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Abstract

The general purpose of this paper is to build up on our understanding of the basic mathematical
principles that underlie the emergence of biological rhythms, in particular, the circadian clock. To do so,
we study the role that the coupling strength and noise play in the synchronization of a system of nonlinear,
linearly coupled oscillators. First, we study a deterministic version of the model to find plausible regions
in the parameter space for which synchronization is observed. Second, we focus on studying how noise
and coupling interact in determining the synchronized behavior. To do so, we leverage the Fokker-Planck
equation associated with the system. The basic mechanisms behind the generation of oscillations and
the emergence of synchrony that we describe here can be used as a guide to further study coupled
oscillations in biophysical nonlinear models.

1 Introduction

The study of circadian rhythms has been a subject of great interest for a long time. However, the majority
of the first studies were mainly based on observations in plants [1], and mathematical modeling of bio-
logical rhythms was then at a very early stage [2–4]. There are two milestones in the study of circadian
rhythms from a mathematical perspective, namely, the association of circadian rhythms to the existence
of a limit cycle [5] and Arthur Winfree’s master book entitled "The Geometry of Biological Time" [6].
Related to the work of Kalmus, several mathematical models of circadian rhythm were presented in a
Symposium on Biological Rhythms carried out at Cold Spring Harbor in the United States of America in
1960 [7–9]. Among these works, one of the most important entitled "Shock excited system as models
for biological rhythms" was presented by Kalmus, a biologist, and Wigglesworth, a mathematician [5].
In this paper the authors associated a limit cycle to a circadian rhythm, using a hydraulic system as
analogy. Lots of other important works on circadian rhythms were presented in this symposium, but the
work of Kalmus and Wigglesworth was the crucial one in establishing a better mathematical formalism
for the study of circadian rhythms. Although many researchers followed the theoretical path proposed by
Kalmus and Wigglesworth, the mathematical study of circadian rhythms was finally established by Arthur
Winfree (biologist and mathematician), who introduced topology for the description of several aspects of
circadian rhythms. Lara-Aparicio et al. have worked on both mathematical modeling and experimental
characterizations of different properties of circadian rhythms since 1993, when they first published an
article on the ontogeny of circadian rhythm in the crayfish [10]. In their work, they built a mathematical
model that phenomenologically captures a series of experimental results involving the synchronization
of electro-retinogram activity in crayfish [11–13]. The model was constructed by coupling two van der
Pol oscillators [14] represented by state vectors x = (x1, x2, x3)T and y = (y1, y2, y3)T . The coupled
system from [10] is given by

ẋ = F (x; k, c, r) , ẏ = F (y; l, C,R) (1)

The parameters k and l represent the frequency of the oscillator; r and R are functions that represent
the radii of the limit cycles, and c and C are also functions that represent the first coordinate of the center
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of the limit cycle. The system is setup such that one oscillator driving the behavior of the other oscillator,
but not vice-versa. The coupling terms are c and r, which are functions of x and y, in the equations for
the first oscillator x. The driving oscillator induces an Andronov-Hopf bifurcation in the driven oscillator
and regulates its frequency.

The model in equations (1) allows analytical approaches, and it makes it possible to answer ques-
tions referring to the ontogeny of the circadian rhythm in crayfish from the childhood to adult stages. The
behavior of this phenomenological model simulates, explains, and has suggested new biological experi-
ments. For instance, a hypothesis about the existence of a hormone which was experimentally detected
was generated from the model. The model also allowed Lara-Aparicio et al. to study synchronization of
circadian rhythms with external signals like day and night light [15]. The studying of basic principles has
enabled researchers to conjecture that circadian rhythms can result from coupling systems of cells, each
one oscillating with an ultradian oscillation [16–18]. In particular, Lara-Aparicio et al. have studied the
theme of synchronization among cells through the following system of nonlinear equations [19],

ẍi = fi (xi, ẋi) +
∑
j 6=i

aij(xj − xi) (2)

with
fi (xi, ẋi) = µ

(
1− x2i

)
ẋi (3)

where xi, i=1,2,3,4, represents the ith oscillator, with the classical van der Pol non-linear damping for
the terms fi responsible for the oscillatory dynamics.

