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Parkinson’s disease is a widespread condition caused by degeneration of dopamine

neurons in the midbrain. A number of proteins are known to be important to signalling

mechanisms present in the midbrain during natural dopamine neuron development, and

may be utilised to better produce dopamine neurons in vitro. Relative expression levels of

proteins were obtained from substantia nigra tissue of rats from embryonic days E11

through E14 using isobaric tagging for relative and absolute quantification. This project

analysed the dataset obtained, with an emphasis on relative expression levels of proteins

across the four-day period. Bioinformatics searching of online databases reduced the

dataset from 3325 proteins to a shortlist of five worthy of further investigation. It is hoped

that the proteins identified using these techniques will help to refine protocols for the

production of dopamine neurons in vitro.
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Abstract

Parkinson’s disease is a widespread condition caused by degeneration of dopamine neurons in 

the midbrain. A number of proteins are known to be important to signalling mechanisms 

present in the midbrain during natural dopamine neuron development, and may be utilised to 

better produce dopamine neurons in vitro. Relative expression levels of proteins were obtained 

from substantia nigra tissue of rats from embryonic days E11 through E14 using isobaric tagging 

for relative and absolute quantification. This project analysed the dataset obtained, with an 

emphasis on relative expression levels of proteins across the four-day period. Bioinformatics 

searching of online databases reduced the dataset from 3325 proteins to a shortlist of five 

worthy of further investigation. It is hoped that the proteins identified using these techniques 

will help to refine protocols for the production of dopamine neurons in vitro. 

Proteomics; Bioinformatics; Parkinson’s disease; iTRAQ; Dopamine neuron; Neural development;

Stem cells

Introduction

Parkinson’s disease is a widespread condition caused by degeneration of dopaminergic neurons 

in the midbrain leading to a lack of motor control (1). Medications and surgical interventions to 

alleviate symptoms are currently available; however, they grow ineffective and produce 

involuntary movement as neuron degeneration continues. There is currently no available 

therapy capable of slowing disease progression or preventing further neuron degeneration. 

Stem cell based therapies offer a way to replace dead or damaged dopamine neurons and 

restore motor functionality (2). As the adult neurons involved with motor function do not divide,

cells from other sources are required. There are many stem cell based sources currently being 

explored, with foetal neuronal stem cells, embryonic stem cells, induced pluripotent stem cells, 

adult neural stem cells, and adult bone marrow stem cells all showing potential as sources for 

neuron replacement therapy (3). Stem cells must be expanded and differentiated in culture in 

order to produce adult dopamine neurons and may be manipulated by activating or inhibiting 

signalling pathways. There are many techniques used to increase the efficiency of producing 

neurons in culture, one of which is to recreate the signalling mechanisms present in the 

midbrain during natural dopamine neuron development. A number of peptides have been found

to play important roles in these processes, while many are yet to be investigated.

A protein expression data set was generated for developing rat midbrain tissue; the tissue that 

later develops into the dopamine neurons in the substantia nigra whose degeneration causes 

Parkinson’s disease (4). Previous selection of a candidate from this dataset revealed that vitamin 

D plays an important role in dopamine neuron development and demonstrated that its 

controlled delivery improves dopamine neuron yield in vitro (5). This project reanalyses the 

dataset with an emphasis on relative expression levels of proteins across four days of embryonic 

development in order identify further proteins of interest for the improved production of 

dopamine neurons in vitro.

Methods
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The protein expression dataset previously described in (4) was created using the proteomics 

technique of isobaric tagging for relative and absolute quantification (iTRAQ). This technique 

allows the expression levels of proteins from different sources to be determined in a single 

experiment (6). The samples used to generate the dataset were obtained from the substantia 

nigra of rats at embryonic days E11, E12, E13 and E14, assigned iTRAQ markers 114, 115, 116 

and 117 respectively. Tissues were collected under an establishment licence for Keele University 

(PEL 40/2407). Protein identification and quantification profiles were originally generated by 

ProteinPilot and exported as Excel spreadsheets. Protein identification was based on a 

combination of the number of peptides identified, and the similarity between the observed and 

expected mass for each peptide. Identified proteins were matched to entries in the NCBI 

Reference Sequence Database (7), with most proteins consisting of multiple peptide component 

matches. Details of the dataset generation are provided in (4). Following screening for proteins 

with total ion score confidence intervals of above 95%, the dataset used for this analysis 

consisted of expression level data for 3325 NCBI database matched proteins. 

The expression change ratio between embryonic days was calculated for all proteins to allow the

comparison of relative protein levels for neighbouring days. Data was then fit to patterns of 

interest in order to exclude proteins with no significant changes over days E11 through E14. Nine

patterns of interest were selected in order to capture peaks or troughs of protein activity over 

the four-day period (Figure 1). The filter function of Excel was used to specify cut-off values for 

relative expression values, allowing proteins to be fit to patterns with little manual manipulation.

