and further study of their use in phylogenomics is warranted (Murphy et al., 2005). 346 

 347 

Indels and transpositions: Indels and transpositions are two types of molecular characters that are 348 

underutilized in phylogenomics, the former perhaps because standard methods of analysis often treat 349 

indels as missing data and the latter because they are technically challenging to collect without whole 350 

genome data. Indels have been used sporadically in phylogenomics and several have argued for their 351 

utility and informativeness, given appropriate analytical tools (Jarvis et al., 2014; Ashkenazy et al., 2014; 352 

Roncal et al., 2016). Murphy et al. (2007) used indels in protein-coding regions to bolster estimates of 353 

mammalian phylogeny and found that the Atlantogenata hypothesis was supported after scrutinizing 354 

proteome-wide indels for spurious alignments and orthology. The Avian Phylogenomics Project found 355 

that indels had less homoplasy than SNPs and, despite showing high levels of ILS, was largely congruent 356 

with other markers across the avian tree. Transposable elements arguably are even more highly favored 357 

by phylogenomics researchers, but are much more difficult to isolate and analyze and have been used 358 

principally across various studies in mammals and birds (Kaiser et al., 2007; Churakov et al., 2010; 359 

Kriegs et al., 2010; Suh et al., 2011; Baker et al., 2014). Whereas they are generally considered to have a 360 

low rate of homoplasy, most researchers agree that they can in some circumstances exhibit insertional 361 

homoplasy. Moreover, no marker is immune to the challenges of ILS, and transposable elements and 362 
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indels are no exception (Matzke et al., 2012; Suh, Smeds & Ellegren, 2015). Still, the exceptional 363 

resolution afforded by some studies employing transposable elements is exciting, and we expect this 364 

marker type to increase in use as whole genomes are collected with higher frequency. 365 

 366 

Copy Number Variations (CNV): The 1000 Genomes Project estimates that in humans about 20 million 367 

base pairs are affected by structural variants, including copy number variations (CNV) and large deletions 368 

(1000 Genomes Project Consortium, 2015), suggesting that these types of mutations encompass a higher 369 

fraction of the genome than do SNPs in humans. A CNV is a DNA segment of at least one kilobase (kb) 370 

that varies in copy number compared with a reference genome (Redon et al., 2006). CNVs appear as 371 

deletions, insertions, duplications, and complex multi-site variants (Fredman et al., 2004). Such a 372 

profusion of CNVs across human genomes has proven useful in tracking population structure (Sjödin & 373 

Jakobsson, 2012), but still remains underappreciated in phylogenetics.  374 

Newly available methods allow inference of CNV at high resolution with great accuracy 375 

(Wiedenhoeft, Brugel & Schliep, 2016). The frequency with which CNVs occur in animal and plant 376 

populations raises the question of how informative they would be at higher phylogenetic levels, and 377 

whether they would incur unwanted homoplasy that would obscure homology and phylogenetic 378 

relationships. For example, some CNVs evolve so quickly that they can be used with success at the sub-379 

individual level, for example, in tracking clonal evolution of cancer cells (Schwartz & Schäffer, 2017). 380 

Such fast evolution may mean that these markers are less useful at higher levels of biological 381 

organization. Additionally, the adaptive nature of CNVs may or may not facilitate clear phylogenetic 382 

signals. For example, a study in Arabidopsis thaliana (DeBolt, 2010) showed that adaptation to novel 383 

cognitive environments, or to varying temperatures, is associated with mutations in CNVs. If CNVs are to 384 

become a useful tool in phylogenomics or phylogeography, we must understand their microevolutionary 385 

properties in greater detail. For example, the pattern of evolution of CNVs, wherein deletions of genetic 386 
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material may not easily revert, resulting in a type of Dollo evolution, might help clarify the overall 387 

structure of the models applied to them (Rogozin et al., 2006; Gusfield, 2015).  388 

 389 

III. Concepts and models in phylogenomics 390 

For decades, phylogenetics has struggled with how best to translate evolutionary changes in DNA 391 

sequences and other characters into phylogenies, and genomic data are no exception to this trend. 392 

Phylogenomics is still in a developing stage of formulating models that effectively represent the 393 

underlying mechanisms for genome-scale variation while remaining efficient and within reasonable 394 

analytical and bioinformatic capacities. The current focus on models and evolutionary forces generating 395 

the patterns that we recover as branching and reticulation events in our phylogenetic reconstructions is a 396 

healthy one, and can be extended to other important topics in phylogenomics, such as species 397 

delimitation, character mapping, and trait evolution (e.g., Yang and Rannala 2014). All of these areas are 398 

developing rapidly and are in need of updated models and bioinformatics applications to cope with the 399 

heterogeneity brought by genome-scale data. 400 

 401 

The multispecies coalescent (MSC) model  402 

One of the key practical advances in molecular phylogenetics has been the incorporation of gene tree 403 

stochasticity into the inference of species phylogenies, via the multispecies coalescent model (MSC: 404 

Rannala & Yang, 2003; Liu & Pearl, 2007; Heled & Drummond, 2010). The MSC allows gene trees to be 405 

inferred with their own histories, including coalescent-appropriate branching models, but contained 406 

within independent but connected lineages within a species phylogeny, with speciation-appropriate 407 

branching models (Degnan & Rosenberg, 2009). The main conceptual advance has been to understand 408 

and separately manage the variation at different levels of biological organization – an advance that began 409 

years ago (Doyle 1992; Maddison, 1997; Pamilo and Nei 1988), but has only recently been widely 410 

embraced and put into practice (Edwards, 2009a). Given its ability to accommodate heterogeneous 411 
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histories across loci scattered throughout the genome, the MSC lays at the core of the conceptual 412 

framework to deal with genome-scale data (e.g., Rannala & Yang, 2008; Liu et al., 2015). In the few 413 

instances in which model comparison and fit has been evaluated (Liu and Pearl 2007; Edwards et al. 414 

2007), the MSC vastly outperforms concatenation. This of course does not mean that the MSC is the 415 

correct, or even an adequate, model for phylogenomic data, and we need more tests of model adequacy 416 

and fit, using Bayesian methods for example (Reid et al., 2014).  Despite concerns regarding some of its 417 

implementations when dealing with genomic data (e.g., Springer & Gatesy, 2016), there is consensus 418 

among systematists that the MSC is a powerful theoretical model for phylogenomics and that there is 419 

room for refinement and improvement for its applications (e.g., Edwards et al., 2016b, Xu & Yang, 2016). 420 

 421 

Bypassing full likelihood models by relying on summaries of the coalescent process  422 