In the present paper, we extend the work in [10] and [19] by analyzing two qualitative mathematical
models, each capturing a different level of organization in the ontogeny of circadian rhythms. The first
model produces neuronal dynamics at the cellular level. Then, using graph theoretical methods and cen-
ter manifold theory, we show that synchronous oscillations appear via a Hopf-Bifurcation in a population
of pacemaker neurons. To model gap junction coupling between the neurons, the coupling is assumed to
be diffusive. The bifurcation parameter models the development stage of the neurons. We further explore
the phenomenon of oscillator death: although the single neurons are endogenously oscillating for suf-
ficiently large bifurcation parameter, the population oscillation dies for sufficiently large coupling, which
suggests that the weak coupling hypothesis must be satisfied for robust synchronous oscillations to occur.
In the case of all-to-all coupling, we provide necessary conditions for oscillator death to occur and leave
the derivation of sufficient conditions to future works. The second model captures the interconnection of
various circadian pacemaker populations. Each population is assumed to be an endogenous oscillator
and the coupling is assumed to be linear. Using linear stochastic analysis and under the assumption
that the population oscillations are synchronized, we derive a scalar Fokker-Plank equation. Under this
assumption, we derive an estimate of the synchronization frequency as a function of the intrinsic frequen-
cies of the oscillators, their coupling strength, and the topology of the network. The model is shown to
capture an important feature of circadian rhythm ontogeny: the emergence of low frequency (circadian)
oscillations from coupled high frequency (ultradian) oscillators, originally studied in [19]. Future work will
aim at deriving conditions on the intrinsic frequencies, the coupling strength, and the network topology,
that ensure synchronization of the the population oscillations.

2 Global synchronization of clock neurons

We consider a network of oscillators on a directed graph G with N vertices. The network topology is
codified in the adjacency matrix A = [aij ]

N
i,j=1, where aij ≥ 0. If oscillator i receives signals from

oscillator j, then the graph has an arrow from oscillator j to oscillator i, and aij > 0. The dynamics for
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each oscillator are assumed to satisfy the following coupled oscillator dynamics

ẋi = yi + µ

N∑
j=1

aij(xj − xi) (4a)

ẏi =

(
λ− x2i −

y2i
ω2

)
yi − ω2

i xi (4b)

The parameter λ ∈ R determines the endogenous behavior of each oscillator, and µ ≥ 0 represents
a generic coupling strength. In the absence of coupling the oscillator dynamics reduces to the modified
van der Pol equation

ẍ =

(
λ− x2i −

y2i
ω2

)
ẋ− ω2

i x.

For λ < 0 the nonlinear dissipation coefficient −
(
λ− x2 − y2

ω2
i

)
is always positive which leads to

damped oscillations. For λ > 0 the dissipation coefficient becomes negative close to the origin, which
leads to sustained oscillations via a Hopf bifurcation. Given the specific form of the equation, a generic
trajectory belonging to the family of periodic orbits born at the Hopf bifurcation has the form

√
λ(cos(ωit+ θ0), sin(ωit+ θ0)), (5)

where the θ0 is the initial phase.
We start by recalling some basic graph-theoretical definitions and facts.

Definition 2.1 The Laplacian matrix L = [Lij : i, j = 1, ..., n] for the graph G is such that Lij = −aij
if i 6= j, Lii =

∑N
j=1 aij .

Note that L1N = 0. That is, the vector of ones is always a right null eigenvector of L and zero is always
an eigenvalue of L.

Definition 2.2 The interconnection graph is said to be connected if for each pair of nodes in the graph,
there exists a connection between them.

Lemma 2.3 A graph is connected if and only zero is a simple eigenvalue of the Laplacian [20].

