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In this paper a method for detection of image forgery in lossy compressed digital images

known as error level analysis (ELA) is presented and it's noisy components are filtered with

automatic wavelet soft-thresholding. With ELA, a lossy compressed image is recompressed

at a known error rate and the absolute differences between these images, known as error

levels, are computed. This method might be weakened if the image noise generated by

the compression scheme is too intense, creating the necessity of noise filtering. Wavelet

thresholding is a proven denoising technique which is capable of removing an image's

noise avoiding altering other components, like high frequencies regions, by thresholding

the wavelet transform coefficients, thus not causing blurring. Despite its effectiveness, the

choice of the threshold is a known issue. However there are some approaches to select it

automatically. In this paper, a lowpass filter is implemented through wavelet thresholding,

attenuating error level noises. An efficient method to automatically determine the

threshold level is used, showing good results in threshold selection for the presented

problem. Standard test images have been doctored to simulate image tampering, error

levels for these images are computed and wavelet thresholding is performed to attenuate

noise. Results are presented, confirming the method's efficiency at noise filtering while

preserving necessary error levels.
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1 INTRODUCTION24

Since late years, even before 1990, altering images digitally has become a disseminated practice, much25

due to the personal computer popularization. For example, the number of tampered pictures, by definition26

images where part of its original content has been some way altered, removed or combined with other27

images, synthetic textures or even computer rendered graphics Lin et al. (2009), reached 10% of all photos28

published in the United States around the year 1989 Amsberry (2009).29

In addition, for a number of reasons, some of those are intended to deceive the viewer in ways that30

hurt legal and moral principles guaranteed by law, creating a number of issues. The advent of powerful31

tools with that purpose turns the detection in a very difficult process even for professionals.32

The techniques for image forgery are many, Lin et al. (2009) names a few, such as, simple cutting33

and pasting, known as cloning Ng and Chang (2004), matting for perfect blending Chuang et al. (2002);34

Sun et al. (2004), graph cut for finding optimal composition boundaries Kwatra et al. (2003); Li et al.35

(2004), texture synthesis Kwatra et al. (2003); Sun et al. (2005); Bugeau and Bertalmı́o (2009) and36

variational approaches for synthesis of new content Bertalmı́o et al. (2000); Bugeau et al. (2010); Bugeau37

and Bertalmı́o (2009); Pérez et al. (2003).38

For that reason, techniques for detection of tampered images have attracted the attention of the39

scientific community, current image forgery detection is achieved through either active or passive (blind)40

approaches. Active approaches depend on the usage of watermarks or signatures Yu et al. (2005); Kong41

et al. (2004); Amornraksa and Janthawongwilail (2006); Wang et al. (2008). On the other hand, passive42

approaches do not need any explicit a priori information about the image, constituting a new direction43

of great interest in the field of image forensics Mahdian and Saic (2009); Sloan and Hernandez-Castro44

(2015). However, considering current art, there is no complete solution to automatically and blindly45

determine image forgeries Lin et al. (2009).46
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Passive blind image forensics are well documented, featuring surveys such as Farid (2009b); Ng47

et al. (2006). Current methods dwell on detecting cloning, which is essentially cutting and pasting in48

an image Fridrich et al. (2003); Popescu and Farid (2004a); resampling, originated from processes of49

resizing, rotating or stretching portions of pixels Popescu and Farid (2004b); Kirchner (2008); Mahdian50

and Saic (2007); Prasad and Ramakrishnan (2006); splicing or matting, the process of combining two or51

more images into a single composite, usually taking care to match borders Farid (1999); Ng and Chang52

(2004) and statistical analysis, where statistical properties of natural images are exploited to detect image53

manipulation Farid and Lyu (2003); Bayram et al. (2005, 2006); Mahdian and Saic (2009); Lin et al.54

(2009).55

Error level analysis (ELA) is a passive blind image forensic method created by Krawetz (2007),56

although sometimes related to others authors due to failures in recent art Farid (2009a); Zhao et al. (2011)57

to properly cite and acknowledge the original author of this method. This technique takes advantage of58

lossy compression schemes of tampered images to detect forgeries.59

Lossy compression schemes perform a trade off between data quality and compressed data size, at60

first, this might seem as a drawback to a forensic analyst due to the loss of evidence associated with the61

trade off, however, different quality levels in an image are evidence themselves.62

