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Abstract 1 

 2 

Parkinson’s disease is a widespread condition caused by degeneration of dopamine neurons in 3 

the midbrain. A number of proteins are known to be important to signalling mechanisms 4 

present in the midbrain during natural dopamine neuron development, and may be utilised to 5 

better produce dopamine neurons in vitro. Relative expression levels of proteins were obtained 6 

from substantia nigra tissue of rats from embryonic days E11 through E14 using isobaric tagging 7 

for relative and absolute quantification. This project analysed the dataset obtained, with an 8 

emphasis on relative expression levels of proteins across the four-day period. Bioinformatics 9 

searching of online databases reduced the dataset from 3325 proteins to a shortlist of five 10 

worthy of further investigation. It is hoped that the proteins identified using these techniques 11 

will help to refine protocols for the production of dopamine neurons in vitro.  12 

 13 

Keywords: Proteomics; Bioinformatics; Parkinson’s disease; iTRAQ; Dopamine neuron; Neural 14 

development; Stem cells 15 

 16 

Introduction 17 

 18 

Parkinson’s disease is a widespread condition caused by degeneration of dopaminergic neurons 19 

in the midbrain leading to a lack of motor control (1). Medications and surgical interventions to 20 

alleviate symptoms are currently available; however, they grow ineffective and produce 21 

involuntary movement as neuron degeneration continues. There is currently no available 22 

therapy capable of slowing disease progression or preventing further neuron degeneration. 23 

Stem cell based therapies offer a way to replace dead or damaged dopamine neurons and 24 

restore motor functionality (2). As the adult neurons involved with motor function do not 25 

divide, cells from other sources are required. There are many stem cell based sources currently 26 

being explored, with foetal neuronal stem cells, embryonic stem cells, induced pluripotent stem 27 

cells, adult neural stem cells, and adult bone marrow stem cells all showing potential as sources 28 

for neuron replacement therapy (3). Stem cells must be expanded and differentiated in culture 29 

in order to produce adult dopamine neurons and may be manipulated by activating or 30 

inhibiting signalling pathways. There are many techniques used to increase the efficiency of 31 

producing neurons in culture, one of which is to recreate the signalling mechanisms present in 32 

the midbrain during natural dopamine neuron development. A number of peptides have been 33 

found to play important roles in these processes, while many are yet to be investigated. 34 

 35 

A protein expression data set was generated for developing rat midbrain tissue; the tissue that 36 

later develops into the dopamine neurons in the substantia nigra whose degeneration causes 37 

Parkinson’s disease (4). Previous selection of a candidate from this dataset revealed that 38 

vitamin D plays an important role in dopamine neuron development and demonstrated that its 39 

controlled delivery improves dopamine neuron yield in vitro (5). This project reanalyses the 40 

dataset with an emphasis on relative expression levels of proteins across four days of 41 

embryonic development in order identify further proteins of interest for the improved 42 

production of dopamine neurons in vitro. 43 

 44 
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Methods 45 

 46 

The protein expression dataset previously described in (4) was created using the proteomics 47 

technique of isobaric tagging for relative and absolute quantification (iTRAQ). This technique 48 

allows the expression levels of proteins from different sources to be determined in a single 49 

experiment (6). The samples used to generate the dataset were obtained from the substantia 50 

nigra of rats at embryonic days E11, E12, E13 and E14, assigned iTRAQ markers 114, 115, 116 51 

and 117 respectively. Tissues were collected under an establishment licence for Keele 52 

University (PEL 40/2407). Protein identification and quantification profiles were originally 53 

generated by ProteinPilot and exported as Excel spreadsheets. Protein identification was based 54 

on a combination of the number of peptides identified, and the similarity between the 55 

observed and expected mass for each peptide. Identified proteins were matched to entries in 56 

the NCBI Reference Sequence Database (7), with most proteins consisting of multiple peptide 57 

component matches. Details of the dataset generation are provided in (4). Following screening 58 

for proteins with total ion score confidence intervals of above 95%, the dataset used for this 59 

analysis consisted of expression level data for 3325 NCBI database matched proteins.  60 

 61 

The expression change ratio between embryonic days was calculated for all proteins to allow 62 

the comparison of relative protein levels for neighbouring days. Data was then fit to patterns of 63 

interest in order to exclude proteins with no significant changes over days E11 through E14. 64 

Nine patterns of interest were selected in order to capture peaks or troughs of protein activity 65 

over the four-day period (Figure 1). The filter function of Excel was used to specify cut-off 66 

values for relative expression values, allowing proteins to be fit to patterns with little manual 67 

manipulation. The stringency of pattern fitting is therefore controllable through the selection of 68 

cut-off values for each expression change. Figure 1 shows relative protein expression levels 69 

where a significant change is considered to be an increase or decrease in expression of at least 70 

a factor of two over a single day. 71 

 72 

Proteins meeting the expression change conditions were classified by tissue type according to 73 

data from the UniProt Knowledgebase (UniProtKB) database. Proteins associated with relevant 74 

tissues were carried forward for the next round of analysis while those with no known 75 

association were discarded. Following tissue categorisation, proteins were classified according 76 

to their molecular function again using data present in the UniProtKB database. Once proteins 77 

had been classified by expression pattern, tissue type and molecular function, a shortlist of 78 

potentially interesting proteins was produced. Further prioritisation of classification categories 79 

was then performed until a manageable shortlist was produced for further investigation. 80 