Definition 2.4 A graph is balanced if
∑N
j=1 aij =

∑N
j=1 aji for all i.

Obviously, symmetric graphs (i.e., satisfying aij = aji) are balanced. The converse is not true. Consider,
for instance, a directed ring.

The global behavior of the system (4) for λ < 0, µ ≥ 0, for a generic graph is characterized by the
next theorem (Figure 1).

Theorem 2.5 Assume that the graph G is balanced and that ωi = ωj = ω for all i, j = 1, . . . , N . If
λ < 0, then the origin is globally asymptotically stable and locally exponentially stable for all µ ≥ 0.

Proof. We consider the quadratic Lyapunov function

V (x, y) =

N∑
i=1

(x2i + y2i /ω
2).

The derivative of V along the trajectories of the system (4) gives

V̇ =

N∑
i=1

(
2xiẋi + 2yiẏi/ω

2) (6)
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which after substitution of the derivatives ẋi and ẏi, can be bounded from above as follows

=

N∑
i=1

(
2xiyi − 2µxi

N∑
j=1

aij(xi − xj)− 2yi
ω2xi
ω2

+ 2
yi
ω2

(
λ− x2i −

y2i
ω2

)
yi

)

≤ 2
λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

xiaij(xi − xj)

= 2
λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

aij(x
2
i − xjxi)

= 2
λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

aij(x
2
i /2− xjxi + x2i /2)

To show that the last term is negative definite, we use the balanced interconnection hypothesis. Let
dj =

∑N
i=1 aij =

∑N
i=1 aji. We have

N∑
i,j=1

aijxj =

N∑
j=1

djxj =

N∑
i=1

dixi =

N∑
i,j=1

aijxi.

As a consequence,

V̇ ≤ λ

ω2

N∑
i=1

y2i − 2µ

N∑
i,j=1

aij(xi − xj)2 ≤
λ

ω2

N∑
i=1

y2i .

Then the global part of statement follows by LaSalle invariance principle [21]. The local part follows
by observing that for λ < 0 the linearization of model (4) at the origin is non-singular and therefore
asymptotic stability of the origin implies that all eigenvalues have negative real part. �

Remark 2.6 Because exponentially stability implies robustness to small perturbations, Theorem 2.5 re-
mains true for small heterogeneity in the natural frequencies.

Figure 1, top, shows that for λ < 0 model (4) exhibits exponentially damped oscillations toward the
origin.

Next we show that, at λ = 0 and identical natural frequencies model (4) undergoes a supercritical
Hopf bifurcation inside the consensus space

C = {(x, y) ∈ R2N : xi = xj , yi = yj , ∀i, j = 1, . . . , N},

provided the graph is strongly connected. The linearization of the system (4) is given by

J =

[
−µL IN
−ω2IN λIN

]
, (7)

where IN is the N -dimensional identity matrix and L is the network Laplacian defined in Definition (2.1).
Let 1N be the N -dimensional vector of ones. Given a (complex) vector ν = (v, w) in the consensus
space C, that is, v = a1N and w = b1N for some a, b ∈ C, the eigenvalue problem for the jacobian
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Figure 1: Transition between global asymptotic stability and synchronous oscillation via Hopf bifurcation in
system (4) for µ = 0.05, N = 20, natural frequencies uniformly distributed in the interval [0.9, 1.1] and
varying λ. The interconnection topology is all-to-all.

matrix (7), restricted to the consensus space, takes the form

Jν = J

[
a1N
b1N

]
=

[
−µLa1N + b1N
−ω2a+ λb1N

]
=

[
b1N

(−ω2a+ λb)1N

]
= ξ

[
a1N
b1N

]
where ξ is a (complex) eigenvalue. In the third equality we used the fact that 1N is a right null eigenvector
of L. The last equality implies that ν ∈ C is an eigenvector of J with eigenvalue ξ if and only if its
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components a and b satisfy [
0 1
−ω2 λ

] [
a
b

]
= ξ

[
a
b

]
. (8)

We can now easily solve (8) to obtain the eigenvalues/eigenvectors pairs

ξ±(λ) =
λ

2
± 1

2

√
λ2 − 4ω2,

[
a±
b±

]
=

[
1
ω2 (λ− ξ±)

1

]
(9)

For λ = 0 we got two purely imaginary eigenvalues which correspond to a supercritical Hopf bifurcation of
model (4) inside the consensus space, as summarized in the following theorem and illustrated in Figure 1
bottom.