An original image possesses an unique quality level, a property originated both from its acquisition63

and compression scheme. When such an image is tampered, either through cloning, splicing or matting,64

the original content is combined with foreign content, which will possess different quality levels, being65

the original content usually already compressed and the foreign uncompressed.66

ELA works by taking an image compressed with a lossy compression scheme, intentionally recom-67

pressing at a known error rate and then computing the absolute difference between the first image and its68

recompression.69

This difference between images are the error levels associated with the original pixels, these error70

levels, seen as an amount of change, are directly associated with compression loss.71

If the amount of change is small, the pixel has reached its local minima for error at the determined72

error rate, hence it is likely to be already compressed, on the other hand, if there is a large amount of73

change, then the pixels were not at their local compression minima and are likely to be foreign Krawetz74

(2007).75

ELA’s absolute differences are computed across all spatial frequencies in an image. This causes the76

error levels to mimic the spatial frequencies of the pixels they represent. That is, low frequency regions,77

regions where the tonal transition is smooth, such as uniform skies or skin, will present lower amounts of78

change while high frequency regions, where the tonal transition is abrupt, such as fur, grass or hair, will79

present higher amounts of change.80

These fluctuations might confuse a forensic analyst, since both high frequency and foreign content81

will present high amounts of change. Regarding this problem, a windowed absolute differences scheme82

is presented in literature Farid (2009a) to compensate the fluctuations created by both low and high83

frequencies.84

Error levels are noisy by essence since the absolute differences are computed across all spatial85

frequencies in the image. This causes the error levels to mimic the distribution of the spatial frequencies86

present in the image, increasing the difficulty in the interpretation of error levels.87

Noise, as any sharp changes in an image’s intensity, implies in high-frequency components, thus,88

lowpass filtering is a common application of noise removal in image analysis Seul et al. (2000). Several89

convolution based methods of noise attenuation are present in image analysis literature such as Sun et al.90

(1994); Nodes and Gallagher Jr. (1982); Dugad and Ahuja (1999); Gonzalez and Woods (2001); Lim91

(1990); Gilboa et al. (2004); Salinas and Fernández (2007); Fernández et al. (2005); Bernardes et al.92

(2010), however, the greatest downside of these methods is the blurring of images.93

On the other hand, Wavelets thresholding is a process that uses a forward wavelet transform, filters94

the noise by thresholding the resulting coefficients and then applying the inverse transform to recover the95

image. It is able to effectively remove noise components without interfering with other signal components96

present in an image, that is, without causing blurring Donoho (1993).97

Although its success in image processing Arandiga et al. (2010); De Stefano et al. (2004); Heric and98

Zazula (2007), determining the most adequate threshold level is a current issue because the thresholding99

might affect components other than noise. With this issue in focus in recent wavelet thresholding literature,100

several automatic and adaptive methods are proposed to determine the threshold, such as Deivalakshmi101
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and Palanisamy (2016); Ju et al. (2010); Yong and Qiang (2010); Liu et al. (2008); Madeiro et al. (2007);102

Poornachandra (2008); Wu et al. (2005); Chen et al. (2007); Zhang et al. (2002); Kovesi (1999), to cite a103

few.104

In this paper, standard images such as the cameraman, farm, lena and peppers, are originally taken105

from a lossless compression format, TIFF, in 512x512 resolution and converted to a lossy compression106

format, JPEG, to simulate originally acquired images, i.e., from a camera. These images are then doctored107

to represent forgeries. Error levels are computed and the noise in them are removed using wavelet108

thresholding with its threshold automatically determined by the method presented in Kovesi (1999). A109

summary of the method is presented in Figure 1.110

The results achieved show that the ELA technique is indeed very effective in detecting the forgeries111

and despite the noisy images generated in the ELA process, filtering through wavelet thresholding with112

automatic thresholding selection proved to be an effective approach in denoising, making easier to detect113

the forgeries. Therefore, the proposed method has its validity attested and could be used to diminish the114

attempts to moral rights by helping forensic professionals to detect a forged image.115

Figure 1. Summary and work flow of the method.

