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While most challenges organized so far in the Semantic Web domain are focused on

comparing tools with respect to different criteria such as their features and competencies,

or exploiting semantically enriched data, the Semantic Web Evaluation Challenges series,

co-located with the ESWC Semantic Web Conference, aims to compare them based on

their output, namely the produced dataset. The Semantic Publishing Challenge is one of

these challenges. Its goal is to involve participants in extracting data from heterogeneous

sources on scholarly publications, and producing Linked Data that can be exploited by the

community itself. This paper reviews lessons learned from both (i) the overall organization

of the Semantic Publishing Challenge, regarding the definition of the tasks, building the

input dataset and forming the evaluation, and (ii) the results produced by the participants,

regarding the proposed approaches, the used tools, the preferred vocabularies and the

results produced in the three editions of 2014, 2015 and 2016. We compared these

lessons to other Semantic Web Evaluation challenges. In this paper, we (i) distill best

practices for organizing such challenges that could be applied to similar events, and (ii)

report observations on Linked Data publishing derived from the submitted solutions. We

conclude that higher quality may be achieved when Linked Data is produced as a result of

a challenge, because the competition becomes an incentive, while solutions become better

with respect to Linked Data publishing best practices when they are evaluated against the

rules of the challenge.
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ABSTRACT12

While most challenges organized so far in the Semantic Web domain are focused on comparing tools

with respect to different criteria such as their features and competencies, or exploiting semantically

enriched data, the Semantic Web Evaluation Challenges series, co-located with the ESWC Semantic

Web Conference, aims to compare them based on their output, namely the produced dataset. The

Semantic Publishing Challenge is one of these challenges. Its goal is to involve participants in extracting

data from heterogeneous sources on scholarly publications, and producing Linked Data that can be

exploited by the community itself. This paper reviews lessons learned from both (i) the overall organization

of the Semantic Publishing Challenge, regarding the definition of the tasks, building the input dataset

and forming the evaluation, and (ii) the results produced by the participants, regarding the proposed

approaches, the used tools, the preferred vocabularies and the results produced in the three editions

of 2014, 2015 and 2016. We compared these lessons to other Semantic Web Evaluation challenges.

In this paper, we (i) distill best practices for organizing such challenges that could be applied to similar

events, and (ii) report observations on Linked Data publishing derived from the submitted solutions. We

conclude that higher quality may be achieved when Linked Data is produced as a result of a challenge,

because the competition becomes an incentive, while solutions become better with respect to Linked

Data publishing best practices when they are evaluated against the rules of the challenge.
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1 INTRODUCTION30

The Semantic Web aims to extend the human-readable Web by encoding the semantics of resources in a31

machine-comprehensible and reusable fashion. Over the past years, a growing amount of research on32

publishing and consuming Linked Data, i.e. data represented and made available in a way that maximizes33

reusability, has facilitated Semantic Web adoption. However, one of the remaining issues is lack of high34

quality Linked Data. A promising means to foster and accelerate the publication of such high quality35

Linked Data is the organization of challenges: competitions during which participants complete tasks36

with innovative solutions that are then ranked in an objective way to determine the winner. A significant37

number of challenges has been organized so far, including the Semantic Web Challenge1, its Big Data38

Track formerly known as the Billion Triples Challenge, and the LinkedUp Challenge2, to mention a few39

of the longest lasting. However, these challenges targeted broad application domains and were more40

focused on innovative ways of exploiting Semantic Web enabled tools (Linked Data consumption) than on41

the output actually produced (Linked Data production). Therefore, such challenges enable advancement42

of Semantic Web technology but overlook the possibility of also advancing Linked Datasets per se.43

This paper focuses on a series of Challenges in the Semantic Publishing domain. Semantic publishing44

is defined as “the enhancement of scholarly publications by the use of modern Web standards to improve45
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interactivity, openness and usability, including the use of ontologies to encode rich semantics in the form46

of machine-readable RDF metadata” by Shotton (2009). The 2014 Semantic Publishing Challenge, was47

themed “Assessing the Quality of Scientific Output” (Lange and Di Iorio, 2014)3, in 2015 we mentioned48

the techniques more explicitly by appending “. . . by Information Extraction and Interlinking” (Di Iorio49

et al., 2015)4, and in 2016 we generalized to “. . . in its Ecosystem” to emphasize the multiple dimensions50

of scientific quality and the potential impact of producing Linked Data about it (Dimou et al., 2016)5.51