Given the huge computational difficulties involved in modelling all the complexities of evolutionary 423 

processes in a statistical framework, there is interest in methods that will accommodate genome-scale data 424 

for large numbers of species. The utility of such methods cannot be overstated: the rapid rise of large-425 

scale genomic data sets has clearly outstripped theoretical and computational methods required to analyze 426 

them. For example, although progress is being made regarding scalability of full Bayesian methods of 427 

species phylogeny inference (e.g., Ogilvie, Bouckaert & Drummond, 2017), they are still unable to 428 

accommodate large phylogenomic datasets, which often consist of hundreds of species for thousands of 429 

loci (Supplementary Table S1). A common approach to speeding up species phylogeny inference consists 430 

of ‘two-step’ methods, wherein gene trees are estimated first and separately from the species phylogeny; 431 

then, using various summaries of the coalescent process for collections of gene trees, a species phylogeny 432 

is estimated. Many useful methods for estimating species phylogenies in this way have been proposed 433 

(see Marcussen et al., 2014; Liu, Wu & Yu, 2015; Mirarab & Warnow, 2015; Mirarab, Bayzid & 434 

Warnow, 2016), taking advantage of various summaries of the coalescent process, such as the average 435 

ranks of pairs of species in the collection of gene trees (e.g., STAR: Liu et al., 2009; ASTRAL-II: 436 
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Mirarab et al., 2015) or the distribution of gene trees containing triplets of species (e.g., MP-EST; Liu, Yu 437 

& Edwards, 2010). Some of these two-step methods, while approximate, nonetheless allow for statistical 438 

testing in a likelihood framework. For example, MP-EST can evaluate the (pseudo)likelihood of two 439 

proposed species phylogenies given a collection of gene trees and the difference in likelihood can be used 440 

to evaluate two proposed species phylogenies against each other. However, such statistical approaches 441 

have rarely been used thus far, and bootstrapping or approximate posterior probabilities on branches are 442 

by far the most common statistics applied to species phylogenies (Sayyari & Mirarab, 2016). Speeding up 443 

the estimation process using two-step methods can be effective, but it can also accumulate errors or 444 

misallocate sources of variance which cannot be corrected at later stages (Xu & Yang, 2016). If gene trees 445 

are biased or uninformative, then downstream analyses for species phylogeny estimation or species 446 

delimitation may similarly be compromised (e.g., Olave et al., 2014). For example, MP-EST can 447 

sometimes perform poorly when Phyml is used to build low-information gene trees because Phyml may 448 

produce biased gene trees when the alignments contain very similar sequences (Xi, Liu & Davis, 2015). 449 

This may account for the lower performance of MP-EST compared to ASTRAL in some simulation 450 

conditions, because ASTRAL resolves input polytomies and zero-length branches in gene trees more 451 

appropriately. This difference between MP-EST and ASTRAL is eliminated when RaxML is used to 452 

build gene trees (Xi, Liu & Davis, 2015).  453 

 454 

Beyond the multispecies coalescent model 455 

Reticulation at multiple levels challenges the standard multispecies coalescent model  456 

The phylogenetic processes of branching and reticulation can operate at several levels of organization, 457 

including within genes, within genomes, and within populations or species (Figs. 3 and 5). For example, 458 

recombination can cause reticulations within genes, allopolyploidization can cause reticulations at the 459 

level of whole genomes, and introgression and hybridization can cause reticulations at the level of 460 

populations. These levels are nested so that branching processes (and in part reticulations) acting at a 461 
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higher level will cause correlated branching patterns at lower levels. At the same time, reticulations at 462 

lower levels, such as recombination acting within genes, will cause inference problems at higher levels, 463 

such as estimating population histories. Crucially, however, it is only recombination that will break one 464 

key element driving many recent models of phylogenetics and population histories, namely dichotomous 465 

gene trees. Reticulations at levels of organization higher than the genome, such as the fusing of 466 

populations, as well as gene duplication, will still yield collections of dichotomous gene trees, even if the 467 

higher-level history is reticulated. Ultimately, the additive effects of these reticulate processes result in 468 

our observed phylogenetic reconstructions, and we expect all of these scenarios to produce bifurcating, 469 

dichotomous gene trees. From a modelling point of view, another key distinction is whether at the species 470 

level, we still have a phylogeny that is tree-like, or whether a network is needed. The process whereby 471 

two populations jointly produce a third requires a network to model properly. Allopolyploidy is another 472 

situation requiring a network. There are several statistical methods for inferring homoploid networks (Yu 473 

et al., 2014; Solis-Lemus & Ané, 2016; Wen et al., 2016; Wen & Nakhleh, 2018), species histories under 474 

allopolyploidy (Jones, Sagitov & Oxelman, 2013), and some two-step methods such as PADRE (Huber et 475 

al., 2006; Lott et al., 2009). In general, dealing with multiple simultaneous violations of the MSC, such as 476 

introgression and allopolyploidy, remains challenging. It is likely that the history of many radiations 477 

involves parts of the genome with a dichotomous history and parts that exhibit reticulation, demanding 478 

methods that accommodate both scenarios. Alternatively, rather than trying to accommodate multiple 479 

processes in our methods for phylogenetic inference, we might instead focus our attention on subsets of 480 

loci that would not violate the MSC (e.g., Knowles et al., 2018). In cases where processes other than 481 

incomplete lineage sorting are contributing to gene tree discord (i.e., the distribution of trees is 482 

statistically inconsistent with expectations under the MSC; see Smith et al., 2015), loci consistent with the 483 

MSC model might be identified (e.g., separated from loci with horizontal gene transfer), using the newly 484 

developed program CLASSIPHY (Huang et al., 2017).  485 
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Models accommodating a dichotomous divergence with gene flow are somewhat limited. For 486 

example, in IMa2 (Hey & Nielsen, 2004; Hey & Nielsen, 2007; Hey, 2010) the species phylogeny must 487 

be known and fairly small; in the method of Dalquen et al. (2017), both the species phylogeny and gene 488 

trees are restricted to three tips. Looking forward, it may be useful to deal with two sub-problems: The 489 

first sub-problem is estimating the species phylogeny despite some migration, for example by identifying 490 

which loci are interfering with the species phylogeny inference or causing reticulations in the form of 491 

gene flow. The second sub-problem is to incorporate a gradual speciation process (Fig. 6), where gene 492 

flow after speciation slowly declines, perhaps according to some simple function like an exponential. 493 

Such a model would capture what is thought to be a more common speciation process than the 494 

instantaneous process modelled by the MSC (Jones 2017). 495 

In some cases, it is possible to model the same situation with either a species network or a tree 496 

with gene flow. Long (1991) discussed two models of admixture: Intermixture and gene flow, illustrated 497 

in Figure 7. The phylogenetics community has mainly focused on methods for inference under the 498 

intermixture model (e.g., the multispecies network coalescent; Yu et al., 2014), whereas the population 499 

genetics community has focused more on models including gene flow (e.g., IM, admixture graphs, G-500 