The stringency of pattern fitting is therefore controllable through the selection of cut-off values 

for each expression change. Figure 1 shows relative protein expression levels where a significant 

change is considered to be an increase or decrease in expression of at least a factor of two over 

a single day.

Proteins meeting the expression change conditions were classified by tissue type according to 

data from the UniProt Knowledgebase (UniProtKB) database. Proteins associated with relevant 

tissues were carried forward for the next round of analysis while those with no known 

association were discarded. Following tissue categorisation, proteins were classified according to

their molecular function again using data present in the UniProtKB database. Once proteins had 

been classified by expression pattern, tissue type and molecular function, a shortlist of 

potentially interesting proteins was produced. Further prioritisation of classification categories 

was then performed until a manageable shortlist was produced for further investigation.

Results

Classification of proteins according to the expression level patterns reduced the original dataset 

from 3325 down to 96 proteins of interest. The complete set of expression changes for all 

proteins is shown in Figure 2. Expression level changes were recorded as the ratio of the 

expression level on each day relative to the expression level on the following embryonic day. 

Plotting the log2 value of this ratio allows the magnitude of expression level changes to be 

shown symmetrically regardless of the direction of change. An increase or decrease of a factor of

two was required in order for a change to be considered significant. Expression level changes 
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above a factor of two lay outside the horizontal red lines, while those under a factor of two are 

located within the red lines.

The distribution of proteins over the patterns of interest is shown in Figure 3. The majority of 

proteins featuring a significant change in expression level over the four-day period showed a 

large decrease in expression from E11 to E12 and were therefore were categorised as pattern A. 

Proteins in this category are likely involved in neurogenesis which is thought to peak at around 

E11 (8). The proteins were then categorised according to tissue type and were found to fit into 

four main groups: neural, blood, other tissues, and ubiquitous (Figure 4). One protein was 

excluded as it lacked any tissue information on UniProtKB and related databases. The final 

classification was according to molecular function using the categories: binding, enzyme, 

enzyme regulator, receptor, structural, transcription factor, translation and transport. The 

distribution of proteins between these groups is shown in Figure 5.

Following classification by expression pattern, tissue type and molecular function, it became 

possible to easily further prioritise categories guided by initial literature based research. Proteins

matching expressions patterns A, B and E were carried forward as these patterns feature high 

expression levels on E11 and E12, the time at which peak neurogenesis is thought to occur (8). 

Carrying forward only these proteins reduced the dataset from 96 to 68 proteins. Proteins were 

then filtered according to tissue type, further reducing the list from 68 to 24 proteins. Proteins 

with no known link to neural tissue were removed, as well as ubiquitous proteins, which were 

considered unlikely to promote dopamine neuron growth specifically. Initial research into 

biological functions also found that many proteins present in blood as well as neural tissue were 

primarily associated with biological roles in blood, and so this group was discarded. It was 

decided not to filter proteins based on their molecular function, as there was much crossover 

with most proteins involved in multiple functions.

The final stage of the investigation was a literature search of the 24 remaining proteins. This was 

carried out with the aim of finding known connections to dopamine neurons or general neuron 

development and was performed manually in order to remove proteins included due to 

database errors or with unsubstantial evidence. Most proteins discarded during the manual 

investigation phase were discarded due to a lack of published evidence to support classifications

present in online databases. It is likely that false negatives were present within the “blood and 

neural” and “blood, neural and other” groups and were discarded during filtering according to 

tissue type. Following this final stage of investigation, the shortlist of five proteins given in Table 

1 was produced. The relative expression pattern of each shortlisted protein is provided in Figure 

6.

A2M is an inactive form of the large plasma protein A2M, produced by the liver and present in 

blood. It is capable of binding to brain-derived neurotrophic factor and nerve growth factor (9). 

CMP-NeuNAc synthase is an enzyme that catalyzes the activation of N-acylneuraminate 

(NeuNAc) to CMP-N-acylneuraminate (CMP-NeuNAc), a substrate required for the addition of 

sialic acid (10). Salaic acid is found in high levels in the brain and is essential in synaptogenesis 

and for enabling neural transmission (11). P2RX4 is found in the central and peripheral nervous 

systems and has been shown to regulate synaptic strengthening (12). RTN1 is a member of the 

reticulon family of proteins which aid membrane curvature and have been shown to be involved 
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with neuron differentiation, neuroendocrine secretion (13). GSK-3β is an enzyme capable of 

negatively regulating the Wnt signalling pathway, a key element of dopamine neuron 

development (14).

