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Abstract7

The general purpose of this paper is to build up on our understanding of the basic mathematical principles that underlie8

the emergence of synchronous biological rhythms, in particular, the circadian clock. To do so, we study the role that the9

coupling strength, coupling type, and noise play in the synchronization of a system of coupled, nonlinear oscillators. First,10

we study a deterministic model based on Van der Pol coupled oscillators, modeling a population of diffusively coupled11

cells, to find regions in the parameter space for which synchronous oscillations emerge and to provide conditions under12

which diffusive coupling kills the synchronous oscillation. Second, we study how noise and coupling interact and lead to13

synchronous oscillations in linearly coupled oscillators, modeling the interaction between various pacemaker populations,14

each having an endogenous circadian clock. To do so, we use the Fokker-Planck equation associated to the system. We15

show how coupling can tune the frequency of the emergent synchronous oscillation, which provides a general mechanism16

to make fast (ultradian) pacemakers slow (circadian) and synchronous via coupling. The basic mechanisms behind the17

generation of oscillations and the emergence of synchrony that we describe here can be used to guide further studies of18

coupled oscillations in biophysical nonlinear models.19

Keywords: synchronization, coupled nonlinear oscillators, Fokker-Planck, circadian rhythm.20

1 Introduction21

The study of circadian rhythms has been a subject of great interest for a long time. The majority of the first studies were22

mainly based on observations in plants [1–4]. The study of circadian rhythms from a mathematical perspective reached23

a milestone with the work of Kalmus and Wigglesworth, a biologist and a mathematician, respectively, who associated24

of circadian rhythms to the existence of a limit cycle, using a hydraulic system as analogy. Kalmus and Wigglesworth25

presented their work entitled "Shock excited system as models for biological rhythms" along with several mathematical26

models of circadian rhythms at a Symposium on Biological Rhythms carried out at Cold Spring Harbor in the United States27

of America in 1960 [5–7]. Lots of other important works on circadian rhythms were presented in this symposium, but the28

work of Kalmus and Wigglesworth was key in establishing a better mathematical formalism for the study of circadian rhythms.29

Although many researchers followed the theoretical path proposed by Kalmus and Wigglesworth, the mathematical study30

of circadian rhythms was finally established by Arthur Winfree (biologist and mathematician), who introduced topology for31

the description of several aspects of circadian rhythms. An excellent summary of many of the earlier works can be found in32

Arthur Winfree’s master book entitled "The Geometry of Biological Time" [8]. The number of studies about biological rhythms33
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at large has increased greatly in the last two decades, in part due to new technological advances. Particularly related to34

circadian rhythms, there is now evidence that there is rhythmic patterns of activity at the molecular [9, 10], cellular [11, 12],35

tissue [13, 14], and systems levels [15–17], and that circadian regulation is involved in jointly regulating activity in all those36

different levels of biological organization [18–20], and also, taking into account interactions with the environment [21] and37

perturbations induced by behavior [22,23].38

Mathematical modeling and experimental characterizations of different properties of circadian rhythms have been com-39

bined to produce explanations and hypotheses about the rhythmicity in biological phenomena [24–28]. Of particular interest,40

the ontogeny of circadian rhythm in the crayfish has been studied by Aparicio et al. [29] combining theoretical and experi-41

mental perspectives, building phenomenological mathematical models that capture a series of experimental results involving42

the synchronization of electro-retinogram activity in crayfish [30–32]. These models couple two van der Pol oscillators [33]43

represented by state vectors, and include parameters representing the frequency of the oscillators, the radii of the limit44

cycles, and the first coordinate of the center of the limit cycle. The system is setup such that one oscillator is driving the45

behavior of the other oscillator, but not vice-versa. One of the main findings with this model is that the driving oscillator46

induces an Andronov-Hopf bifurcation in the driven oscillator and regulates its frequency.47