PhoCS, Phrapl). While some initial work to test inference based on one of these models on data generated 501 

by the other has recently appeared (Wen & Nakhleh, 2018; Solís-Lemus et al., 2017; Zhang et al., 2018), 502 

much more work is needed to bring together these two lines of work. Simulations and comparisons of 503 

observed and expected summary statistics, such as the site-frequency spectrum (Excoffier et al., 2013), 504 

have proven especially useful in distinguishing such scenarios (Fig. 7).  505 

Reticulation in the form of gene flow or introgression is probably the most difficult violation of 506 

the MSC to address, in part because the number of potential trees accommodating a reticulating network 507 

is even higher than the already high number of trees for a given number of taxa. There is at least one issue 508 

where reticulation presents an opportunity as well as a challenge. Any kind of gene flow/hybridization 509 

means that there is the possibility of inferring the existence of extinct species, because extinct species 510 
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contribute novel alleles that exceed the coalescence time of most alleles in the focal species under study 511 

(Hammer et al., 2011). Well-known examples are the documented presence of Neanderthal genes in most 512 

human genomes due to introgression (e.g., Meyer et al., 2012) and the presence of genomes derived from 513 

now-extinct diploids in extant allopolyploids (i.e. meso-allopoloploids; e.g., Mandáková et al., 2010; 514 

Marcussen et al., 2015). Some current models can explain the data as containing genetic information from 515 

extinct species, but they do not model the full species phylogeny: such a generalized approach seems a 516 

promising avenue to explore.  517 

 518 

Polyploidy and the challenges of analyzing gene duplication and loss 519 

The MSC model describes well allelic lineages and the mutations they accumulate (Fig. 3; Degnan & 520 

Rosenberg, 2009; Liu, Xi & Davis, 2015). The simple MSC model is challenging to apply to evolutionary 521 

events in which the evolving entities (genes or paralogs) duplicate and occasionally go extinct during the 522 

evolutionary history of the populations/species and thus cannot be sampled in contemporary population or 523 

species. Estimating the existence and number of these “ghost” lineages remains challenging. For example, 524 

how can we detect duplication events if one of the duplicated loci is lost in descendant lineages? In the 525 

case of polyploidy, two (or more) genomes having separate evolutionary histories end up together in a 526 

single individual. What consequences for evolutionary history do genomic conflicts and dosage variation 527 

in gene expression impose? Polyploidy also raises technical issues, such as whether or not homoeologous 528 

sequences are recovered in standard genomic surveys.  529 

The complication that gene duplication and loss (GDL) brings to the inference of species 530 

phylogenies has long been recognized (Fitch, 1970). It is therefore surprising that practical solutions to 531 

the problem of GDL are almost non-existent, with empirical examples usually based on ad hoc methods 532 

and deductions. Ancient duplications where most additional copies are retained in descendent species can 533 

be fairly easy to diagnose based on phylogeny (Oxelman et al., 2004; Pfeil et al., 2004). However, 534 
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resolving duplications becomes more difficult when copy number changes quickly (Ashfield et al., 2012), 535 

or when duplications are recent and copy loss is complete or nearly so, thus returning the locus to a 536 

single-copy state (Ramadugu et al., 2013). In the latter case, the phylogenetic pattern can mimic that of 537 

ILS and become indistinguishable from it (Sousa et al., 2017), generally leaving no trace at all of the loss. 538 

 Why is GDL so challenging to implement in theory? The topological and coalescent-time 539 

similarities between ILS and GDL complicates extending the MSC to include both processes, unless copy 540 

number exceeds one in at least some samples (Fig. 4). Assuming that allelic and homoeologous variation 541 

is not confused with the copy number of independently duplicated genes, at the very least, duplicated 542 

genes could be handled as independent loci with missing data for some samples, and ordinary MSC 543 

inference undertaken. When copy loss is complete, or when the duplication is so recent so as to conflate 544 

allelic versus copy variation, these GDL loci have little effect on species phylogeny inference and 545 

divergence times, especially if the algorithms used employ averages over coalescence times or other 546 

parameters across many gene trees (Liu et al., 2009; Sousa et al., 2017). At high proportions, though, they 547 

may cause serious issues for phylogenetic reconstruction, because the unexpected positions of gene 548 

duplications in a species phylogeny, coupled with random copy loss, means that no specific pattern is 549 

expected among the affected gene trees (Fig. 4). This scenario contrasts with the retention of ancestral 550 

polymorphisms, where we know that branches in short species phylogenies (in coalescent units) are the 551 

cause (Rosenberg & Nordborg, 2002). Thus, we expect deeply coalescing lineages to occur in specific 552 

parts of a species phylogeny with a limited number of topological outcomes and branch lengths limited by 553 

effective population size, which is not the case for duplicated genes. A recent approach to identifying 554 

genes that are single copy, but have nonetheless been affected by GDL, was made using the genomic 555 

location of the loci (Sousa et al., 2017), and could prove useful for distinguishging GDL and ILS.  556 

 557 

Recombination 558 
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All existing methods for coalescent estimation of species trees and networks make two important 559 

assumptions, namely that (1) there is free recombination between loci, and (2) there is no recombination 560 

within a locus. These two assumptions address a key concept distinguishing MSC models from 561 

concatenation or supermatrix models: it is the conditional independence of loci, mediated by 562 

recombination between loci, and not the ability to address ILS or discordance among genes per se. 563 

Moving forward, three important questions to address are: (1) How robust are methods to the presence of 564 

recombination within loci and/or to the violation of independence among loci? (2) How should we model 565 

recombination within the species phylogeny inference framework? and (3) How do we detect it and 566 

differentiate recombination-free loci? 567 

Researchers have started to examine the first question and found a detectable effect of 568 

recombination only under extreme levels of ILS and gene tree heterogeneity (e.g., Lanier & Knowles, 569 

2012). However, more analyses and studies are still needed to explore a wider range of factors and 570 

parameters that could affect species phylogeny inference when the assumption of recombination-free loci 571 

is violated. For answering the second question, one approach involves combining the multispecies 572 

coalescent with hidden Markov models (e.g., Hobolth et al., 2007). These methods suffer from the “state 573 

explosion problem”, where individual states are needed for the different coalescent histories, and they 574 

increase rapidly with the number of taxa in the dataset, making them infeasible except for very small (~4 575 

taxa) datasets. New methods that scale to larger datasets are needed if such approaches are to be useful in 576 

practice. A different direction is to devise novel methods for inferring species phylogeny while assuming 577 

that the genealogies of the individual loci could take the form of an ancestral recombination graph (ARG: 578 

