Strategies for Biomedical Software Management, Sharing, and Citation
Daniel S. Katz', Kyle E. Niemeyer?, Arfon M. Smith®

"University of lllinois Urbana-Champaign, d.katz@ieee.org
2Oregon State University, kyle.niemeyer@oregonstate.edu
*Space Telescope Science Institute, arfon@stsci.edu

Abstract: This document is an open response to the NIH Request for Information (RFI):
Strategies for NIH Data Management, Sharing, and Citation, Notice Number: NOT-OD-17-015,
written by the leaders of the FORCE11 Software Citation Working Group from its inception in
mid-2015 through today. This group produced a set of Software Citation Principles and related
discussion, which are the basis for this document. Here, we describe research software,
summarize the software citation principles, discuss open issues related to software citation, and
make recommendations to the NIH.

Introduction

As we wrote in [1], we believe (and think NIH also believes) that “software is a critical part of
modern research and yet there is little support across the scholarly ecosystem for its
acknowledgement and citation.” Of course, this is also true about data. And while software can
be considered data, it is not merely data. As we discuss in [2]:

In the context of research (e.g., in science), the term “data” usually refers to electronic
records of observations made in the course of a research study (“raw data”) or to
information derived from such observations by some form of processing (“processed
data”), as well as the output of simulation or modeling software (“simulated data”). In the
following, we use the term “data” in this specific sense.

The confusion about the distinction between software and data comes in part from the
much wider sense that the term “data” has in computing and information science, where
it refers to anything that can be processed by a computer. In that sense, software is just
a special kind of data.

Even after discriminating between software and data, software is still a very general term, and
we believe that different types of software should be treated differently for the purposes of
management, sharing, and citation. For example, general-purpose software such as that used
for email and text processing does not need to be considered here; we should focus on
research software, meaning software used where the choice or version of software impacts the
research results and citation (and associated credit) is of value to the software authors.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

Research Software

We can further break research software into two categories: (1) software intended just for use
by the developer (e.g., student, postdoc, faculty, staff possibly not on an academic career path)
to solve one or more specific research problems; and (2) software intended for wide use beyond
the developers, to be used in a wide variety of research problems. In both cases, the software
should be managed, shared, and cited, but for somewhat different purposes, and with
potentially different requirements.

For software created by a developer for their own use in research, we can ask what could be
done for that developer, and what could be done for others. A minimum goal for the developer is
that the software is correct, and that the developer can return to it at some future time, and still
understand it, and still be able to use it—at least to repeat what that developer previously did.
This implies that the developer should be at least minimally trained as a software developer
(perhaps through a Software Carpentry' course), and that the software be archived in some
way. If we assume that the software has been used for some research purpose, then the
developer should also be able to document this usage in the record of the research, which in the
case of a paper should be in the form of a citation. This implies that the software, in addition to
being archived, should also be published to make it citable. This also enables others to possibly
use the software for another purpose, but this may depend on the quality of the software and its
documentation.

Conventionally, the primary research output of the developer is the research paper, not the
software; the developer gets credit for the research paper if the software is not reused, though
the developer may also get credit for the software if it is reused. The developer also likely wants
to spend the least effort possible to create the software; the software is “complete” once it has
been used for the research purpose.

If the software was created by the developer (or a community of developers) with the intention
of it being shared, quality measures also probably include how friendly the software is to users
(e.g., in documentation) and how responsive it is to the users (e.g., in tracking and responding
to bugs and feature requests). Much like the software created for the developer’s use, this
software-as-infrastructure should be archived and published by its developers, with a goal that
the contributors are recognized for their work, since the software itself is the research output of
their work.

This software is likely never “complete”, though versions are released. There is generally always
more work that could be done for research software, and what actually gets done is limited by
the available resources (i.e., time and funding).

In both cases, archiving, publication, and then citation enable—but are not sufficient
for—reproducibility, since reproducibility depends a number of factors beyond identification of

' https://software-carpentry.org

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

https://software-carpentry.org/

the software. These include compiler flags, versions of software dependencies (e.g., libraries,
operating system), usage options, and the environment in which the software is run.

In addition to citations providing credit (if properly indexed), they can also help understand use
of software. This serves a number of needs, including those of users who can choose software
to use based on if it already is widely used, and funders who can choose what software to
support, e.g., in the NSF SI2 program?.

Software Citation Principles

Our working group included 55-60 people from a mix of backgrounds, including researchers,
librarians, publishers, sociologists, and indexers. Starting with the FORCE11 Data Citation
Principles [3], we used a set of previous work and meetings, use cases, and multiple rounds of
feedback and discussion (both inside and outside the working group) to decide on a set of six
Software Citation Principles, as published in [1] and described briefly here:

e Importance: Software is a legitimate and citable product of research, accorded the same
importance as other research products, such as publications and data.
Credit and attribution: Citations should facilitate credit attribution for all contributors.
Unique identification: Citations should be machine actionable, globally unique, and
interoperable.

e Persistence: Unique identifiers and metadata describing the software and its disposition
should persist, even beyond the lifespan of the software.

e Accessibility: Software citations should facilitate access to the software itself and to its
associated materials.

e Specificity: Software citations should facilitate identification of, and access to, the
specific version of software that was used.