The model by Aparicio et al. simulates, explains, and has suggested new biological experiments, it is simple enough48

to allow analytical approaches, and it has provided useful insights about questions referring to the ontogeny of the circa-49

dian rhythm in crayfish from the childhood to adult stages. For instance, a hypothesis about the existence of a hormone,50

which was experimentally detected, was generated from the model. The model also allowed Lara-Aparicio et al. to study51

synchronization of circadian rhythms with external signals like day and night light cycle [34]. By studying basic principles un-52

derlying the generation of oscillations in coupled nonlinear systems, these researchers were able to conjecture that circadian53

rhythms can result from coupling systems of cells, each one oscillating with an ultradian oscillation [35–37]. Synchronization54

among cells emerges naturally as a motivating theme that has been studied through systems of nonlinear equations [38]55

representing n oscillators with the classical van der Pol non-linear damping for the terms responsible for the oscillatory56

dynamics.57

In the present paper, we extend the work in [29] and [38] by analyzing two qualitative mathematical models, each58

capturing a different level of organization in the ontogeny of circadian rhythms. Inspired by gap junction coupling between59

neurons, or similarly, by chemical coupling in self oscillating networks, we study the bifurcation structure in a deterministic60

model assuming that the coupling between the oscillators is diffusive. The resulting dynamics resemble neuronal activity at61

the cellular level. Then, using graph theoretical methods and center manifold theory, we show that synchronous oscillations62

appear via a Hopf bifurcation in a population of pacemaker oscillators. In this case, the bifurcation parameter is thought of as63

a representative of the developmental stage of the neurons. We further explore the phenomenon of oscillator death: although64

the single neurons are endogenously oscillating for sufficiently large values of the bifurcation parameter, the population65

oscillation dies for sufficiently large coupling, which suggests that the weak coupling hypothesis must be satisfied for robust66

synchronous oscillations to occur. In the case of all-to-all coupling, we provide necessary conditions for oscillator death to67

occur and leave the derivation of sufficient conditions to a future report.68
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Frequency modulation is also an important phenomenon that can be studied with these models. In consideration of the69

results from the first analysis, we shift our focus to the frequency modulations that emerge as a result of the interconnection70

of various circadian pacemaker populations. In doing so, we estimate of the synchronization frequency as a function of the71

intrinsic frequencies of the oscillators, their coupling strength, and the topology of the network. To do so, we construct a72

second model that can be thought of as a stochastic, larger-scale extension of the first model we present. In this case, each73

population is assumed to be an endogenous oscillator and the coupling is assumed to be linear. Using linear stochastic anal-74

ysis and under the assumption that the population oscillations are synchronized, we derive a scalar Fokker-Plank equation.75

The model captures an important feature of circadian rhythm ontogeny: the emergence of low frequency (circadian) oscilla-76

tions from coupled high frequency (ultradian) oscillators [35–38]. Future work will aim at deriving conditions on the intrinsic77

frequencies, the coupling strength, and the network topology, that ensure synchronization of the population oscillations.78

It is worth noticing that, although the motivation for the present paper is centered around circadian rhythms, the model79

captures more general phenomena. Our findings include that in diffusively coupled cells resting node dynamics imply global80

asymptotic stability, oscillating node dynamics imply global synchronization for small coupling, and multistability between81

oscillator death and global synchronization for large coupling. In stochastic, linearly coupled populations, we describe the82

dynamical mechanisms through which coupling modulates the frequency of the synchronous oscillation. To the author’s83

knowledge, both phenomena are new from a nonlinear collective phenomena perspective. Among other reasons, it is84

surprising that passive coupling like diffusive coupling could kill an oscillation and create multistability. Similarly, we are not85

aware of any work providing mechanistic explanations on how coupling can tune a global oscillation frequency.86

The paper is organized as follows. In Section 2, we present and analyze the model of diffusively coupled oscillators.87