 81 

Results 82 

 83 

Classification of proteins according to the expression level patterns reduced the original dataset 84 

from 3325 down to 96 proteins of interest. The complete set of expression changes for all 85 

proteins is shown in Figure 2. Expression level changes were recorded as the ratio of the 86 

expression level on each day relative to the expression level on the following embryonic day. 87 

Plotting the log2 value of this ratio allows the magnitude of expression level changes to be 88 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26443v2 | CC BY 4.0 Open Access | rec: 17 Jan 2018, publ: 17 Jan 2018



4 
 

shown symmetrically regardless of the direction of change. An increase or decrease of a factor 89 

of two was required in order for a change to be considered significant. Expression level changes 90 

above a factor of two lay outside the horizontal red lines, while those under a factor of two are 91 

located within the red lines. 92 

 93 

The distribution of proteins over the patterns of interest is shown in Figure 3. The majority of 94 

proteins featuring a significant change in expression level over the four-day period showed a 95 

large decrease in expression from E11 to E12 and were therefore were categorised as pattern 96 

A. Proteins in this category are likely involved in neurogenesis which is thought to peak at 97 

around E11 (8). The proteins were then categorised according to tissue type and were found to 98 

fit into four main groups: neural, blood, other tissues, and ubiquitous (Figure 4). One protein 99 

was excluded as it lacked any tissue information on UniProtKB and related databases. The final 100 

classification was according to molecular function using the categories: binding, enzyme, 101 

enzyme regulator, receptor, structural, transcription factor, translation and transport. The 102 

distribution of proteins between these groups is shown in Figure 5. 103 

 104 

Following classification by expression pattern, tissue type and molecular function, it became 105 

possible to easily further prioritise categories guided by initial literature based research. 106 

Proteins matching expressions patterns A, B and E were carried forward as these patterns 107 

feature high expression levels on E11 and E12, the time at which peak neurogenesis is thought 108 

to occur (8). Carrying forward only these proteins reduced the dataset from 96 to 68 proteins. 109 

Proteins were then filtered according to tissue type, further reducing the list from 68 to 24 110 

proteins. Proteins with no known link to neural tissue were removed, as well as ubiquitous 111 

proteins, which were considered unlikely to promote dopamine neuron growth specifically. 112 

Initial research into biological functions also found that many proteins present in blood as well 113 

as neural tissue were primarily associated with biological roles in blood, and so this group was 114 

discarded. It was decided not to filter proteins based on their molecular function, as there was 115 

much crossover with most proteins involved in multiple functions. 116 

 117 

The final stage of the investigation was a literature search of the 24 remaining proteins. This 118 

was carried out with the aim of finding known connections to dopamine neurons or general 119 

neuron development and was performed manually in order to remove proteins included due to 120 

database errors or with unsubstantial evidence. Most proteins discarded during the manual 121 

investigation phase were discarded due to a lack of published evidence to support 122 

classifications present in online databases. It is likely that false negatives were present within 123 

the “blood and neural” and “blood, neural and other” groups and were discarded during 124 

filtering according to tissue type. Following this final stage of investigation, the shortlist of five 125 

proteins given in Table 1 was produced. The relative expression pattern of each shortlisted 126 

protein is provided in Figure 6. 127 

 128 

A2M is an inactive form of the large plasma protein A2M, produced by the liver and present in 129 

blood. It is capable of binding to brain-derived neurotrophic factor and nerve growth factor (9). 130 

CMP-NeuNAc synthase is an enzyme that catalyzes the activation of N-acylneuraminate 131 

(NeuNAc) to CMP-N-acylneuraminate (CMP-NeuNAc), a substrate required for the addition of 132 
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sialic acid (10). Salaic acid is found in high levels in the brain and is essential in synaptogenesis 133 

and for enabling neural transmission (11). P2RX4 is found in the central and peripheral nervous 134 

systems and has been shown to regulate synaptic strengthening (12). RTN1 is a member of the 135 

reticulon family of proteins which aid membrane curvature and have been shown to be 136 

involved with neuron differentiation, neuroendocrine secretion (13). GSK-3β is an enzyme 137 

capable of negatively regulating the Wnt signalling pathway, a key element of dopamine 138 

neuron development (14). 139 

 140 

The expression levels of A2M, CMP-NeuNAc synthase, P2RX4 and RTN1 all matched pattern A, 141 

showing a peak of expression levels on E11 followed by a sharp decrease for E12. GSK-3β 142 

presented a more complicated expression pattern and was matched to patterns B, D, E and I 143 

during automated pattern fitting. Manual inspection of the data showed that this protein 144 

exhibited two peaks in expression levels, one at E12 and another at E14.  145 

 146 

Discussion 147 

 148 

Categorisation of proteins based on their expression patterns over E11 to 14 allowed an initially 149 

large dataset of 3325 proteins to be quickly reduced to 96. Further categorisation of proteins 150 

according to tissue type and molecular function using data from online databases allowed a 151 

shortlist of five proteins to be generated with minimal manual literature research. 152 