The rest of this paper is organized as follows: section 2 summarizes the proposed method, detailing the116

application of error level analysis, presenting standard test images, their doctored versions for this paper117

and the associated error levels; section 3 presents the process of wavelet thresholding and a scheme for118

automatic threshold selection; section 4 presents results obtained by the automatic wavelet thresholding;119

ultimately, in section 5, steps of the method are enumerated, its efficiency discussed and future works120

addressed.121

2 ERROR LEVEL ANALYSIS122

Error level analysis (ELA) is a passive blind image forensic method created by Krawetz Krawetz (2007)123

which takes advantage of the lossy compression schemes of tampered images to identify its forgery. The124

original quality level of a image is a unique feature itself, thus, any alteration process leaves its traces125

behind also in it. Briefly, ELA works by using an image compressed by a lossy scheme and recompressing126

it with a known error rate, then, it computes the absolute difference between the analyzed image and the127

recompressed one. Formally, ELA is described as follows.128

Error levels, ELA(n1,n2) where n1 and n2 are row and column indices, can be represented by

ELA(n1,n2) = |X(n1,n2)−Xrc(n1,n2)| , (1)

for each color channel, where X is the image suspected of forgery and Xrc is the recompressed image.

Total error levels are error levels averaged across all color channels, as in

ELA(n1,n2) =
1

3

3

∑
i=1

|X(n1,n2, i)−Xrc(n1,n2, i)| , (2)

where i = 1,2,3, for a RGB image.129
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This difference between images are the error levels associated with the original pixels, these error130

levels, seen as an amount of change, are directly associated with compression loss. If the amount of131

change is small, the pixel has reached its local minima for error at the determined error rate. However, if132

there is a large amount of change, then the pixels are not at their local minima and are likely to be foreign133

Krawetz (2007).134

ELA’s absolute differences are computed across all spatial frequencies in an image. This causes the135

error levels to mimic the spatial frequencies of the pixels they represent. That is, low frequency regions,136

regions where the tonal transition is smooth, such as uniform skies or skin, will present lower amounts of137

change while high frequency regions, where the tonal transition is abrupt, such as fur, grass or hair, will138

present higher amounts of change. These fluctuations might confuse a forensic analyst, since both high139

frequency and foreign content will present high amounts of change. Regarding this problem, a windowed140

absolute differences scheme is presented in literature Farid (2009a) to compensate the fluctuations created141

by both low and high frequencies.142

Figure 2. Figure a) shows the original cameraman image, b) shows the forgery, with a zeppelin in the

background and c) shows ELA for the doctored image.

Figure 3. Figure a) shows the original farm image, b) shows the forgery, with a tiger in the background

and c) shows ELA for the doctored image.

Figures 2,3,4,5 present the cameraman, farm, lena and peppers images, respectively. Exhibited in143

these figures are the original and doctored images. ELA is presented for the doctored images in the144

512x512 resolution. Figure 2 shows ELA’s weakness in gray-scale images, since the level of information145

is lower, so are the precision of error levels, thus, error levels created by high frequency components and146

error levels created by different qualities are indistinguishable. This problem is not present in any of the147

color images.148
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Figure 4. Figure a) shows the original lena image, b) shows the forgery, with a flower on her hat and

contrast enhanced eyes and lips and c) shows ELA for the doctored image.

Figure 5. Figure a) shows the original peppers image, b) shows the forgery, with a kitchen on the

background and c) shows ELA for the doctored image.
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3 AUTOMATIC WAVELET THRESHOLD SELECTION149

Wavelet thresholding, also known as wavelet shrinkage, is the process of converting a signal to a time-scale150

domain through a forward wavelet transform, wavelet coefficients are then thresholded according to a151

certain criteria and the reverse wavelet transform converts the wavelet coefficients back to the time-space152

domain of the image.153

Wavelets have proved very efficient at separating signal and noise, although no particular wavelet has154

been shown to be more effective at denoising than others, however, threshold choice is a delicate issue.155