Two theorems are proved about global asymptotic stability for resting cells and global synchronization for oscillating cells88

and weak coupling. We then derive sufficient conditions for diffusive coupling-induced oscillator death. In Section 3 we89

present and analyze the model of linearly coupled oscillators. In particular, we derive an explicit formula for the emergent90

synchronization frequency as a function of the coupling topology and oscillator natural frequencies. Finally we discuss the91

presented results in Section 4.92

2 Global synchronization and oscillator death in diffusively coupled oscillators93

We regard a network of N coupled oscillators as a directed graph G with N vertices, with a network topology codified by

a matrix A = [aij ]
N
i,j=1, where aij ≥ 0 represent connection weights. If oscillator i receives signals from oscillator j, then

the graphical representation of G has an arrow from j to i, and aij > 0. If aij > 0, the signal received by oscillator i from

oscillator j is aij(xj − xi). Assume that the dynamics for each oscillator satisfies the following coupled oscillator dynamics

ẋi = yi + µ

N∑
j=1

aij(xj − xi) (1a)

ẏi =

(
λ− x2i −

y2i
ω2

)
yi − ω2

i xi (1b)

where µ is the global coupling strength, which uniformly scales the coupling weights aij .94
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In the absence of coupling the oscillator dynamics reduces to the modified van der Pol equation

ẍi =

(
λ− x2i −

y2i
ω2

)
ẋi − ω2

i x.

These equations define a simple dynamical system that can transition between global asymptotic stability and almost global95

convergence to a hyperbolic limit cycle through variations of the control parameter λ ∈ R, providing a simple model for96

various biological systems that exhibit the same transition, in particular neurons and molecular oscillators. For λ < 0 the97

nonlinear dissipation coefficient −
(
λ− x2 − y2

ω2
i

)
is always positive, which leads to damped oscillations. For λ > 0 the98

dissipation coefficient becomes negative close to the origin, which leads to sustained oscillations through a Hopf bifurcation.99

A generic trajectory belonging to the family of periodic orbits born at the Hopf bifurcation has the form100

√
λ(cos(ωit+ θ0), sin(ωit+ θ0)), (2)

where the θ0 is the initial phase.101

In the presence of coupling, equations (1) represent a generic network of diffusively coupled non-linear oscillators. As102

mentioned earlier, the diffusive form of the coupling can be thought of as gap junction coupling in a neuronal population, or103

diffusive coupling between nonlinear molecular oscillators. In both interpretations, the graph topology is necessarily undi-104

rected, that is, aij = aji. However, the mathematical results presented in this section hold under more general assumptions105

and we present them in the general form.106

2.1 Global synchronization107

We start by recalling some basic graph-theoretical definitions and facts. The graph G is said to be strongly connected if for108

each pair of nodes in G, there exists a directed path between them. G is balanced if
∑N
j=1 aij =

∑N
j=1 aji for all i.109

The Laplacian matrix L = [Lij : i, j = 1, ..., n] for the graph G is such that Lij = −aij if i 6= j, and Lii =
∑N
j=1 aij .110

Note that the vector of ones is always a right null eigenvector of L and zero is always an eigenvalue of L (L1N = 0). It can111

be shown that a graph is strongly connected if and only if zero is a simple eigenvalue of the Laplacian matrix [39]. Obviously,112

symmetric graphs (i.e., satisfying aij = aji) are balanced, but the converse is not true. Consider, for instance, a directed113

ring.114

The global behavior of the system (1) for λ < 0 and µ ≥ 0, for a network with connectivity represented by a generic115

balanced graph is characterized by the next theorem (Figure 1).116

Theorem 2.1 Assume that the graph G is balanced and that ωi = ωj = ω for all i, j = 1, . . . , N . If λ < 0, then the origin is117

globally asymptotically stable and locally exponentially stable for all µ ≥ 0.118

Proof. We consider the quadratic Lyapunov function

V (x, y) =

N∑
i=1

(x2i + y2i /ω
2).
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The derivative of V along the trajectories of the system (1) gives119

