
DataScope: Interactive Visual Exploratory Dashboards for Large
Multidimensional Data

Ganesh Iyer, Sapoonjyoti DuttaDuwarah, Ashish Sharma

Fig. 1. User interacting with a DataScope dashboard generated using breast cancer registry data from Surveillance, Epidemiology, and
End Results Program (SEER). In this screenshot, the user is interested in looking at pathology images of patients with tumor sizes
larger than 20 mm in diameter and with estrogen-receptor(ER-Status) positive or borderline. The user sets the corresponding filters in
A and B. The image grid C shows the pathology images for this filtered cohort.

Abstract—DataScope is a web-based tool for generating interactive visual dashboards on large scale multidimensional datasets.
Users can use these dashboards to explore data and create cohorts for downstream analysis. We describe DataScope’s architecture,
design considerations and provide an overview of its system design. We highlight some of DataScope’s features that were useful in the
case studies using datasets from cancer registries and co-clinical trials. In benchmarks DataScope is able to perform sub-second
queries on data sizes ranging from thousand to million records.

Index Terms—Information visualization, Data exploration, Interactive data exploration

1 INTRODUCTION

DataScope is a web-based tool for visually querying and exploring
large datasets. It generates dashboards that allow users to slice-dice
and drill down into their data. Users can visually query and filter their
datasets to create subsets or cohorts that can be saved or shared for
further downstream analysis. In this paper we describe the use-cases
for DataScope and provide an overview of the design and architecture.

Data curators and data providers are looking for ways to make
their data more accessible to their end users and analysts. DataScope
provides them with a quick way of setting up an analytics interface
that enables data discovery. For example data providers of cancer
repositories need their end users to be able to perform queries like:
Show pathology images of patients with tumor sizes larger than 20
mm in diameter and with estrogen-receptor(ER-Status) positive. They
would also want to see how different attributes correlate as they start

• Ganesh Iyer, Sapoonjyoti DuttaDuwarah and Ashish Sharma are with the
Dept. of Biomedical Informatics, Emory University. Email: {ganesh.iyer,
sapoonjyoti.duttaduwarah, ashish.sharma}@emory.edu

performing some exploratory analysis using the dashboards.
Integrative data analysis is widely used in Biomedical sciences.

Multiple data sources are pooled into one to perform these analysis [8].
DataScope can take data from a variety of heterogeneous sources and
can render visual dashboards to help users understand the data better.
With the advent of open data there is scope for exploratory analysis on
mashups of datasets across domains [16].

DataScope provides a high-level grammar for authoring interactive
dashboards on large multidimensional datasets. DataScope dashboards
can be authored in a declarative manner by authoring four configuration
files that describe the data sources, the attributes that are in the data,
information about filtering that can be performed on the data and the
appropriate visualization to render.

In this paper, we refer to the act of generating the dashboards as
authoring , and the people responsible as dashboard authors . The
users interacting with these authored dashboards as end-users.

1.1 Challenges
Creating interactive visual dashboards can be an involved process re-
quiring a lot of engineering resources. Often a visualization designer,
front-end engineer and a back-end engineer are required. Work is re-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

quired to fetch and integrate datasets of different formats from different
sources. A back-end must be developed to create APIs to power the
dashboards. Front end engineers are required to set up the user inter-
face and client-side code. Visualization designers are required to write
custom charts and visualizations using libraries like D3 [7].

Data providers often have data coming from various heterogeneous
sources namely REST APIs, Databases, flat files etc. The data can be
in a variety of different formats like JSON, CSV, XML etc. Specialized
libraries are required to extract and parse the data. DataScope is able to
ingest data from these variety of sources and provides an interface to
query and visualize the different data modalities. With DataScope data
providers can specify where to find the data instead of how.

Another challenge was the scale of the data. Web based charting
libraries like D3 etc. work well when by all the data is loaded in
the browser. Modern web browsers can load data only upto a certain
size, based on the RAM of the client and browser configurations. For
larger datasets users can very easily exceed these memory limits of
the browser. Preforming filtering on large datasets is computationally
expensive. Also some data providers might have restrictions for sharing
all of their data. Thus loading and filtering the data at the client side
is not an option. We need to develop a scalable server based query-
ing system that is able to handle massive amounts of data. We also
need specialized data structures to perform sub-second querying over
millions of data points.