The expression levels of A2M, CMP-NeuNAc synthase, P2RX4 and RTN1 all matched pattern A, 

showing a peak of expression levels on E11 followed by a sharp decrease for E12. GSK-3β 

presented a more complicated expression pattern and was matched to patterns B, D, E and I 

during automated pattern fitting. Manual inspection of the data showed that this protein 

exhibited two peaks in expression levels, one at E12 and another at E14. 

miscussion

Categorisation of proteins based on their expression patterns over E11 to 14 allowed an initially 

large dataset of 3325 proteins to be quickly reduced to 96. Further categorisation of proteins 

according to tissue type and molecular function using data from online databases allowed a 

shortlist of five proteins to be generated with minimal manual literature research.

Patterns featuring periods with no expression change (e.g. E12 to E13 and E13 to E14 in pattern 

A) did not have the lack of an expression change enforced during automated pattern fitting in 

order to include proteins with multiple significant changes in the same direction. These proteins 

would otherwise not be captured using patterns with only two expression level states (high and 

low). Although this solution successfully included proteins with expression patterns featuring 

multiple significant changes, some proteins were also matched to patterns that did not 

accurately describe their true expression levels, as occurred with GSK-3β. A more complete 

solution to pattern matching would be to use patterns featuring three or four states as shown in 

Figure 7; however, the number of possible patterns in these cases increases the complexity of 

the method (16 possible patterns with two states, 81 possible patterns with three states, 256 

possible patterns with four states). 

A limitation of pattern fitting as performed in this study is that expression levels on E10 and E15 

must be extrapolated from data present for E11 through E14. Future studies may benefit from 

utilising the full eight samples possible in iTRAQ to gain information over a longer period (15). 

This approach has added flexibility as the additional samples may also be utilised to increase the

resolution on days of interest (two samples per day giving 12-hour expression windows for 

example). As a result of E10 and E15 being unknown, there exists a positive bias within the 

pattern matching method towards types A, D, H and I as these patterns feature a doubling or 

halving condition followed by or preceding a day for which there is no data. There is also a 

negative bias away from types B, C and F, as data must pass two expression change conditions in 

order to positively match these expression patterns.

The final manual stage of short listing is essential as the automated classification of proteins, as 

well as their initial identification from sequence data, relies entirely on online protein databases.

Correctly matching mass spectrometry data to proteins in online databases is known to be a 

primary limitation of mass spectrometry based proteomics due to the large number of names 

used simultaneously for many proteins, as well as the wide range of available resources (16). 

This issue has been somewhat addressed through the use of the UniProtKB database, a 
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collaborative effort between the European Bioinformatics Institute (EBI), the Protein Information

Resource (PIR) and the Swiss Institute of Bioinformatics (SIB) (17). 

Conclusion

This analysis of relative protein expression levels across four key days of embryonic development

coupled with data from online proteomics databases demonstrates a technique to obtain a 

shortlist of proteins with a minimal requirement for manual literature research. It is hoped that 

the proteins and peptides identified using these methods will help to refine protocols for the 

production of dopamine neurons in vitro.
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Table 1(on next page)

Proteins selected for the final shortlist based on expression pattern, tissue type and

molecular function.
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Accession 

Number

Protein Name

Expression

Pattern

Tissue 

Type

Molecular Function

gi|158138551

Alpha-2-macroglobulin precursor 

(A2M) 

A

neural, 

other

binding, enzyme 

regulator

gi|68059163

N-acylneuraminate 

cytidylyltransferase (CMP-NeuNAc 

synthase)

A neural enzyme

gi|149063348

Purinergic receptor P2X, ligand-gated 

ion channel 4, isoform CRA_d (P2RX4)

A neural receptor

gi|16758732 Reticulon-1 (RTN1) A neural transport

gi|125374

Glycogen synthase kinase 3 beta 

(GSK-3β) 

B, D, E, I neural

binding, enzyme, 

enzyme regulator, 

receptor

Table 1 - Proteins selected for the final shortlist based on expression pattern, tissue type and molecular 

function.
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Figure 1

Expression patterns of interest. Expression levels are taken as relative to neighbouring

days.
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Figure 2

Expression change ratios from E11 to E12, E12 to 13 and E13 to E14. The majority of

expression changes were small and lie inside the cut-off points, plotted as red horizontal

lines.

Each data point shows a change between expression levels on different embryonic days.

Points above the upper red line and below the lower red line were considered to have had a

significant change in expression level.
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Figure 3

The majority of proteins were found to fit pattern A, showing peak expression at E11

followed by a decrease at E12.
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Figure 4

Protein distribution across tissue types. Most proteins were linked to neural tissue, while

many were also associated with blood and other tissues.
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Figure 5

Proteins were found to be mostly associated with binding activity, with many proteins

being involved in multiple molecular functions.

Enzyme regulator has been abbreviated to “enzyme reg” and transcription factor has been

abbreviated to “transcr fac”.
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Figure 6

Relative expression levels for proteins on the final shortlist, as compared to expression

level of embryonic day 12.
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Figure 7

Expression patterns A (three state) and A (four state) are included when fitting data to

pattern A (two state) provided conditions for unchanging days are unenforced.
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