Siepel, 2009).  579 

 Extending these approaches to address recombination would require the development of new 580 

models that significantly extend the multispecies coalescent to account for ARGs within the branches of a 581 

species phylogeny. For two-step species tree methods, this entails developing new methods that infer 582 

ARGs for the individual loci and methods that infer species phylogenies from collections of ARGs. For 583 
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single-step (Bayesian) methods, novel developments are needed to sample species phylogenies, locus-584 

specific ARGs, and their related parameters. It will also be important to better understand the conditions 585 

under which ignoring recombination will still yield reasonable estimates of phylogeny. Extending the 586 

theory to accommodate ARGs may be of intrinsic interest, but if the parameter space in which 587 

recombination is relevant is very small, then practitioners may be able to ignore recombination. 588 

 589 

Species concepts and delimitation 590 

Coalescent methods have played an important role in the development and critical evaluation of species 591 

delimitation methods because they provide hypotheses for species boundaries based on genetic and can 592 

now be integrated with phenotypic data (e.g., Solis-Lemus et al., 2015). Irrespective of traditional species 593 

concepts, it is essential that the entities at the tips of the species tree do not violate the assumptions of the 594 

MSC, wherein the definition of species is mathematically clear-cut (e.g., Rannala & Yang, 2003, Degnan 595 

& Rosenberg, 2009): the branches of the species tree constitute species or populations that do not 596 

exchange genes. However, the MSC model also carries strict assumptions about the divergence process if 597 

the delimited units are to be interpreted as species. Specifically, it is important to emphasize that in the 598 

“standard” MSC model, these species represent populations that, immediately after divergence, no longer 599 

experience gene flow. Therefore, the species of the MSC model do not necessarily correspond with 600 

species as a taxonomic rank, defined by traditional species concepts (Heled & Drummond, 2010): “MSC” 601 

species could simply be populations by other criteria, so long as they have ceased to exchange genes, 602 

even for a short period of time. In other words, a species tree built under the MSC might then be 603 

interpreted as a depiction of the history of the barriers to gene flow among diverging structured 604 

populations (Sukumaran & Knowles 2017). Therefore, in those species-phylogeny methods requiring a 605 

priori assignments of individuals to species, such assignments may strongly influence the inferred species 606 

phylogeny, in the same way that hybridization will have serious consequences on an estimated species 607 

phylogeny (Leaché et al., 2014).  608 
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Recently, several MSC-based methods that have the ability to simultaneously perform species 609 

delimitation and estimate the species phylogenies have been developed and implemented (e.g., Yang & 610 

Rannala, 2014; Jones, Aydin, & Oxelman, 2015; Jones, 2016). These methods seem to consistently 611 

recover the correct number of “MSC species” given the assumptions of the model. However, it is 612 

probable that the assumption of no gene flow between the descendant populations is often violated and 613 

that most reproductive isolation processes are gradual or episodic rather than sudden and permanent (e.g., 614 

Rosindell et al., 2010). There is thus need for methods that perform simultaneous species phylogeny 615 

estimation and assignment of individuals to species while taking into account the limitations of the MSC 616 

(Jones, Aydin, & Oxelman, 2015). 617 

 If one prefers a species concept that affirms that most recently diverged populations are 618 

necessarily reproductively isolated, current methods will overestimate the number of species as defined 619 

by traditional species concepts, and will likely reveal instead intraspecific population structure 620 

(Sukumaran & Knowles, 2017). Toprak et al. (2016) used DISSECT (Jones, Aydin & Oxelman, 2015) 621 

but also employed checks as to the integrity of various hypotheses of species boundaries suggested by the 622 

data. From a computational point of view, any species delimitation method will need an operational 623 

definition of species. Therefore, a possible development of MSC-based species delimitation methods 624 

could be allowing migration and assuming that speciation is complete when a certain proportion of the 625 

migrations is reached or when the migration rate is sufficiently low. However, this solution will not be 626 

suited for the protracted speciation model because other kinds of information besides the movement of 627 

genes will still be needed to identify when a clade becomes reproductively isolated. Possibly the best way 628 

to avoid confusion is to restrict the word “species” to taxonomy and base it on multiple sources of 629 

information which are synthesized in an integrative fashion (Dayrat, 2005; Will, Mishler & Wheeler, 630 

2005; Bacon et al., 2012; Solis-Lemus, et al., 2015), and refer to the reproductively isolated units of MSC 631 

analysis as “MSC units” or “MSC taxa”.  632 

 633 
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IV: Models at the intersection of phylogenomics, phylogeography, and macroevolution 634 

Phylogenomics and macroevolution represent two ends of a research spectrum, with one end focusing on 635 

building phylogenies and the other end on using them. In many important respects, these two sub-636 

disciplines have remained distinct and non-communicative. On the one hand, phylogenomics and 637 

phylogeography have not exhaustively aimed to address the type of questions - related to diversification 638 

and trait evolution - that macroevolution focuses on. On the other hand, macroevolution ignores many 639 

kinds of complexities inherent to the phylogeny building process that phylogenomics has recently begun 640 

to address.  641 

Macroevolutionary models focus on long-term processes, in terms of both species richness and 642 

phenotypic diversity. They rely on two types of models: birth-death models of diversification aimed at 643 

understanding how and why speciation and extinction rates vary through time and across lineages (Hey 644 

1992; Nee, Mooers & Harvey, 1992; see Stadler 2013 and Morlon, 2014 for review) and models of trait 645 

evolution aimed at understanding the mode and tempo of phenotypic evolution (Felsenstein, 1973; see 646 

Pennell & Harmon, 2013 and Manceau, Lambert & Morlon, 2017 for reviews). These models are 647 

typically constructed at the level of species, ignoring the populations or individuals that constitute these 648 

species (but see Manceau, Lambert & Morlon, 2015 and Rosindell, Harmon & Etienne, 2015 for 649 

exceptions). As a consequence, microevolutionary processes such as coalescence have informed 650 

phylogenetic methods for building phylogenies more so than have macroevolutionary methods that use 651 

them. For example, the most widely used phylogenetic dating methods generally do not acknowledge the 652 

critical distinction between speciation times, which are usually of primary interest, and coalescence times, 653 

which are often assumed to represent speciation times but in fact represent events older than the 654 

divergence of the species concerned (Edwards & Beerli, 2000; dos Reis, Donoghue & Yang, 2016; 655 

Angelis & dos Reis 2015). In addition, macroevolutionary models are fit to species phylogenies 656 