Data providers have their own customized needs and the system
must be flexible enough to allow them to make these changes swiftly.
There might be custom data formats that require specialized libraries
to parse them. We needed to make the system extensible enough to
handle new visualization modes, filtering modes and data formats.

2 RELATED WORK

Kienle et al [11] identified seven quality attributes for visualization
tools: a) rendering scalabilty b) information scalability c) interoper-
ability d) customizability e) interactivity f) usability g) adaptability.
We base our design decisions based on these attributes. In this section
we highlight some other tools that are used to generate exploratory
dashboards.

There are several graphing libraries that are built using Javascript.
D3 [7] is widely used as a building block for many graphing libraries
like DC.js [3]. Google Charts is widely used for quickly setting up
a visualization [4]. These libraries can be used to develop custom
dashboards for different data providers. This requires reproducing a lot
of the effort like defining interactions, linking various charts, ingesting
data from different servers and so on. Thus these libraries are low-level
tools that can be used as building blocks for developing dashboards.

Keshif [18] is an open source web-based environment for creating
interactive visual dashboards. It has an API that can be used to configure
new dashboards. Due to its client-side data loading, there is a practical
limit on the data volume that can be loaded into the browsers memory.
Keshif can support datasets upto 220,000 records. The size and scale of
biomedical datasets normally reach the order of a million tuples with
a large number of attributes. This limits the use of such client-side
rendering, and therefore led us to develop a system that relies on the
server-side to load the data.

Voyager [15] is a great tool for visual analysis inspired by exploratory
search which is designed using AngularJS framework with HTML’s
flex display. The tool seems to have an edge because of the importance
it gives to data variation instead of design variation. It is great at
processing wide range of queries. One of the biggest advantages this
tool has is the recommendation system which seems to recommend
data variables and transformations which the user might find helpful.
Voyager’s novelty is in providing the end users recommendations while
exploring datasets. However it doesn’t address the issues faced by data
curators for providing an environment to explore their data. It currently
doesn’t support a schema to define a dashboard.

Polaris [17] has a very different way to visualize data as compared
to the approach that was taken by Voyager. The primary concentra-
tion of this system is on large multidimensional databases and how
to effectively visualize those datasets. It challenges the way the mul-

tidimensional databases are (were) treated using the n-dimensional
datacubes. The system interprets the state of the interface as a visual
specification of the analysis task and automatically complies it into
data and graphical transformations. The system however, lays out the
requirements a visualization tool that must be matched in order for
it to process large multidimensional databases which are data dense
displays, multiple display types and exploratory interface. The system
uses tables in order to display these high dimensional datasets. The
system tries to compare it’s queries against the SQL queries to see
which ones give you better results. However, unlike DataScope which
provides an interface to be used online with any dataset, this tool is
limited to using only multi-dimensional relational databases in order to
help explore the relations in the dataset.

3 TECHNICAL OVERVIEW

In this section we provide a technical overview of DataScope. We
describe the purpose and the specification of DataScope’s configuration
files. We will also describe the architecture of DataScope.

3.1 Specification
DataScope dashboards can be declared using four configuration files,
namely: a) Data source b) Data description c) Interactive filters d)
Visualization. These files allow authors to specify the dashboard in
a declarative manner. We use a high level grammar for generating
dashboards which lets users specify what instead how.