 153 

Patterns featuring periods with no expression change (e.g. E12 to E13 and E13 to E14 in pattern 154 

A) did not have the lack of an expression change enforced during automated pattern fitting in 155 

order to include proteins with multiple significant changes in the same direction. These proteins 156 

would otherwise not be captured using patterns with only two expression level states (high and 157 

low). Although this solution successfully included proteins with expression patterns featuring 158 

multiple significant changes, some proteins were also matched to patterns that did not 159 

accurately describe their true expression levels, as occurred with GSK-3β. A more complete 160 

solution to pattern matching would be to use patterns featuring three or four states as shown 161 

in Figure 7; however, the number of possible patterns in these cases increases the complexity 162 

of the method (16 possible patterns with two states, 81 possible patterns with three states, 256 163 

possible patterns with four states).  164 

 165 

A limitation of pattern fitting as performed in this study is that expression levels on E10 and E15 166 

must be extrapolated from data present for E11 through E14. Future studies may benefit from 167 

utilising the full eight samples possible in iTRAQ to gain information over a longer period (15). 168 

This approach has added flexibility as the additional samples may also be utilised to increase 169 

the resolution on days of interest (two samples per day giving 12-hour expression windows for 170 

example). As a result of E10 and E15 being unknown, there exists a positive bias within the 171 

pattern matching method towards types A, D, H and I as these patterns feature a doubling or 172 

halving condition followed by or preceding a day for which there is no data. There is also a 173 

negative bias away from types B, C and F, as data must pass two expression change conditions 174 

in order to positively match these expression patterns. 175 

 176 
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The final manual stage of short listing is essential as the automated classification of proteins, as 177 

well as their initial identification from sequence data, relies entirely on online protein 178 

databases. Correctly matching mass spectrometry data to proteins in online databases is known 179 

to be a primary limitation of mass spectrometry based proteomics due to the large number of 180 

names used simultaneously for many proteins, as well as the wide range of available resources 181 

(16). This issue has been somewhat addressed through the use of the UniProtKB database, a 182 

collaborative effort between the European Bioinformatics Institute (EBI), the Protein 183 

Information Resource (PIR) and the Swiss Institute of Bioinformatics (SIB) (17).  184 

 185 

Conclusion 186 

 187 

This analysis of relative protein expression levels across four key days of embryonic 188 

development coupled with data from online proteomics databases demonstrates a technique 189 

to obtain a shortlist of proteins with a minimal requirement for manual literature research. It is 190 

hoped that the proteins and peptides identified using these methods will help to refine 191 

protocols for the production of dopamine neurons in vitro. 192 
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Accession 
Number 

Protein Name Expression 
Pattern 

Tissue 
Type 

Molecular Function 

gi|158138551 Alpha-2-macroglobulin precursor 
(A2M)  

A neural, 
other 

binding, enzyme 
regulator 

gi|68059163 N-acylneuraminate 
cytidylyltransferase (CMP-NeuNAc 
synthase) 

A neural enzyme 

gi|149063348 Purinergic receptor P2X, ligand-gated 
ion channel 4, isoform CRA_d (P2RX4)  

A neural receptor 

gi|16758732 Reticulon-1 (RTN1)  A neural transport 

gi|125374 Glycogen synthase kinase 3 beta 
(GSK-3β)  

B, D, E, I neural binding, enzyme, 
enzyme regulator, 
receptor 

 239 
Table 1 - Proteins selected for the final shortlist based on expression pattern, tissue type and molecular 240 
function.  241 
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 242 
 243 
Figure 1 - Expression patterns of interest based upon expression levels relative to neighbouring days.  244 
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 245 
 246 
Figure 2 - Expression change ratios from E11 to E12, E12 to 13 and E13 to E14. The majority of 247 
expression changes were small and lie inside the cut-off points, plotted as red horizontal lines.  248 
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 249 
Figure 3 - The majority of proteins were found to fit pattern A, showing peak expression at E11 followed 250 
by a decrease at E12.  251 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26443v2 | CC BY 4.0 Open Access | rec: 17 Jan 2018, publ: 17 Jan 2018



12 
 

 252 
 253 
Figure 4 – Protein distribution across tissue types. Most proteins were linked to neural tissue, while 254 
many were also associated with blood and other tissues.  255 
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 256 
 257 
Figure 5 - Proteins were found to be mostly associated with binding activity, with many proteins being 258 
involved in multiple molecular functions. Enzyme regulator has been abbreviated to “enzyme reg” and 259 
transcription factor has been abbreviated to “transcr fac”.  260 
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 261 
 262 
Figure 6 - Relative expression levels for proteins on the final shortlist, normalised to their expression 263 
level on embryonic day 12.  264 
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 265 
 266 
Figure 7 - Expression patterns A (three state) and A (four state) are included when fitting data to pattern 267 
A (two state) provided conditions for unchanging days are unenforced. 268 
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