(diversification models) or a combination of species phylogenies and phenotypic data (trait evolution 657 

models), most often assuming that evolution is best represented by a species tree, not a network (but see 658 
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Jhwueng & O'Meara, 2015; Bastide et al., 2017; Solis-Lemus et al., 2017 for models of trait evolution on 659 

networks), and that the species phylogeny is known. Nearly all models that use phylogenies to study 660 

character evolution assume a single underlying species phylogeny on which characters evolve. But it has 661 

become evident recently that different characters often might in principle have different phylogenies, for 662 

the same reason that genes themselves might have different phylogenies (Hahn & Nahkleh, 2016). 663 

Analyzing incongruences between character evolution inferred from the species tree versus from gene 664 

trees that are more directly linked to the character under study would provide a refined understanding of 665 

character evolution. Recent work on the phylogeny of quantitative characters may be helpful in this 666 

endeavor (Felsenstein 2012).  667 

Developing research projects that integrate the heterogeneity currently experienced by 668 

phylogenomics and macroevolution will bring important new insights into the evolutionary process. For 669 

example, developing diversification and phenotypic evolution models to be fit to networks rather than 670 

dichotomous trees will allow estimates of rates of hybrid speciation and phenotypic evolution as well as a 671 

better understanding of factors influencing such rates (see Bastide et al., 2017). Embracing genetic 672 

heterogeneity and the incongruence between gene trees and species phylogenies when applying 673 

macroevolutionary models could help us to better understand how speciation proceeds, and also to 674 

analyze the coupling between genetic and phenotypic evolution (e.g., is phenotypic convergence coupled 675 

or not with genetic convergence in relevant genes?). Developing macroevolutionary models accounting 676 

for within-species heterogeneity linked to biogeography could help us understand how biogeographic 677 

structuring influences speciation, extinction, and phenotypic evolution.  678 

More generally, evolutionary biologists have not yet thought much about the type of new 679 

questions that we are going to be able to address if we are given genomic data at the tips of all species 680 

from a phylogeny. Such data could allow us to gain an integrative understanding of three fundamental 681 

aspects of evolution: evolution at the molecular level, at the phenotypic level, and at the clade level, as 682 

well as the links among them. Are rates of evolution at these three levels correlated? If so, how? Do 683 
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features of genomes or of genome evolution, such as quantity of transposable elements, substitution rates, 684 

number of gene duplications, influence rates of diversification and phenotypic evolution? Clearly, we are 685 

only at the beginning of exploring these new possibilities.  686 

 687 

Mapping trait evolution on heterogeneous genomic datasets 688 

Mapping the genomic basis of phenotypic traits is a major trend in evolutionary biology today (Elmer & 689 

Meyer, 2011; Hoban et al., 2016). Such mapping can be conducted in the context of populations of a 690 

single species or, increasingly, via comparisons of species on a phylogeny (e.g., Hiller et al., 2012; 691 

Marcovitz, Jia & Bejerano, 2016). Phylogenetic genome-wide association studies (“PhyloGWAS”) 692 

methods identify genomic features in coding or non-coding DNA that exhibit unusual patterns of 693 

evolution on branches concerned with repeated evolution of phenotypes, thereby drawing connections 694 

between the genomic and phenotypic levels (Pease et al., 2016). Such phylogenomic mapping usually 695 

assumes a single phylogeny, the species phylogeny, as a framework for analysis, and therefore ignores 696 

genomic heterogeneity. To make phyloGWAS mapping most efficient it might be more appropriate to use 697 

the local topology in the genome for inference and estimation of ancestral states. Estimating genotype-698 

phenotype associations solely on the species phylogeny might yield misleading results regarding the 699 

origin and evolution of phenotypic traits (Hahn & Nakleh, 2016). Heterogeneity across gene histories has 700 

been traditionally considered as “biological noise” when using comparative genomics to map traits, but of 701 

course such heterogeneity is the focus of gene mapping efforts at lower taxonomic levels. Genome-wide 702 

or gene-specific selective sweeps associated with the evolution of a particular phenotypic trait are a major 703 

source of genetic heterogeneity among closely related populations or species, and can be captured using 704 

outlier statistics, such as Fst or Dxy (Pease et al., 2016). Such selective sweep mapping of genes with 705 

large phenotypic effect can now be accomplished with high resolution and precision in genomically 706 

poorly studied organisms (Lamichhaney et al., 2015). Apart from providing valuable knowledge on the 707 

genetic basis of trait diversification, such data are providing increasing support to the fact that cases of 708 
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genetic heterogeneity can be profitably used in the effort to understand and resolve evolutionary history, 709 

rather than considering it “biological noise.” Such thinking needs to be incorporated into comparative 710 

genomics more frequently. 711 

 712 

Tree-free methods of character evolution 713 

We have seen that incorporating phylogenetic heterogeneity is a challenge for macroevolutionary models 714 

of character evolution. At the other end of the spectrum are a class of methods (so called “tree-free 715 

methods”) that attempt to draw inferences and principles about trait evolution without assuming a 716 

particular phylogeny. The common situation when analyzing character or trait data correlated by a 717 

phylogeny is to assume a stochastic process for the trait, commonly a variation of the Brownian motion 718 

(BM; Felsenstein, 1985) or Ornstein-Uhlenbeck (OU; Hansen, 1997) processes. Then, using the estimated 719 

phylogeny and measured trait data for each species, the parameters of various evolutionary processes – 720 

trait variation, patterns and rates of change, etc. - are estimated, often using maximum-likelihood or 721 

Bayesian approaches (see Pennell & Harmon, 2013 and Manceau, Lambert & Morlon, 2017 for reviews). 722 

However, given the various logistical and technical challenges of inferring robust phylogenies, exploring 723 

tree-free methods might represent a useful mechanism for guiding the study of character evolution for 724 

certain groups. 725 

Tree-free comparative methods work by integrating over the space of trees (under a given 726 

branching process model). For example, under a pure birth model and with enough tip measurements, the 727 

optimum value of the OU process can be estimated as the sample average (Bartoszek & Sagitov, 2015a). 728 

Similar results have now been derived for other models of tree growth that include extinction (Adamczak 729 

and MiCo[, 2014; 2015; Ané, Ho & Roch, 2017). Similarly, the rate of adaptation under the OU process, 730 

often modeled as the stationary variance – the ratio of the squared "rate of evolution" (sigma parameter in 731 

the OU model) and twice the "rate of adaptation" (the alpha parameter) can be estimated as the sample 732 

variance (Sagitov and Bartoszek 2015a). Teasing sigma and alpha apart, however, requires a tree.  The key 733 
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parameter of the BM model, the rate of evolution, is similarly estimable directly from the trait sample 734 