3.1.1 Data source
The data source definition provides information about the different data
sources that are pooled into one to perform integrative data exploration.
This information is specified in a JSON file called dataSource.json.
The data source definition is consumed by the application server and is
used by it to load the data. It needs to provide information about the
source of data, and the information required to obtain the data from the
source. Multiple datasources can be provided, DataScope performs an
inner-join of the different datasources. Currently DataScope supports:
Flat files, REST APIs and Databases as data sources. The data must
be either JSON or CSV in format. DataScope is extensible enough to
add further types of data sources like XML etc. The following JSON
document is an example of dataSource.json that is used to fetch
data from a remote REST API:

{
"dataSourceAlias": "breast_cancer_data",
"dataSources": [
{
"sourceName": "Breast_Case",
"sourceType": "jsonREST",
"options": {
"host": "http://dataprovider.com",
"path": "/v3/api/data",
"api_key": "testapikey"

}
}

]
}

3.1.2 Data description
Data description is used by the server to obtain information about each
attribute in the pooled data. Each attribute must have information about
the data provider, the data type of the attribute, and whether the attribute
is a filtering attribute or a visualization attribute or both. This informa-
tion is specified in a JSON file called dataDescription.json Fol-
lowing JSON document is an example of dataDescription.json.

In this example, we restrict ourselves to 3 attributes for brevity. It de-
scribes the attributes present in Breast Case data provider: Tumor size,
Image and ER Status.

[
{

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

"attributeName": "Tumor_size",
"attributeType": [
"filtering",
"visual"

],
"dataProvider": "Breast_Case",
"datatype": "integer"

},
{
"attributeName": "ER_Status",
"attributeType": [
"filtering",
"visual"

],
"dataProvider": "Breast_Case",
"datatype": "enum"

},
{
"attributeName": "Pathology_Image",
"attributeType": [
"visual"

],
"dataProvider": "Breast_Case",
"datatype": "string"

}
]

3.1.3 Interactive Filters
A set of attributes in the pooled dataset can be used as interactive filters.
These interactive filters show up on the left hand side of the dashboard
and can be used to filter datasets. Each interactive filter can have its
own visualization, using which, the user interacting with the system
can filter the data set. Currently DataScope support four visualizations
for interactively filters. Currently we support:

1. barChart: DataScope barCharts plot the histogram of a contin-
uous attribute. Each bar in a histogram represents the tabulated
frequency at each bin.

2. pieChart : PieCharts are helpful in showing proportions and
percentages between categories. They are useful when the number
of categories are few.

3. rowChart : RowCharts is normally used to show discrete, numer-
ical comparisons across different categories. The Y-axis shows
the different categories from the dataset and the X-axis shows the
values.

4. scatterPlot : ScatterPlots use a collection of points placed
on a 2D Cartesian plane to display values from two different
variables. By displaying a variable in each axis, you can analyze
the relationship between the two variables.

Summary statistics can also be associated with each attribute. These
statistcs are shown on flipping-the-card on each interactive filter. By
defualt DataScope keeps track of: count, distinct, min, max,
mean, median, stdev. We use datalib library to compute the statis-
tics [2]. In the following example we create interactive filters to display
attribute Tumor Size as a barChart and ER Status as a rowChart.
Figure 2 shows the corresponding interactive filters.

[
{
"attributeName": "Tumor_size",
"visualization": {
"visType": "barChart",
"binFactor": 10,
"domain": [0,130]

},
"statistics": "default"

},

Fig. 2. Example of interactive filters generated from the
interactiveFilters.json file provided in section 3.1.3

{
"attributeName": "ER_Status",
"visualization": {
"visType": "rowChart"

}
}

]

3.1.4 Visualization
The main visualization panel which shows up in the right hand
side of the dashboards is defined here. The JSON file is called
visualization.json. DataScope currently supports 10 visualiza-
tions, these include:

1. dataTable: Provides a tabular view of the data, can be config-
ured to link out to external applications.

2. imageGrid: Displays a grid of images and can be configured to
link out to external applications and display additional informa-
tion about the image as a tooltip.

3. SPLOM: Scatter plot of matrices are useful for visualizing correla-
tions amongst pairs of variables.

4. geoChoroplethMap: Choropleth display geographical areas
shaded in relation to the density. Datascope geoChoropleth maps
can be configured to work with any geographical area provided
that the corresponding GeoJSON files are provided.

5. markerMap: Datascope markerMap maps can be used to ren-
der shapes over a geographical area. The size of the shape is
proportional to the value of the attribute specified.