V̇ =

N∑
i=1

(
2xiẋi + 2yiẏi/ω

2
)

(3)

which after substitution of the derivatives ẋi and ẏi, can be bounded from above as follows

=

N∑
i=1

2xiyi − 2yi
ω2xi
ω2

+ 2
yi
ω2

(
λ− x2i −

y2i
ω2

)
yi − 2µxi

N∑
j=1

aij(xi − xj)


≤ 2

λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

xiaij(xi − xj)

= 2
λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

aij(x
2
i − xjxi)

= 2
λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

aij(x
2
i /2− xjxi + x2i /2)

To show that the last term is negative definite, we use the balanced interconnection hypothesis. Let dj =
∑N
i=1 aij =∑N

i=1 aji. Then,
N∑

i,j=1

aijxj =

N∑
j=1

djxj =

N∑
i=1

dixi =

N∑
i,j=1

aijxi.

As a consequence,

V̇ ≤ λ

ω2

N∑
i=1

y2i − µ
N∑

i,j=1

aij(xi − xj)2 ≤
λ

ω2

N∑
i=1

y2i .

Then the global part of statement follows by LaSalle invariance principle [40]. The local part follows by observing that for120

λ < 0 the linearization of model (1) at the origin is non-singular and therefore asymptotic stability of the origin implies that121

all eigenvalues have negative real part. �122

Remark. Because exponentially stability implies robustness to small perturbations, Theorem 2.1 remains true for small123

heterogeneity in the natural frequencies.124

Note that, for λ < 0, the system in equation (1) exhibits exponentially damped oscillations toward the origin (Figure 1,125

top panels).126

Next we show that, at λ = 0 and identical natural frequencies model (1) undergoes a supercritical Hopf bifurcation inside

the consensus space

C = {(x, y) ∈ R2N : xi = xj , yi = yj , ∀i, j = 1, . . . , N},

provided the graph is strongly connected. The linearization of the system (1) is given by127

J =

 −µL IN

−ω2IN λIN

 , (4)

where IN is the N -dimensional identity matrix and L is the network Laplacian defined in Section 2.1. Let 1N be the N -

dimensional vector of ones. Given a (complex) vector ν = (v, w) in the consensus space C, that is, v = a1N and w = b1N

5
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Figure 1: Transition between global asymptotic stability and synchronous oscillation via Hopf bifurcation in system (1) for µ = 0.05,

N = 20, natural frequencies uniformly distributed in the interval [0.9, 1.1] and varying λ. The interconnection topology is all-to-all.

for some a, b ∈ C, the eigenvalue problem for the Jacobian matrix (4), restricted to the consensus space, takes the form

Jν = J

a1N

b1N


=

−µLa1N + b1N

−ω2a+ λb1N


=

 b1N

(−ω2a+ λb)1N


= ξ

a1N

b1N


where ξ is a (complex) eigenvalue. In the third equality we used the fact that 1N is a right null eigenvector of L. The last128

equality shows that ν ∈ C is an eigenvector of J with eigenvalue ξ if and only if its components a and b satisfy129  0 1

−ω2 λ

a
b

 = ξ

a
b

 . (5)

We can now easily solve (5) to obtain the eigenvalues/eigenvectors pairs130

ξ±(λ) =
λ

2
± 1

2

√
λ2 − 4ω2,

a±
b±

 =

 1
ω2 (λ− ξ±)

1

 (6)
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For λ = 0 we got two purely imaginary eigenvalues which correspond to a supercritical Hopf bifurcation of model (1) inside131

the consensus space, as summarized in the following theorem and illustrated in Figure 1 (bottom panels).132

Theorem 2.2 For almost all balanced, strongly connected interconnection topologies the following holds. For all µ > 0,133

the system (1) undergoes a supercritical Hopf bifurcation at λ = 0 with center manifold given by the consensus space C.134