Theorem 2.7 For almost all balanced, strongly connected interconnection topologies the following holds.
For all µ > 0, the system (4) undergoes a supercritical Hopf bifurcation at λ = 0 with center manifold
given by the consensus space C. Moreover, the family of periodic solutions born at the Hopf bifurca-
tion are exponentially asymptotically stable and correspond to synchronous oscillations of the oscillator
network.

Proof. By Theorem 2.5 the origin is locally exponentially stable for λ < 0. We further observe that, if
the interconnection topology is strongly connected, then by Lemma 2.3 zero is a simple eigenvalue of L
and therefore no either eigenvalue of J satisfies the eigenvalue problem defined by (4). It then follows
by the center manifold theorem [22] and equation (9), that the system (4) possesses a two-dimensional
center manifoldWc that is tangent to the consensus space C for λ = 0. Moreover, this center manifold is
exponentially attractive. By the Hopf bifurcation theorem [23], equation (9) also implies that the system (4)
undergoes a supercritical Hopf bifurcation insideWc when λ crosses zero from negative to positive. By
direct substitution inside the model equations, we see that along a generic member of the family of
periodic orbits born at the Hopf bifurcation, oscillators are synchronously oscillating with each oscillator
orbit given by equation (5). �

Remark 2.8 Because Hopf bifurcation is codimension-zero (in the sense of [24]), it is persistent under to
small perturbations, which ensures that Theorem 2.7 remains true for small heterogeneity in the natural
frequencies.

2.1 Oscillator death and multi-stability for stronger coupling

We now explore the phenomenon of “oscillator death", induced in model (4) by too a strong coupling. We
restrict our attention to the all-to-all coupling case, i.e., aij = 1 for all i 6= j. For λ > 0 and µ sufficiently
small the synchronous oscillations born at Hopf bifurcation proved in Theorem 2.7 attract all trajectory.
However, as illustrated in Figure 2, increasing µ leads to the appearance of a family of steady states
that attract part of the trajectories, although the synchronous periodic orbits remain locally exponentially
stable. Indeed, depending on the initial conditions, some trajectories converge to the synchronous oscil-
lations: the system is multistable. In the following we will provide geometric insights, without formal proof,
about the mechanisms underlying oscillator death and multi-stability in model (4).

We start by observing that the oscillator death state is characterized by the presence of two oscillator
clusters. Inside each clusters, oscillators converge to the same steady state. To analyze the appearance
of oscillator death steady-states we can use this observation and simplify the model equations by assum-
ing that (xi, yi) = (x1, y1) for all i = 1, . . . , N1 and (xi, yi) = (x2, y2) for all i = 1, . . . , N2, where
N1, N2 < N , N1 + N2 = N , are the cluster sizes. The pairs (x1, y1) and (x2, y2) define the cluster
states.
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Figure 2: Emergence of oscillator death in model (4) for λ = 0.5, N = 20, natural frequencies uniformly
distributed in the interval [0.9, 1.1] and varying µ. The interconnection topology is all-to-all. Note that for
the same value of µ = 0.25 both oscillatory and oscillator death states are possible.