(Bartoszek & Sagitov, 2015b; Crawford & Suchard, 2013), whereas the root state cannot be consistently 735 

estimated without a tree (Ané, 2008; Sagitov & Bartoszek, 2012). In addition to providing tree-free 736 

estimators of some model parameters, the studies mentioned above also derived Central Limit Theorems 737 

that allow computing confidence intervals around these point estimates as well as the sample sizes needed 738 

to obtain reliable estimates.  739 

 740 

Extinct and unsampled species 741 

A notable case when phylogenomics and macroevolution do meet is in the treatment of extinct or 742 

unsampled species in phylogenetic reconstruction and dating. Despite the avalanche of genomes for an 743 

increasing number of species, we still lack sequence data for most species, making it difficult to place 744 

them in a phylogeny. Some researchers (e.g., Jetz et al., 2012; Tonini et al., 2015) have opted to impute 745 

the phylogenetic relationships of unsampled species. In this case, polytomies are often resolved by using 746 

distributions of branching times obtained from macroevolutionary birth-death models (Kuhn, 2011). 747 

While such approaches elicit a culture clash between those who laboriously build trees and those that 748 

simply use them, there are other approaches stemming from macroevolution that are less offending to 749 

phylogeny builders. For example, recent results using conditioned birth-death processes (e.g., Gernhard, 750 

2008a; b; Sagitov & Bartoszek, 2012) show that under constant rate processes the size of the clade 751 

contributes information on the height of the tree and also on the coalescence times. Such results can be 752 

used to improve the calibration and node dating of the phylogeny when some species are not sampled. 753 

One would expect that ignoring the non-sequenced species would incur a bias resulting in shorter tree 754 

heights, because less time is usually required to generate fewer tips. Conditioned branching process 755 

models can help alleviate this bias. Also, macroevolutionary birth-death models are used as branching 756 

process priors in Bayesian molecular dating. The availability of likelihood expressions for incompletely 757 

sampled phylogenies (Stadler 2009; Stadler & Steel 2012; Morlon et al, 2011) thus allow to date 758 
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phylogenies while accounting for the fact that we have observed only a certain fraction of unsampled 759 

species.  760 

 761 

V. Building, updating and sustaining the Tree of Life  762 

Scalability challenges 763 

Inferring the phylogeny of all living organisms represents a different challenge than inferring the 764 

relationships of just a few terminals; often the scale at which new methods are developed and tested is on 765 

this latter scale. For instance, for eukaryotes alone, recent conservative estimates indicate that there are 766 

~8.7 million species on Earth and only 9-14% of them have been formally described (Mora et al., 2011). 767 

Furthermore, out of 2.6 million taxa currently represented in the Open Tree of Life 768 

(https://tree.opentreeoflife.org; Hinchliff et al., 2015), only ~55,000 were gathered from hard-data 769 

phylogenies, whereas phylogenetic affinities of the rest were inferred from current taxonomic 770 

classifications (McTavish et al., 2015; 2017). These observations suggest that the vast majority of taxa on 771 

Earth still await formal taxonomic description and placement in the Tree of Life (Mora et al., 2011; 772 

McTavish et al., 2017). One common challenge that phylogeneticists encounter towards that end is the 773 

difficulty in accessing samples from rare, endangered, or extinct taxa, particularly in countries where 774 

collecting and exporting is not possible. Recent genomic techniques now allow successful results in 775 

obtaining valuable DNA data from museum specimens (e.g., Staats et al., 2013; Hykin, Bi & McGuire, 776 

2015; McCormack, Tsai & Faircloth, 2016; McCormack et al., 2017; Ruane & Austin, 2017), and here, 777 

we advocate for routine use of these resources to enhance research in phylogenomics and 778 

phylogeography. 779 

Despite the great increase in the generation of genomic data across organisms, we are often 780 

forced to use simpler, less realistic phylogenetic methods and assumptions to deal with large, 781 

heterogeneous datasets. For instance, the popular phylogenetic software program *BEAST (Heled & 782 

Drummond, 2010) is not capable of dealing with more than a few hundred taxa and some dozen loci at a 783 
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time for a common analysis, and only recently the release of StarBeast2 allows for the use of thousands of 784 

loci for tens of taxa (Ogilvie, Bouckaert & Drummond, 2017). To tackle this problem, we encourage the 785 

continuing development of methods that are fully scalable and ideally only increase analytical time 786 

linearly rather than exponentially with the number of taxa and loci. Phylogenetic methods should also be 787 

fully parallelizable (in order to run natively in computer clusters) and contain checkpoints, i.e., be able to 788 

resume the analyses from the latest logged file in case an analysis crashes or the user wishes to evaluate 789 

partial results. Another point of possible improvement is in dealing with new sequences to be added to a 790 

previously large dataset: should the analysis start from scratch, or could there be substantial time gains by 791 

letting those sequences find their placement in the phylogeny ‘on the fly’? 792 

Large scale phylogenies should ideally be based on the best (or most comprehensive) available 793 

datasets in terms of taxonomic and molecular sampling and be constructed from the data itself. However, 794 

even supermatrix inference conducted under a single analysis can add bias on tree heights and 795 

coalescence times when performed across unbalanced sampled clades (a very common case for species-796 

rich clades or understudied taxa), and therefore affect downstream analyses that rely on these parameters 797 

(e.g., biogeography, trait evolution, diversification rates). Computing optimally populated datasets that 798 

combine the largest number of taxa and loci simultaneously is a complex mathematical problem, but 799 

recent approaches (e.g., SUPERSMART; Antonelli et al., 2017) attempt to overcome it objectively, such 800 

as applying the knapsack problem to phylogenetics by packing the optimal choice of species and suitable 801 

alignments into a minimally sparse supermatrix. 802 

 803 

Community initiatives 804 

Building the Tree of life is a grand challenge in molecular phylogenetics, and one that cannot be 805 

accomplished by a single person or institution’s efforts. Several initiatives have been developed in recent 806 

years to coordinate efforts and provide the research community with synthetic information. A prominent 807 

project is the Open Tree of Life (https://tree.opentreeoflife.org/; Hinchliff et al., 2015). This project 808 
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provides a synthesis of previously published phylogenies merged through supertree and other grafting 809 

methods. One issue faced by the initiative is that it relies on authors uploading their phylogenetic trees to 810 

open data repositories, such as Dryad Data Repository (http://datadryad.org/pages/organization; Vision, 811 