In this example visualization.json document we demonstrate
creating an imageGrid using the attribute Pathology Image from the
dataset which has the corresponding link of the image. Figure 3 shows
the corresponding image grid.

[
{

"visualizationType": "imageGrid",
"attributes": [

{

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

Fig. 3. Image grid generated from the visualization.json provided in
Section 3.1.4

Fig. 4. Overview of DataScope’s architecture.

"attributeName": "Pathology_Image",
"type": "image"

}
],
"tabTitle": "Pathology"

}
]

3.2 Architecture
We used a client-server architecture to distribute the load on the system.
With a fat client, applications can quickly run into browser limits, and
can only work with very small datasets. To deal with larger datasets
we load the data on the server and used AJAX calls between the client
and the server to communicate essential information that was required
by the client to render visualizations. Figure 4 provides a high level
overview of the architecture.

3.2.1 Initialization
DataScope uses configuration files to initialize the server and client
and to load the data into the server. As shown in Figure 4 the
dataSource.json and dataDescription.json files are consumed
by the server, whereas interactiveFilters.json and visualiza-
tion.json are consumed by the client side. The configuration files are
used as follows:

1. The application server identifies the various data sources.
It can ingest data from REST APIs and flat files. Using
dataSource.json the application server loads data from each
data source in memory. It performs SQL-like JOIN and UNION
operations based on the key attribute specified.

2. The application server creates binned aggregated representations
of the data to perform filtering quickly using a javascript library
called: crossfilter [1] for all the filtering attributes in the data
description.

3. On the client side, interactiveFilters.json file is used to
render the interactive filters. The client side renders the visualiza-
tions based on the visType provided in the interactive filter.

4. The client side also uses visualization.json to render visual-
izations based on the visualization type specified.

3.2.2 Filtering

Once the dashboards are initialized the users can interact with the filters
and slice and dice their data. Following is how the interaction takes
place:

1. Filtering information: The user interacts with the system and
performs filtering, the filter information is sent to the server. The
browser makes a GET request to /filter. The filtering information
is represented in the form of a JSON object. Some examples are
following:
{} = No active filters
{age: [20,40]} = Attribute age from range 20 to 40
{age: [20,40], groups: [a, c]} = Attributes that have
age from range 20 to 40 and have value for attribute groups a or c

This filtering information can be stored to load the dashboards
from previous states or to share a filtered cohort.

2. Result of filtering: The application server performs filtering, and
sends the current state information of the attributes to the view.
The results are transferred as a response to AJAX call in JSON
format. The result is binned and aggregated to make the payload
lightweight.

3.3 Design considerations

In this section we describe some of the design considerations that
guided the development of DataScope.

3.3.1 Declarative, reusable visualization components

DataScope visualization components are designed in a generic way that
makes it possible for these visualizations to handle various datatypes.
Queries on these visualizations can be on of: Ranged, Categorical or
2-D Ranged. The goal of DataScope is to be able to specify the type
of visualization that users would want to see without having to write
any code for it. We use the JSON specifications provided in 3.1.3 and
3.1.4. These JSON documents can be used to specify how each attribute
should be visualized without having to write any code.

3.3.2 Scalable visualizations

All DataScope visualizations must be scalable to handle large datasets.
To handle larger datasets without overwhelming the user and the fil-
tering engine we only plot summaries of the data. We use binned-
aggregation to plot values for attributes [12] [13]. Using this we first
bin and aggregate the date and then visualize the densities of each bin.
For numeric values one can define the bin factor for binning these val-
ues. For enumerated values each value is considered its own bin. This
approach can be scaled to handle large datasets without overcrowding
the display.

3.3.3 Filtering

One of the major goals of DataScope is enabling the creation of cohorts.
Users can filter their data using any of the interactive panels. Filtering
will reduce the size of the dataset and will generate a new cohort or
a subset of the original dataset. Users can then view the different
visualizations to examine trends in these cohorts.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

3.3.4 Coordinated interactive visualizations
In DataScope, we use the brushing and linking pattern of interaction.
Making selections in one view updates data in all other views. All the
other views are rendered again based on the current state of filters. Both
interactive filters and visualizations are linked and coordinated. Users
can make selection using visualizations(if the visualization supports
selections) and the interactive filters get updated and vice-versa.