The cluster state dynamics can easily be derived and read

ẋ1 = y1 + µN2(x2 − x1), (10a)

ẏ1 = −ω2x1 +

(
λ− x21 −

y21
ω2

)
y1, (10b)

ẋ2 = y2 + µN1(x1 − x2), (10c)

ẏ2 = −ω2x2 +

(
λ− x22 −

y22
ω2

)
y2. (10d)

Each cluster state dynamics has the form

ẋ = y + µNj(xj − x), (11a)

ẏ = −ω2x+

(
λ− x2 − y2

ω2

)
y, (11b)

whereNj is the other cluster size and xj the other cluster state. A sufficient condition for the appearance
of multiple steady states is that there must exist values of xj for which model (11) possesses multiple
steady-states. This condition can easily be verified by analyzing the intersection of the nullclines of
model (11). They are drawn if Figure 3 for xj = 0, ω = 1.0, N = 20 and N1 = N2 = N/2, λ = 0.5
and various values of µ.

Figure 3: Nullclines of the cluster state dynamics for incresing values of µ
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If the coupling strength is too small the origin is the only steady state. This steady state is unstable
and all trajectories are attracted toward the synchronous periodic orbit. However, for larger µ new steady
states appear. The critical value of µ at which the new steady-state appear can be found by computing
the slope of the nullclines at the origin. The slope of the x-nullcline is evidently µNj . The slope of the
x-nullcline can be computed by implicit differentiation and is given by ω2

λ
. Multiple steady-states appear

if µ > ω2

Njλ
as verified by the numerical simulations in Figure 2.

3 Synchronization and frequency modulation in coupled cir-
cadian pacemakers

In this section we present an alternative approach to study synchronization under the influence of noise
using the Fokker-Planck equation (FPE). A related work in the context of populations of synchronized
neurons is given in [25]. Introducing noise in the equation is natural from the biological perspective.
However, even in the absence of noise, the introduction of random perturbations will allow us, by letting
the their amplitude go to zero, to extract information about the deterministic system. The basic idea is that
the FPE equation considerably simplifies under the assumption of synchronization and it reduces to an
equation in two variables. This enables us to make approximations in order to investigate the dependence
of the synchronization frequency on the frequencies of the coupled oscillators, and the different coupling
parameters. We divide this section in two parts. In the first we consider a simple deterministic system
in which the effect of coupling can be understood. In the second part, we randomly perturb a more
general version of the previous model and show that the FP equation provides an approximation for the
syncrhonization frequency and some insights on the effect of noise. Let us then consider a system similar
to the one already studied

ẍi = −ω2xi + ν

(
1−

(
x2i +

ẋ2i
ω2

))
ẋi + µ

N∑
j=1

aijxj , i = 1, . . . , N, (12)

Notice that x(t) = sin(ωt) is still a solution for the uncoupled system (µ = 0), independently of the
value of ν.

If we linearize the equation and take ν << 1, we can neglect the contribution of the disipative term.
The resulting linear system is

ẍi = −(ω2 − µAi)xi,

where Ai =
∑N
j=1 aijxj , i = 1, . . . , N. If all the aij = 1, corresponding to a fully connected network

of oscillators, the previous system is consistently reduces to the equation

ẍ = −(ω2 − µ(N − 1))x,

if we assume that a synchronized regime is established. This provides an estimate for the synchronization
frequency of

Ωsync =
√
ω2 − µ(N − 1).

Moreover, this reduction suggests that synchronized oscillatory behavior takes place for sufficiently small
µ. That is, when

ω2 − µ(N − 1) > 0,

Otherwise, exponentially large growth can be expected. Notice that unless the aij are equal, the pre-
vious reasoning is not consistent and no conclusion can be drawn. We claim that introducing random
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perturbations and using the FP equation allows us to circumvent this difficulty and analyze the general
case. This is the content of what follows. First of all, we write the system in the form

ẋi = yi

ẏi = fi(xi, yi) + µ

N∑
j=1

aijxj , i = 1, . . . , N.

Notice that in the linearized regime, anologous to the reasoning for small ν in the previous example, we
might naturally assume that

fi(xi, yi) ≈ −ω2
i .