Moreover, the family of periodic solutions born at the Hopf bifurcation are exponentially asymptotically stable and correspond135

to synchronous oscillations of the oscillator network.136

Proof. By Theorem 2.1 the origin is locally exponentially stable for λ < 0. We further observe that, if the interconnection137

topology is strongly connected, then zero is a simple eigenvalue of L and therefore no either eigenvalue of J satisfies the138

same eigenvalue problem defined by (5). It then follows by the center manifold theorem [41] and equation (6), that the139

system (1) possesses a two-dimensional center manifoldWc that is tangent to the consensus space C, for λ = 0. Moreover,140

this center manifold is exponentially attractive. By the Hopf bifurcation theorem [42], equation (6) also implies that the141

system (1) undergoes a supercritical Hopf bifurcation inside Wc when λ crosses zero from negative to positive. By direct142

substitution inside the model equations, we see that along a generic member of the family of periodic orbits born at the Hopf143

bifurcation, oscillators are synchronously oscillating with each oscillator orbit given by equation (2). �144

Remark 2.3 Because Hopf bifurcation is codimension-zero (in the sense of [43]), it is persistent under small perturbations,145

which ensures that Theorem 2.2 remains true for small heterogeneity in the natural frequencies.146

2.2 Oscillator death and multi-stability for stronger coupling147

We now explore the phenomenon of “oscillator death", induced by strong coupling in model (1). We restrict our attention148

to the all-to-all coupling case, i.e., aij = 1 for all i 6= j. For λ > 0 and µ sufficiently small the synchronous oscillations149

born at Hopf bifurcation (Theorem 2.2) attract all trajectories. However, the system is multistable, as can be noted from150

the fact that increasing µ leads to the appearance of a family of steady states that attract some of the trajectories, but the151

synchronous periodic orbits remain locally exponentially stable (Figure 2). Indeed, depending on the initial conditions, only152

some trajectories converge to the synchronous oscillations. In the following we will provide geometric insights, without formal153

proof, about the mechanisms underlying oscillator death and multi-stability in model (1).154

We start by observing that the oscillator death state is characterized by the presence of two dead oscillator clusters.155

Inside each cluster, oscillators converge to the same steady state. To analyze the appearance of oscillator death steady-156

states, we can simplify the model by assuming that (xi, yi) = (x1, y1) for all i = 1, . . . , N1 and (xi, yi) = (x2, y2) for all157

i = 1, . . . , N2, where N1, N2 < N , N1 + N2 = N , are the cluster sizes. The pairs (x1, y1) and (x2, y2) define the cluster158

states.159
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Figure 2: Emergence of oscillator death in model (1) for λ = 0.5,N = 20, natural frequencies uniformly distributed in the interval [0.9, 1.1]

and varying µ. The interconnection topology is all-to-all. Note that for the same value of µ = 0.25 both oscillatory and oscillator death

states are possible.

The cluster state dynamics can be easily derived and read

ẋ1 = y1 + µN2(x2 − x1), (7a)

ẏ1 = −ω2x1 +

(
λ− x21 −

y21
ω2

)
y1, (7b)

ẋ2 = y2 + µN1(x1 − x2), (7c)

ẏ2 = −ω2x2 +

(
λ− x22 −

y22
ω2

)
y2. (7d)

Each cluster state dynamics has the form

ẋ = y + µNj(xj − x), (8a)

ẏ = −ω2x+

(
λ− x2 − y2

ω2

)
y, (8b)

where Nj is the other cluster size and xj the other cluster state. A sufficient condition for the appearance of multiple steady160

states is that there must exist values of xj for which the model (8) has multiple steady-states. This condition can easily be161

verified by analyzing the dependence of the intersection of the nullclines of model (8) as a function of xj and the parameters162

µ and λ (Figure 3).163

If the coupling strength is too small the origin is the only steady state (Figure 3). This steady state is unstable and all164

trajectories are attracted toward the synchronous periodic orbit. However, new steady states appear for larger values of µ.165