3.3.5 Saving and launching state
Each interaction in the dashboard creates a new state. The state is a
JSON object which stores information about the current active filters.
Users can drill down and create cohorts using the filters. They can get a
sharable link for the dashboard. Any user that uses the link will launch
DataScope with the given filters set. External applications can also be
used to generate states and launch DataScope from pre-defined states.

3.3.6 RESTful interface
DataScope exposes a RESTful API that can be used to POST new
datasets or visualizations at runtime. To add a new visualization to an
existing instance of DataScope, the dashboard-authors can POST a new
visualization.json with the new visualizations. Having a REST
API also makes it easier to integrate DataScope with other external
analytics applications.

3.4 Compressing data using data dictionaries
The datasets we encountered are often redundant having the same
values repeated throughout the data. For example, having categorical
attributes with large strings as values increases the size of the data. We
can easily encode these large strings into a small, compressed coded
value. During our work with SEER data we observed that there were
data dictionaries available for the datasets1. We observed that using
data dictionaries can be used to compress the data by a significant
amount. Datascope stores data in a compressed form on the back-end
and using a data-dictionary on the front-end to decode the data from
the coded state while rendering visualizations.

4 CASE STUDIES

In this section we describe some of the case studies where we’ve used
DataScope. We also highlight the features of DataScope that were most
useful for that particular use-case.

4.1 Scientific Mashup to Explore Data from Co-clinical tri-
als

This project was one of the initial drivers of DataScope. The overar-
ching objective was to explore data, that is of data typically acquired
during a Co-Clinical trial [14], and support an exploration of the inte-
grated human+mouse data. In a Co-Clinical trial mouse models that
replicate mutations seen in patients, are constructed, and used in pre-
clinical trials that are run, in parallel with ongoing human trials. From
a data integration and exploration perspective, one needs to create a
data mashup and give users the ability to examine clinical data, ge-
nomic data, and support the exploration of radiology and pathology
images. For this project we utilized data provided by Robert Cardiff
(UC Davis) and Eran R. Andrechek (Dept. of Physiology, Michigan
State University), and described here [10]. The objective was to explore
a fusion of mouse model data and data from the Cancer Genome Atlas,
both in breast cancer. The radiology images were stored in The Cancer
Imaging Archive, while the pathology images were stored at Emory.
DataScope allowed Dr. Cardiff and his group to take an integrated
view of the data, and hypothesize the human correlates to pathway
clusters that were seen in mouse models. The primary visualization
was a SPLOM (Scatterplot Matrix), that was constructed on the Age
and the PR, Her2 and ER mutation statuses. Users could create custom
cohorts using a combination of these, then refine the cohort using clini-
cal attributes, and finally visualize the digitized pathology images as
well as radiology images. We highlight the most useful features in the
following subsections.

1https://seer.cancer.gov/data/documentation.html

Fig. 5. DataScope instance using co-clinical data from UC Davis

Fig. 6. Scatter plot of matrices to visualize and inspect correlations
between Age, PR-Status, Her2-Status and ER-Status in the scientific
mashup to explore co-clinical trial data

4.1.1 SPLOM((Scatter Plot Matrix)

SPLOMs(Scatter plot matrix) are very useful for performing visual
inspection of correlation amongst pair of variables [9]. Based on our
discussions with the pathologists, we identified Age, PR-Status, Her2-
Status and ER-Status as the attributes to be visualized on the SPLOM,
as shown in 5. The goal was to be able to create cohorts of patients
using the attributes from interactive filters and examine the correlations
using the SPLOM.

Users can interact with the SPLOM by adjusting the adjust the filter
in a histogram, or by defining a selection area in the scatter plots.

4.1.2 Linking to external applications

Pathologists were also interested in exploring radiology and pathology
data associated with the cohorts. For these use-cases we were able to
link a radiology explorer that fetches data using the The Cancer Imaging
Archive (TCIA) API2, also we were able to link it to an instance of

2http://www.cancerimagingarchive.net/

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

Fig. 7. Users can flip the card using the statistics icon to view statistics
about the attribute.

caMicroscope3, which is a whole slide image viewer. The DataTable
and ImageGrid visualizations can be configured to link out to such
external applications.