Applying the Software Citation Principles

While the principles themselves are quite brief and clear, how they are applied is much less
clear. Our work [1] includes a large amount of discussion and recommendations, some of which
is very briefly summarized in this section. Note that these points are not principles or
requirements; they are discussion, and in some cases, recommendations. For full context,
please see [1].

e Software should be cited on the same basis as any other research product, such as a
paper or book.

e Some software which is captured as part of data provenance may not be cited: citation is
partly a record of software important to a research outcome, where provenance is a

2 https://www.nsf.gov/publications/pub_summ.jsp?ods _key=nsf16532
3

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf16532

record of all steps (including software) used to generated particular data within the
research process.

Software papers are a workaround for the current lack of software citation practices.
Software itself should be cited as a first priority, and if a software paper exists and
contains results (performance, validation, etc.) that are important to the work, then the
software paper should also be cited.

Software peer-review is an important concern going forward, but it is mostly outside the
scope of a discussion about software citation.

Strict journal citation limits and page limits that include references are problematic for
software citation.

While there are a number of different types of identifiers that can be used, we
recommend the use of DOlIs for a specific version of a software that is going to be cited.
We believe the principles apply to all of these forms of software (not just source code,
but also executables, containers, virtual machine images, and software available as a
service) though the implementation of them will certainly differ based on software type.
Cited software does not need to be freely available, but the citation metadata should
provide enough information that the software can be accessed, even if closed,
commercial, etc.

Software identifiers should resolve to a persistent landing page that contains metadata
and a link to the software itself, rather than directly to the source code files, repository, or
executable.

Open issues

The following two issues cannot be resolved within the software citation principles, which might
imply a gap in the principles that will need to be solved at a later time.

1.

Push vs. pull for citations. To make software citation work as described by the principles,
software developers need to register versions of the software, and software users need
to cite registered software. This implies that there are two citation roles that need to be
performed: creation (push) and usage (pull), with creation required before usage.
However, this breaks down in number of cases, such as in commercial software where
there may be no person with an incentive to create a citation, or when a version of
open-source software is used that doesn’t match a version that was published.
Examples of this latter case may be the desired citation of a version 4.1.1 of software,
where the developers only publish major (4.0) or even minor (4.1) releases, or a version
of software without even a version number (e.g., the latest, unreleased software
downloaded from a GitHub repository).

As we stated in the discussion section of [1], when the software that someone wants to
cite software is not published, the best option today seems to be to cite the software by
name or URL, and version number or release date. Of course, the fact that these may
not be unique will lead to difficulties in understanding the impact of such software (see
point 2 below as well.) Another option is that a third-party service is used, such as

4

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

SciCrunch? in biosciences or ASCL* in astronomy, which would allow people to register
software that they hadn't authored, though most often the registration is to a package,
not to a specific version (again, see point 2 below.)

Grouping citations across versions or by project. While citations at the level of software
releases enable each release to have a distinct set of contributors who are credited by
the citations for that release, this alone makes it impractical to track citations for a project
(i.e., a software package or a repository), which is important to the project team and to
the funders of that project, as well as to those who study the interplay between projects.
The ability to do this does not naturally appear from the software citation principles being
applied to the current general citation system.

There are two types of possible solutions. The first is to ask users to cite both the
specific software version and the overall software package, which would require yet
another cultural change. Also related to this discussion is the use of Research Resource
Identifiers (RRIDs), a set of identifiers that have been introduced for “finding or
generating stable unique identifiers” for key biological resources: Antibodies, Model
Organisms, and Tools (software, databases, services)®. As of December 2, 2016, the
SciCrunch.org Research Identification Portal lists almost 2500 software resources. Each
RRID entry contains an RRID itself, a URL for the resource, a short text description of
the resource, and a set of additional metadata, including metrics. These “software”
resources are a mix of services, tar files, software project home pages, software project
repositories, and non-software links, including research group home pages and text
documents. ASCL curates a similar catalog® for astronomy software.

The second type of solution is to use metadata to describe these relationships, which
might mean automatically creating a “container” or “package” DOI when the first version
of a software package is cited, then using “relationship type” field in the DataCite
metadata for that and future versions. This does not require any culture change, but
does require infrastructure changes, particularly by the services that create DOls for
software, as well as some consensus and agreement about how to implement those
changes. This solution is discussed in some detail in one of the open issues in the
software citation working space on GitHub’.