2010) or TreeBase (Sanderson et al., 1994; Piel et al., 2009), which at least until recently only occurred in 812 

about 17% of cases (Drew, 2013). Substantial curatorial efforts are also critical to facilitate reusability of 813 

deposited trees (McTavish et al., 2015). A different approach was taken by Antonelli et al. (2017), who 814 

developed a framework for continuously inferring time-calibrated large phylogenies from raw sequence 815 

data deposited in GenBank (Clark et al., 2016) in a multi-step method. Similarly, various tools have been 816 

developed to make information contained in the Tree of Life available for the general public (e.g., 817 

Rosindell & Harmon, 2012; Harmon et al., 2013). 818 

 819 

Mapping the Tree of Life 820 

While progress has been made in mapping species distributions at the large scale aiming for improved 821 

conservation practices (e.g., the Map of Life collaborative project; https://mol.org/), most initiatives do 822 

not map the tips of phylogenetic trees directly onto the geographic space, and therefore are limited by 823 

current taxonomic knowledge. As spatial variation in biodiversity results from interactions between 824 

evolutionary history and environmental factors, explicit connections between the tips of the Tree of Life 825 

and geographic ranges will greatly improve biogeographic inferences (Quintero et al., 2015) and our 826 

understanding of biodiversity patterns and future trends. Advances in mapping the Tree of Life through 827 

earth history using genomic-based phylogenetic inferences over broad scales and explicit spatial models 828 

(e.g., geophylogenies and continuous diffusion models: Kidd, 2010) depend directly on locality data that 829 

should be made available in raw and ready-to-use formats. Data sharing policies for associated data, such 830 

as geographic coordinates and voucher information, is not well established among journals. We argue that 831 

editorial boards should try as best as possible to establish data policies that value and encourage the 832 
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deposit of geographic data associated to vouchered specimens and other associated information available 833 

for future reference. 834 

 835 

Best practices for building the Tree of Life 836 

Data must be well curated and publicly available 837 

As we are now entrenched into the era of big data in biological sciences, adequate reproducibility must be 838 

a fundamental endeavor of biodiversity research. Therefore, data publication in open-access repositories 839 

represents a powerful tool that not only ensures long-term storage and public availability for future 840 

research, but also serves as a vehicle for clarifying intellectual rights and scientific merits (Costello & 841 

Wieczorek, 2014). The exponential growth in the amount of genomic scale data and the increased 842 

dependence on the availability of each other's’ data to answer complex biological questions means that 843 

there is a need for improved data management, analysis, and accessibility. Biocuration, the activity of 844 

organizing, representing, and making biological information accessible to both biologists and 845 

bioinformaticians, has now become an important consideration in building, updating, and sustaining the 846 

Tree of Life (McTavish et al, 2017). GenBank has been the main open access repository for annotated 847 

collections of publicly available molecular data. Although the data stored in this database usually lists 848 

information such as organism of origin and publication details, the utility of molecular data in this 849 

database to answer multiple biological questions, such as biogeographic patterns of biodiversity, is often 850 

hampered by lack of associated information such as collection locality or attachment to a specific voucher 851 

specimen. We propose two urgent actions to advance this key field. First, authors should be encouraged to 852 

submit molecular data that is linked to voucher specimens deposited in recognized scientific collection 853 

and museums. Second, authors, journals, and curators should encourage all molecular data submitted to 854 

include information such as collection locality and details of voucher specimens. In this regard, other 855 

global initiatives such as the International Barcode of Life Project (iBOL; http://www.ibolproject.org) 856 

have had great success linking molecular data with morphological and distributional data. When all the 857 
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data produced or published are curated to high standards and made accessible as soon as available, 858 

biological research will be able to process massive amounts of complex data much more quickly.  859 

Submitting sequence and tree data during publication is now routine. However, making available 860 

all analytical methods such as software and code used to process and analyze data is less widely 861 

employed by the phylogenetic community. Facilities such as TreeBase, Dryad Digital Repository, and 862 

Github (https://github.com/) provide a platform for the curated storage of the data and bioinformatic 863 

pipelines underlying the scientific literature (see McTavish et al., 2015; 2017). Authors and journals 864 

should require all published research to include links to raw data, processed data, and all analytical 865 

methods used to produce the results presented. In general, we advocate for following best practices of 866 

data management and publication to ensure the quality and utility of phylogenomic data and their 867 

associated biological information (see Costello & Wieczorek, 2014 for a review). In putting together 868 

Figure 2, for example, we found that basic information on a given phylogenomic study, such as the 869 

number of species or sequences analyzed, or the total number of base pairs in an alignment, were often 870 

not reported or difficult to recover; including such information in easy-to-access tables prior to article 871 

acceptance would greatly facilitate meta-analyses and syntheses as the number of studies grows 872 

(Supplementary Table S1). 873 

 874 

The need of adequate curation of analytical tools 875 

In the same way that data must be adequately stored and curated, analytical tools must be available for 876 

future use and should guarantee proper reproducibility (Wilson et al., 2014). One of the reasons behind 877 

the dramatic increase in the number of phylogeographic and phylogenetic studies during the last 20 years 878 

is the proliferation of software and bioinformatic tools to process and analyze these data. Thanks to these 879 

new methods, it is now possible to implement a wide array of theoretical models that sustain the fields of 880 

phylogenomics and phylogeography. As stated above, genome-wide data have notoriously increased the 881 

necessity to expand our analytical models, ultimately leading to a stronger demand for computing 882 
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resources. Given their key role in phylogenomic research, it is advisable that software development, 883 

documentation, and availability follow the best possible practices (e.g., Leprevost et al., 2014; Wilson et 884 

al., 2014; Guang et al., 2016). Having both data and analytical tools adequately stored and accessible to 885 

the public not only will ensure high reproducibility of previous studies, but, more importantly, will 886 

facilitate continuing the construction of the Tree of Life (McTavish et al., 2017). 887 

  888 

All contributions toward building the Tree of Life must be properly recognized 889 

Some current publishing practices in the scientific community may unintentionally represent hurdles 890 

toward the ultimate end of collecting and disseminating phylogenetic data on which to build a Tree of 891 

Life. For instance, the increasing need in many countries and communities for publishing high-impact 892 

papers understandably often discourages researchers from releasing their data until their studies are 893 

complete and have passed the peer-review process. This is partially explained by the heavy emphasis of 894 

top journals on unusually novel and flashy findings as compared to those studies that represent more 895 

modest, but just as critical, advances in the understanding of the phylogenetic relationships of the groups. 896 