4.2 Cancer registries
The NCI SEER (Surveillance, Epidemiology, and End Results) program
collects epidemiological data on the incidence and survival of cancer
in the United States [5]. This is a large dataset with diverse attributes.
Our objective was to prototype an interactive exploration of this data
with the potential to link to related datasets. To develop this we utilized
the registry abstracts for anonymized breast cancer patients. A novel
extension that was made, for this project, was the inclusion of summary
statistics on each of the interactive filters. Users can flip the card on
each interactive filter and be presented with pre-defined summaries
such as mean and standard deviation. In future work we will add the
ability to examine statistics such as age adjusted incidence rates. This
use-case also demonstrated the need for geospatial filtering, such as the
need to select a geographic subset on a map, refine the resulting cohort
on demographic and clinical attributes, and then calculate incidence
rates and survival rates.

In the subsections we highlight some of DataScope’s features that
were most useful in this use-case:

4.2.1 Visualizing geographical data
We obtained cancer registries from California, Hawaii, Utah, Iowa,
Louisiana, Kentucky and Connecticut. We chose to visualize it as
choropleth map to provide an easy way to visualize how the number of
cases vary across different states.

4.2.2 Computing statistics for attributes
In the DataScope for SEER we also incorporated real-time statistics for
attributes. Users can flip the card to view statistics on these attributes.
Currently we compute count, distinct, min, max, mean, median and
standard deviation for attributes with a numerical datatype. We also
added support for custom statistics which can be used to plug in a
formula to compute say age adjusted incidence rates etc. These statistics
are also updated as additional filters are set.

5 PERFORMANCE EVALUATION

Using the client-server architecture was motivated by the need to handle
large scale data. We designed experiments to run with different sizes of
datasets. The datasets were randomly generated, and were composed
of a combination different datatypes namely: enumerated, integers,
floats etc. Half the attributes were filtering attributes the rest half were
visualization attributes. The benchmark tests were performed using test
data on a virtual machine running Linux Mint 14, having 8 GB ram,
and 4x Intel(R) Core(TM) i7-2630QM @ 2.00 GHz processor.

From the results we observed that the filtering on the server and the
AJAX response was the main bottleneck. The effect of SVG rendering
performance was negligible compared to filtering and network latency.
In Figure 8 we have plotted the results of only the total time for AJAX
responses which includes the time for filtering and network latency.
These times were averaged over 100 requests. We observe that the

3http://camicroscope.org

Fig. 8. Effect of size of data set on the filtering performance

system performance gradually decreases as we increase the size of the
dataset. We also observed that the number of filtering attributes were
the major performance bottleneck. DataScope is able to perform sub
second queries on million records when the number of attributes are
less than 12. Using a distributed columnar database can lead to better
performance results across larger datasets.

6 FUTURE WORK

In this section we describe our plans and future work for DataS-
cope. To address the follwing future work and other research ques-
tions, DataScope is freely available as an open-source software at
https://github.com/sharmalab/Datascope.

6.1 Support for newer interactive filters and visualizations
Currently DataScope supports four interactive filters and ten visualiza-
tions. Our plan is to add support for newer visualizations like: Box plot
and Parallel coordinates. Parallel coordinates have proven useful in
spotting clusters in large multidimensional noisy datasets [6]. We also
plan on adding Kaplan-Meier curves to study survival statistics.

6.2 Support for Vega
Vega is a visualization grammar for creating interactive visualiza-
tions [15]. In future releases we plan to add support for Vega in
DataScope. Users would then be able to specify their visualization
or interactive filter in terms of a declarative grammar instead of relying
on the templated visualizations that we currently support.

6.3 Using a distributed OLAP backend.
The backend for datascope can be replaced by a distributed datastore.
Druid is a distributed, columnar data store designed for exploratory
analytics on large datasets [19]. In benchmark tests, Druid has show
sub-second querying time for OLAP queries on 1 GB of data. The work
would involve wrapping Druid’s REST API to generate data structures
that DataScope can consume. This would be a more scalable approach
for handling larger datasets.