Perturbing the equation with Brownian noise we have

dxi = yi dt+
√

2ε dWi1

dyi =

[
−ω2

i xi + µ

N∑
j=1

aijxj

]
dt+

√
2ε dWi2, i = 1, . . . , N,

where the Wij are uncorrelated Brownian motions. The probability density, u(x1, ..., xn, y1, ..., yn, t) of
the system being in the state x1, ..., xn, y1, ..., yn at time t satisfies the FP equation

∂u

∂t
= ε∆u+∇(F (x, y)u),

where F is the vector field determined by the right hand side of the stochastic system. Looking for
stationary solutions, i.e. ut = 0 and explicitely substituting F in terms of x and y, the equation becomes

ε∆u+
∑
i

yiuxi + (−ω2xi + µ
∑
j 6=i

aijxj)uyi

 = 0. (13)

If we use the synchronization condition x1 = x2 = ... = xn and y1 = y2 = ... = yn we obtain the
equation

ε∆ + nyux + (−
∑
i

ω2
i + µ

∑
i,j

aij)xuy = 0.

If we let
b =

∑
i

ω2
i − µ

∑
i,j

aij ,

we can write the equation (13) as
ε∆ + nyux − bxuy = 0.

Assuming ε is small, it is reasonable to expect that the probability u will concentrate around the
characteristic curves of the first order equation

nyux − bxuy = 0,

that are solutions to the system

ẋ = ny,

ẏi = bx.

By taking the scalar product with the vector (x/n, y/b) we obtain the relation

ẋ
x

n
+ ẏ

y

b
= 0,

9
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Figure 4: Synchronization and modulation of the synchronization frequency via coupling strength in
model (12), for N = 10, natural frequencies uniformly distributed in the interval [0.95, 1.05], all-to-all
coupling and varying µ.

or equivalently,
x2

n
+
y2

b
= constant,

which defines the characteristic curves as ellipses. In turn, interpreting these as curves in the phase
portrait, the resulting solutions would correspond to periodic trajectories with frequency

Ω2
sync = − b

n
=

(
∑
i ω

2
i − µ

∑
i,j aij)

n
. (14)

Formula (14) provides an estimate for the synchronization frequency in terms of the original frequencies
and the coupling parameters. Importantly, it shows that the synchronization frequency decreases with
the coupling strength: couple ultradian oscillation can give rise to circadian oscillations. This illustrated in
Figure 4.

4 Discussion

We have described, through basic geometrical analysis, the relationship between the dissipation coeffi-
cient, an intrinsic property of the oscillators we study, and the coupling strength µ in a strongly connected
network of nonlinear oscillators. Our analysis predicts the emergence of sustained oscillations for in-
creasing values of the parameter λ in the system, only for a limited range of coupling strengths. It
is reasonable to conjecture from this result, that there is a functional limit in the coupling strength for
oscillating tissues in nature. Also, in the last section, we have also derived an estimation for the syn-
chronization frequency in terms of the original frequencies and the coupling parameters (equation (14)).
We believe that these results constitute predictions that, although possibly difficult to test experimentally,
would be worth verifying.

The results we have presented thus far emphasize the importance of simple mathematical models
in understanding pathological situations where undesirable synchronization appears (Parkinson’s dis-
ease [26, 27], epilepsy [28, 29]). The other way around, it is also of potential importance to unravel
mechanisms underlying the disappearance of coordinated oscillatory regimes. In a future publication, we
plan to formally justify our estimations, and further, integrate the analysis of oscillations in the cellular and
network levels of biological organization, to build up on our understanding of coupling oscillators at the
tissue level. Two important extensions of the current models that we are studying are, the full characteri-
zation in higher codimension of the bifurcation structures of the system (4), and also, replacements of the
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van der Pol dynamics with biophysical models of excitable cells [30]. This last extension may prove useful
to explain possible compensatory mechanisms that take place during the beginning of a pathology [31].
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