Similarly, this urge to publish high-impact papers often impedes adequate long-term studies that could 897 

potentially generate a wider variety of basic data. With the cultural emphasis on impact and numbers and 898 

rates of publication, in practice there is often a penalty for long-term studies. Our current climate often 899 

values novel results produced in the short term. Consequently, as a community, we must reach an 900 

equilibrium between short- and long-term scientific production in a way that values both, encouraging 901 

high impact studies bringing radical reorganizations of the Tree of Life, without hurting lower impact 902 

research and the ongoing search for innovation.  903 

Moreover, because building the Tree of Life is a slow and daunting task, it is important that, as a 904 

scientific community, all contributors to the process receive proper recognition for their contributions, 905 

thereby keeping motivation high and retaining our best talent. Unfortunately, some contributors, both 906 

institutions and roles within them, receive less recognition in this grand task than others. For example, 907 
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field biologists that obtain basic natural history information and specimens used for building the Tree of 908 

Life (Suarez & Tsutsui, 2004), and the natural history museums that house those specimens, are often not 909 

recognized sufficiently. As a community, we have been following a trend in which, perhaps inadvertently, 910 

we do not value as much the production of basic biological and natural history data. This can certainly be 911 

recognized in our national funding practices, which often do not support basic taxonomic or natural 912 

history fieldwork at the expense of flashier end-uses of biological specimens. Specimens are the 913 

foundation of most phylogenomic and phylogeographic studies, and we should find standard mechanisms 914 

not only to acknowledge, but also to encourage the production of these data in an integrative framework. 915 

It is time to strengthen those initiatives aimed at recognizing scientific production beyond citations of 916 

peer-reviewed literature (e.g., ORCID; https://orcid.org) by giving also credit to the production and 917 

impact of basic biology datasets and collected specimens. Providing credit for depositing and generating 918 

data by tracking, for example, number of access and downloads or number of studies using genetic data 919 

associated to specimens, could represent a formal recognition of the importance of producing and sharing 920 

basic biological data could help bridge the gap between naturalists, taxonomists, empiricists, and 921 

mathematicians invested on the study of life history. 922 

 It will be exciting to have objective estimates that allow tracking the direct and indirect impact of 923 

how these data and samples are being used. We are confident that such initiatives will highlight the 924 

importance of continuing field- and museum-based research in various fields of biological research 925 

(Buerki & Baker, 2016). Furthermore, such cultural shifts will undoubtedly encourage discerning young 926 

minds to embrace basic biological research in their academic endeavors, rather than embracing more 927 

lucrative and societally appreciated applied fields.  928 

 929 

VI. Conclusions 930 

In this perspective, we have attempted to cover ground in the vast arena of issues facing modern 931 

phylogenomics today. We have seen how genome-scale phylogenomics, currently on a strong footing as a 932 
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result of the multispecies coalescent model, is increasingly infiltrated by models that recognize reticulate 933 

processes, such as recombination and introgression. By contrast, macroevolutionary models that use 934 

phylogenies have yet to embrace the heterogeneity that currently drives many theoretical innovations in 935 

phylogenetic reconstruction itself. We have emphasized the need for the phylogenomics community to 936 

embrace high standards of data quality, curation and accessibility in its long-term pursuit of the Tree of 937 

Life. Such a grand mission requires value and recognition placed not only on the end products of the 938 

process, such as publications and trees, but also on the natural history specimens on which phylogenies 939 

are based and which are cared for by the community of natural history museums. Building the tree of life 940 

will require contributions from all sectors of biological and related sciences – from field biology to theory 941 

and everything in between – and robust cyberinfrastructures to integrate these diverse and increasingly 942 

massive data streams. 943 
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Figures 1653 

Figure 1. A posteriori marker selection from whole genome alignments for phylogenomics and 1654 
phylogeography. Whole genome analysis (top) permits researchers to choose different markers for 1655 
specific purposes. By contrast, subsampling methods such as Rad-seq or hybrid capture, which dominate 1656 
phylogenomics today, usually yield a specific set of markers that the researcher has chosen a priori. The 1657 
generation of WGA thus greatly increases the use of genomic data in biological research, beyond the 1658 
initial goals of the researcher producing those data.  1659 
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Figure 2. Trends in phylogenomic data sets since the emergence of HTS. Based on a sample of 164 1663 
phylogenemic papers published since 2004 (see Supplementary Table S1), we observed no increase in the 1664 
number of species per data set over time (A). On the other hand, there is a significant increase in the 1665 
number of loci (B), total alignment length (C), and total data set size, as measured by the product of 1666 
species times locus number (Data set size 1, E) and species times total alignment length (Data set size 2, 1667 
F). Moreover, the advent of HTS does not support the notion of a tradeoff between the number of species 1668 
and the number of loci in phylogenomic studies. 1669 
 1670 
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Figure 3. Some examples of violations of the multispecies coalescent. In event A, there is gene flow; in 1672 
event B there is homoploid hybridization; in event C, there is a gene duplication; and in event D, 1673 
incomplete lineage sorting. All of these processes contribute to gene tree heterogeneity but fall outside the 1674 
standard multispecies coalescent model. Importantly, all of these processes also yield strictly dichotomous 1675 
gene trees, whereas recombination (not illustrated here) does not. This implies that tree building without 1676 
considering the multispecies coalescent could, in this case, lead to erroneous estimation of tree topology 1677 
and divergence times.  1678 
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Figure 4. Gene duplication and loss creates patterns that can mimic incomplete lineage sorting and other 1682 
processes. Genes and genomes of three species A, B, and C. Multi-colored bars show (parts of) their 1683 
genomes with a number of loci indicated in different colors. The orange gene is duplicated in species A 1684 
and it was lost in species B. The blue gene was duplicated before the divergence between B and C. 1685 
However, both copies are maintained in species B and only one copy persists in species C. The 1686 
duplication and loss history of these two genes may cause serious issues for phylogenetic reconstruction 1687 
because no specific pattern can be expected between them. 1688 
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Figure 5. Complex patterns of gene lineages with polyploidization and interspecific gene flow. Genes and 1691 
genomes of four species A, B, C and D. Multi-colored bars show (parts of) genomes with a number of 1692 
loci indicated in different colors. Two gene trees, one orange and one blue, evolve within the species 1693 
network. Species B is an allopolyploid containing two genomes. 1694 
 1695 
 1696 

 1697 

A B C D

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26449v3 | CC BY 4.0 Open Access | rec: 30 Jan 2018, publ: 30 Jan 2018



72 
 

Figure 6. Gradual speciation, or isolation-with migration. After starting to split, gene flow between 1698 
species decreases gradually. Such a gradual decrease in the extent of gene flow between species might 1699 
present an especially useful extension of the standard multispecies coalescent model. 1700 
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Figure 7. Two possible species phylogenies producing similar observations at present time. On the left 1704 
(A), there is a species tree with gene flow. On the right (B), there is a species network with homoploid 1705 
hybridization. Distinguishing two such scenarios usually requires simulations and comparison of 1706 
observed and expected summary statistics. 1707 
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