ACKNOWLEDGMENTS

We acknowledge the generous funding that made this work possible. In
particular, we would like to acknowledge the support of the NCI QIN
grant (1U01CA187013-01, Resources for development and validation
of Radiomic Analyses & Adaptive Therapy), NCIP/Leidos CTIIP Con-
tract (caMicroscope A Digital Pathology Integrative Query System),
and the Google Summer of Code (2014, 2015, 2016). We would also
like to acknowledge CTIIP team (Ulrike Wagner and Ed. Helton) and
Dr. Robert Cardiff and his team for the data and guidance provided
during the course of the co-clinical data project.

REFERENCES

[1] Crossfilter: http://square.github.io/crossfilter/.
[2] Datalib: http://vega.github.io/datalib/.
[3] Dc.js dimensional charting: https://dc-js.github.io/dc.js/.
[4] Google charts: https://developers.google.com/chart/.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

[5] Surveillance, epidemiology, and end results (seer) program
(www.seer.cancer.gov) research data (1973-2014), national cancer
institute, dccps, surveillance research program, surveillance systems
branch, released april 2017, based on the november 2016 submission.

[6] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz. Uncovering clusters
in crowded parallel coordinates visualizations. In Information Visual-
ization, 2004. INFOVIS 2004. IEEE Symposium On, pp. 81–88. IEEE,
2004.

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301–2309,
2011.

[8] P. J. Curran and A. M. Hussong. Integrative data analysis: the simultaneous
analysis of multiple data sets. Psychological methods, 14(2):81, 2009.

[9] J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization
zoo. Commun. Acm, 53(6):59–67, 2010.

[10] D. P. Hollern and E. R. Andrechek. A genomic analysis of mouse models of
breast cancer reveals molecular features ofmouse models and relationships
to human breast cancer. Breast Cancer Research, 16(3):R59, 2014.

[11] H. M. Kienle and H. A. Muller. Requirements of software visualization
tools: A literature survey. In Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007. 4th IEEE International Workshop on, pp.
2–9. IEEE, 2007.

[12] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time
exploration of spatiotemporal datasets. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2456–2465, 2013.

[13] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. In Computer Graphics Forum, vol. 32, pp. 421–430. Wiley Online
Library, 2013.

[14] C. Nardella, A. Lunardi, A. Patnaik, L. C. Cantley, and P. P. Pandolfi. The
APL paradigm and the co-clinical trial project, 2011.

[15] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE transactions on visualization and computer graphics, 22(1):659–668,
2016.

[16] N. Shadbolt, K. O’Hara, T. Berners-Lee, N. Gibbins, H. Glaser, W. Hall,
et al. Linked open government data: Lessons from data. gov. uk. IEEE
Intelligent Systems, 27(3):16–24, 2012.

[17] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[18] M. A. Yalçın, N. Elmqvist, and B. B. Bederson. Keshif: Out-of-the-box
visual and interactive data exploration environment.

[19] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli.
Druid: A real-time analytical data store. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pp. 157–168.
ACM, 2014.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26441v1 | CC BY 4.0 Open Access | rec: 16 Jan 2018, publ: 16 Jan 2018

	Introduction
	Challenges

	Related Work
	Technical Overview
	Specification
	Data source
	Data description
	Interactive Filters
	Visualization

	Architecture
	Initialization
	Filtering

	Design considerations
	Declarative, reusable visualization components
	Scalable visualizations
	Filtering
	Coordinated interactive visualizations
	Saving and launching state
	RESTful interface

	Compressing data using data dictionaries

	Case Studies
	Scientific Mashup to Explore Data from Co-clinical trials
	SPLOM((Scatter Plot Matrix)
	Linking to external applications

	Cancer registries
	Visualizing geographical data
	Computing statistics for attributes

	Performance evaluation
	Future Work
	Support for newer interactive filters and visualizations
	Support for Vega
	Using a distributed OLAP backend.