The critical value of µ for which the new steady-states appear can be found by computing the slope of the nullclines at the166

origin. The slope of the x-nullcline is evidently µNj . The slope of the x-nullcline can be computed by implicit differentiation167

and is given by ω2

λ . Multiple steady-states appear if µ > ω2

Njλ
(Figure 2).168

3 Synchronization and frequency modulation in linearly coupled oscillators169

In this section we present an alternative approach to study synchronization under the influence of noise using the Fokker-170

Planck equation (FPE). The modeling in this section can be thought of in the context of interacting populations of oscillators.171
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Figure 3: Nullclines of the cluster state dynamics for incresing values of µ for xj = 0, ω = 1.0, N = 20 and N1 = N2 = N/2, λ = 0.5.

Related work in the context of populations of synchronized neurons can be found in the work by Jiao, et al. [44]. Introducing172

noise in the equation is natural from the biological perspective. However, even in the absence of noise, the introduction173

of random perturbations allows the extraction of information about the deterministic system. This is done by letting the174

perturbation amplitudes go to zero. To investigate the dependence of the synchronization frequency on the frequencies of175

the coupled oscillators, and the different coupling parameters, we assume synchronization, which reduces the FPE equation176

to an equation in two variables.177

We divide this section in two parts. First, we consider a simple deterministic system in which the effect of coupling can

be understood. In the second part, we randomly perturb a more general version of the previous model to show that the FP

equation provides an approximation for the syncrhonization frequency, and obtain some insights on the effect of noise. Let

us then consider a system similar to the one already studied

ẍi = −ω2xi + ν

[
1−

(
x2i +

ẋ2i
ω2

)]
ẋi + µ

N∑
j=1

aijxj , i = 1, . . . , N, (9)

Notice that x(t) = sin(ωt) is still a solution for the uncoupled system (µ = 0), independently of the value of ν. This178

system has the advantage of allowing direct calculations around the limit cycle, which can be written explicitly.179

If we linearize the equation and take ν << 1, we can neglect the contribution of the disipative term. The resulting linear

9
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system is

ẍi = −(ω2 − µAi)xi,

where Ai =
∑N
j=1 aijxj , for i = 1, . . . , N . If all the aij = 1, corresponding to a fully connected network of oscillators, the

previous system can be reduced to the equation

ẍ = −
(
ω2 − µ(N − 1)

)
x,

assuming that a synchronized regime is established. This assumption may not always be biologically realistic, but it allows

us to obtain the common synchronization frequency in a simple way. Later on we consider the general case and recover this

formula as a particular case. This provides an estimate for the synchronization frequency of

Ωsync =
√
ω2 − µ(N − 1).

Moreover, this reduction suggests that synchronized oscillatory behavior takes place for sufficiently small µ. That is, when

ω2 − µ(N − 1) > 0,

Otherwise, exponentially large growth can be expected. Notice that unless the aij are equal, the previous reasoning is not

consistent and no conclusion can be drawn. We claim that introducing random perturbations and using the FP equation

allows us to circumvent this difficulty and analyze the general case. This is the content of what follows. First of all, we write

the system in the form

ẋi = yi

ẏi = fi(xi, yi) + µ

N∑
j=1

aijxj , i = 1, . . . , N.

Notice that in the linearized regime, anologous to the reasoning for small ν in the previous example, we might naturally

assume that

fi(xi, yi) ≈ −ω2
i .