In that issue, Martin Fenner points out that the same idea is also in the JISC
recommendations for software citation [4]. They talk about a model of software entities
and the “product” level vs. the “version” level, and they describe the usefulness of
identifiers for the “product” level: “Using an identifier at this level may be appropriate to
reference the general concept of a particular software artefact regardless of the specific

3 https://scicrunch.org

4

http://ascl.net/

5 https://scicrunch.org/resources
6 http://ascl.net/code/all
7 https://github.com/force11/force11-scwg/issues/157

5

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

https://scicrunch.org/
http://ascl.net/
https://scicrunch.org/resources
http://ascl.net/code/all
https://github.com/force11/force11-scwg/issues/157

version, or the continued use of this software over a long period. It [is] of use if different
versions are going to be referenced as it can stand as a unifying record.”

Conclusions

The FORCE11 Software Citation Working Group has almost completed its set of activities. We
are in the process of creating an infographic, and have started a brief paper that works through
some of the software citation use cases in detail, describing what the roles of each group of
stakeholders are. After this, we will end our work, and report to FORCE11 that we have finished.
We expect that FORCE11 will then start a Software Citation Implementation Group, possibly
with new leadership, and that this group will work with all the software citation stakeholders to
gather endorsements for the principles, and to implement them. The principles document also
includes a path for updates, which also might be suggested and made by the Implementation
Group.

We specifically recommend the following to NIH (these are point-by-point responses to a
selected set of the “invited areas for comment”):

The NIH seeks comment on any or all of the following topics to help formulate strategic approaches to
prioritizing its data management and sharing activities:

e The highest-priority types of data to be shared and value in sharing such data;

We recommend that NIH should recognize the critical importance of research software,
both as it supports other research products (e.g., manuscripts, data) and as a primary
research product, by endorsing and implementing the Software Citation Principles [1].

e The length of time these data should be made available for secondary research purposes, the
appropriate means for maintaining and sustaining such data, and the long-term resource
implications;

We recommend that NIH adopt (current) best practises for handling research software:
1. Use a community platform for hosting/versioning software
2. Archive said software in, e.g., Zenodo, figshare
3. Use metadata that are compatible with and translateable to CodeMeta
(https://codemeta.github.io/) metadata files

e Barriers (and burdens or costs) to data stewardship and sharing, and mechanisms to overcome
these barriers; and

We recommend that NIH consider allocating funds for long-term and sustained effort on
these topics. The Software Citation Principles [1] makes specific recommendations
which places requirements on sharing and stewardship. Quoting directly from [1]:

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

https://codemeta.github.io/

4. Persistence: Unique identifiers and metadata describing the software and its
disposition should persist—even beyond the lifespan of the software they
describe.

5. Accessibility: Software citations should facilitate access to the software itself
and to its associated metadata, documentation, data, and other materials
necessary for both humans and machines to make informed use of the
referenced software.

We note that the NIH’s own workshop focused on Software Discovery in the biosciences [5]
discussed many related topics and made recommendations in the form of a proposed roadmap.

Disclosures

Katz’s opinions are influenced by the four years he spent as an NSF Program Director leading
the Office of Cyberinfrastructure’s & Division of Advanced Cyberinfrastructure’s
software-as-infrastructure programs. Niemeyer’s opinions are informed by his research activities
developing and using, and then citing, research software. Smith’s perspectives are influenced
and informed by his three years working for GitHub Inc. as their liaison to academic and
research communities. Any opinion, finding, and conclusion, or recommendation expressed in
this document are that of the authors and does not necessarily reflect the views of their former
or current employers, FORCE11, or other members of the FORCE11 Software Citation Working
Group.

References

[1] Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working Group. (2016)
Software citation principles. PeerJ Computer Science 2:€86 DOI: 10.7717/peerj-cs.86

[2] Katz DS, Niemeyer KE, Smith AM, Anderson WL, Boettiger C, Hinsen K, Hooft R, Hucka M,
Lee A, Loffler F, Pollard T, Rios F. (2016) Software vs. data in the context of citation. PeerJ
Preprints 4:e2630v1 https://doi.org/10.7287/peer].preprints.2630v 1

[3] Data Citation Synthesis Group. (2014) Joint Declaration of Data Citation Principles. Martone
M (ed.) San Diego CA. FORCE11. URL:
https://www.force11.org/group/joint-declaration-data-citation-principles-final [Accessed
2016-11-23]

[4] Gent |, Jones C, Matthews B. (2015) Guidelines for Persistently Identifying Software Using
DataCite: A JISC Research Data Spring Project. Version 1.0, URL:
http://rrr.cs.st-andrews.ac.uk/wp-content/uploads/2015/10/guidelines-software-identification.pdf
[Accessed 2016-12-02]

[5] NIH Software Discovery Workshop (2014), URL: http://www.softwarediscoveryindex.org
[Accessed 2016-12-05]

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2640v1 | CC BY 4.0 Open Access | rec: 17 Dec 2016, publ: 17 Dec 2016

https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7287/peerj.preprints.2630v1
https://www.force11.org/group/joint-declaration-data-citation-principles-final
http://rrr.cs.st-andrews.ac.uk/wp-content/uploads/2015/10/guidelines-software-identification.pdf
http://www.softwarediscoveryindex.org/