Here is presented a short review of the method described in Kovesi (1999) to automatically determine the156

threshold.157

In Kovesi (1999), the Rayleigh distribution is utilized for estimation of the magnitude of response158

vectors in log Gabor filters, considering 2D Gaussian noise in the complex plane. This distribution is159

defined by160

R(x) =
x

σ2
g

e

−x2

2σ2
g
, (3)

where σ
2
g is the variance of the 2D Gaussian distribution which describes the position of the filter’s161

response vectors. The mean of this distribution is162

µr = σg

√

π

2
, (4)

and the variance is163

σ
2
r =

4−π

2
σ

2
g . (5)

Threshold choice is then a matter of choosing a value which is a scale of the standard deviation beyond164

the mean noise, as in165

T = µr + k ·σr , (6)

where k controls how beyond the noise’s mean is the standard deviation.166

A reliable estimate of the mean of noise amplitude distribution can be determined by167

E(AN) =
1

2

√

−π

ln( 1
2
)
·median , (7)

where AN is the N′th wavelet transform of the image. Smallest scales of AN provide the best result, since168

they contain the most noise, further discussion can be seen in Kovesi (1999). In fact, noise power is169

elevated at small scales Xu et al. (1994), at it can be seen in the wavelet decomposition of the cameraman170

error levels, in Figure 6. That shows the wavelet scales decomposition, it is clear that at small scales seen171

in the smaller images in the upper left side the noise is greater than the larger scales.172

The noise mean µr is effectively equal to E(AN) and the variance, σr can be calculated by combining173

equation 5 with174

σg =
E(AN)
√

π

2

, (8)

resulting in175

σr =
(4−π) ·E(AN)

π
. (9)

This statistical approach to the estimation of the threshold, T , through equation 6, proves successful176

in removing noise from wavelet transforms.177
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Figure 6. Wavelet decomposition of the cameraman error levels, showing greater noise power in small

scales.

4 RESULTS178

Soft-thresholding is utilized to ensure avoiding the introduction of frayed edges, typical of wavelet179

thresholding. The standard test images have been wavelet shrinked with the automatic threshold selection180

described in the previous section. The orthogonal Daubechies wavelet with a vanishing moment of four181

was used for the wavelet transforms.182

For the cameraman image, results are presented in figure 7. Despite ELA’s failure to distinguish183

between the low resolution error levels in the gray scale image, the noise removal results are adequate.184

The value of the k scale factor used for this image was 4.185

For the farm image, results are presented in figure 8. Overall noise has been greatly attenuated and the186

tiger stands out from the background. However, high frequency spatial characteristics of the image such187

as the vegetation increase error levels throughout the entire image.188

For the lena image, results are presented in figure 9. The image’s interpretation is difficult due to error189

levels created from the high frequency features such as the fur, however, the flower stands out. Minor190

modifications such as the contrast enhanced eyes and lips are not distinguishable.191

For the peppers image, results are presented in figure 10. This image presents the best results in192

both noise removal and error level identification. The kitchen at the background completely stands out,193

canceling the peppers at the front.194

5 CONCLUSION195

This paper presents the not well known method Error Level Analysis, correctly identifying its original196

author despite omission in recent literature, and investigates the usage of wavelet transforms in error level197

noise removal. A method to automatically select a threshold level is used, from Kovesi (1999), showing198

good results in this application.199

Standard images such as the cameraman, farm, lena and peppers, are doctored to represent forgeries.200

These images are then studied with error level analysis and compared with the error level analysis of201

lower resolutions of these same images. It’s noted that ELA fails to process gray scale images due to low202

resolution of error levels but graciously succeeds in color images.203

Afterwards, noise removal is performed, through wavelet thresholding, transforming the images from204

the time-space representation to time-scale, filtering the noise through wavelet’s coefficients thresholding,205
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Figure 7. The cameraman image has been wavelet thresholded with a k scale of 4.

Figure 8. The farm image has been wavelet thresholded with a k scale of 6.
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Figure 9. The lena image has been wavelet thresholded with a k scale of 8.

Figure 10. The peppers image has been wavelet thresholded with a k scale of 20.
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where the threshold value is statistically calculated from the image, and performing the reverse wavelet206

transform on the image.207

Empirically, results show the approach successfully attenuates noise and improves error levels, better208

identifying regions of the image where tampering has occurred.209
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