Perturbing the equation with Brownian noise we have

dxi = yi dt+
√

2ε dWi1

dyi =

−ω2
i xi + µ

N∑
j=1

aijxj

 dt+
√

2ε dWi2, i = 1, . . . , N,

where the Wij are uncorrelated Brownian motions for i, j ∈ {1, ..., N}. The probability density, u(x1, ..., xn, y1, ..., yn, t) of180

the system being in the state x1, ..., xn, y1, ..., yn at time t satisfies the FP equation181

∂u

∂t
= ε∆u+∇(F (x, y)u), (10)

10
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where F is the vector field determined by the right hand side of the stochastic system. Looking for stationary solutions, i.e.182

ut = 0 and explicitly substituting F in terms of x and y, the equation becomes183

ε∆u+
∑
i

yiuxi
+ (−ω2

i xi + µ
∑
j 6=i

aijxj)uyi

 = 0. (11)

If we use the synchronization condition x1 = ... = xn and y1 = ... = yn, we obtain the equation

ε∆ + nyux + (−
∑
i

ω2
i + µ

∑
i,j

aij)xuy = 0.

If we let

b =
∑
i

ω2
i − µ

∑
i,j

aij ,

we can write the equation (11) as

ε∆ + nyux − bxuy = 0.

Assuming ε is small, it is reasonable to expect that the probability u will concentrate around the characteristic curves of

the first order equation

nyux − bxuy = 0,

that are solutions to the system

ẋ = ny,

ẏi = bx.

By taking the scalar product with the vector (x/n, y/b) we obtain the relation

ẋ
x

n
+ ẏ

y

b
= 0,

or equivalently,
x2

n
+
y2

b
= constant,

which defines the characteristic curves as ellipses. In turn, interpreting these as curves in the phase portrait, the resulting184

solutions would correspond to periodic trajectories with frequency185

Ω2
sync = − b

n
=

(
∑
i ω

2
i − µ

∑
i,j aij)

n
, (12)

which provides an estimate for the synchronization frequency in terms of the original frequencies and the coupling parame-186

ters. Importantly, it shows that the synchronization frequency decreases with the coupling strength. In particular, formula (12)187

can be used to study how coupled ultradian oscillations can give rise to circadian oscillations (Figure 4).188
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Figure 4: Synchronization and modulation of the synchronization frequency via coupling strength in model (9), for N = 10, natural

frequencies uniformly distributed in the interval [0.95, 1.05], all-to-all coupling and varying µ.

4 Discussion and summary189

We have described, through basic geometrical analysis, the relationship between the dissipation coefficient, an intrinsic190

property of the oscillators we study, and the coupling strength µ in a strongly connected network of diffusively coupled191

nonlinear oscillators. Our analysis predicts the emergence of sustained oscillations for increasing values of the parameter192

λ in the system, only for a limited range of coupling strengths. It is reasonable to conjecture from this result, that there is a193

functional limit in the coupling strength for oscillating tissues in nature above which the tissue oscillations dies. To the best194

of our knowledge, it is the first time that diffusive coupling has been shown to be able to induce such oscillator death.195

We have also derived an estimation for the synchronization frequency of a linearly coupled network of nonlinear oscilla-196

tors in terms of the oscillator natural frequencies and the coupling parameters (equation (12)). We believe that these results197

constitute predictions that, although possibly difficult to test experimentally, would be worth verifying in light of the existing198

evidence about the joint frequency modulation of activity between different tissues during the day [23,45].199

The results we have presented thus far emphasize the importance of simple mathematical models in understanding situ-200

ations where synchronization of multiple oscillating populations appears. The results presented here may help to shed light201

on both physiological and pathological phenomena involving synchronization of oscillators in different tissues (Parkinson’s202

disease [46,47], epilepsy [48,49]). The other way around, it is also of potential importance to unravel mechanisms underlying203

the disappearance of coordinated oscillatory regimes. In a future publication, we plan to formally justify our estimations, and204

further, integrate the analysis of oscillations in the cellular and network levels of biological organization, to build up on our205

understanding of coupling oscillators at the tissue level. Two important extensions of the current models that we are studying206

are, the full characterization in higher codimension of the bifurcation structures of the system (1), and also, replacements207

of the van der Pol dynamics with biophysical models of excitable cells [50]. This last extension may prove useful to explain208

possible compensatory mechanisms that take place during the beginning of a pathology [51].209
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