According to Miller and Mork (2013), extracting, annotating and sharing scientific data (by which,52

here, we mean standalone research datasets, data inside documents, as well as metadata about datasets53

and documents) and then building new research efforts on them, can lead to a data value chain producing54

value for the scholar and Semantic Web community. On the one hand, the scholar community benefits55

from a challenge that produces data, as the challenge results in more data and in data of higher quality56

being available to the community to exploit. On the other hand, the Semantic Web community benefits:57

participants optimize their tools towards performance in this particular challenge, but such optimisations58

may also improve the tools in general. Once such tools are reused, any other dataset benefits from their59

advancements, because the processes producing them has been improved. However, bootstrapping and60

enabling such value chains is not easy.61

In a recent publication (Vahdati et al., 2016), we discussed lessons we learned from our experience62

in organizing the first two editions of the Semantic Publishing Challenge – mainly from the perspective63

of how to improve the organization of further editions and of providing a better service to the scholar64

community. The lessons are related to the challenge organization, namely defining the tasks, building65

the input datasets and performing the evaluation, as well as lessons we learned by studying the solutions,66

with respect to the methodologies, tools and ontologies used, and data produced by the participants. We67

organized the third edition based on these lessons learned.68

In this paper, we revise our lessons learned, taking into consideration experience gained by organizing69

the challenge’s third edition, whose results validate in principle our lessons learned. We argue that70

challenges may act as enablers for the generation of higher quality Linked Data, because of the competitive71

aspect. However, organizing a successful challenge is not an easy task. Therefore, the goal of this paper is72

to distill generic best practices, which could be applied to similar events, rendering the challenge tasks into73

meaningful milestones for efficient Linked Data generation and publishing. To achieve that, we validated74

the generalizability of our lessons learned against the other Semantic Web Evaluation Challenges6,7,8.75

We concluded that our lessons learned are applicable to other challenges too; thus they can be76

considered best practices for organizing a challenge. Other challenge organizers may benefit from relying77

on these best practices when organizing their own challenge. Additionally, we thoroughly analyze and78

report best practices followed by the Linked Data that the solutions to our challenge’s tasks produce. Our79

study of the different solutions provides insights regarding different approaches that address the same task,80

namely it acts as if the challenge benchmarks those different solutions against a common problem. Last,81

we assess based on the produced datasets how the challenge organization reinforces increasing Linked82

Data quality in respect to the different Linked Data dimensions identified by Zaveri et al. (2016).83

Thus, besides the scholarly community and the CEUR-WS.org open access repository, which is the84

owner of the underlying data, the broader Linked Data community may benefit from looking into our85

cumulative results. Other Linked Data owners may find details on different approaches dealing with the86

same problem and the corresponding results they produce. Taking them into consideration, they can87

determine their own approach for an equivalent case or even consider launching a corresponding challenge88

to determine the best performing tool with respect to the desired results and consider this one for their89

regular long term use. Moreover, other Linked Data publishers may advise the results or consider the best90

practices as their guidelines for improving their tools and thus their results.91

In summary, our contributions are:92

• an outline of challenges organized in the field of Linked Data and Semantic Web technologies,93

• an exhaustive analysis of all solutions to every task of all editions of the Semantic Publishing94

Challenge series,95

• a systematic discussion of lessons that we have learned from organizing the Semantic Publishing96

Challenge, and97
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• a structured set of best practices for organizing similar challenges, resulting from validating our98

lessons against other Semantic Web Evaluation challenges.99

The remainder of the paper is structured as follows: Section 2 reviews related work; in particular it100

sets the background for our study by recapitulating the Semantic Publishing Challenges run so far and101

comparing them to related challenges. Section 3 revisits the lessons learned, taking into consideration all102

three editions, validates them against other challenges and concludes in best practices for organizing such103

challenges. Section 4 exhaustively and cumulatively analyses the solutions submitted to all tasks of all104

challenges in the series. Section 5 reviews the Semantic Publishing Challenges as a means of assessing105

the quality of data, and Section 6 summarizes our conclusions.106

2 BACKGROUND AND RELATED WORK107

This section sets the background of the Semantic Publishing Challenges so far. Section 2.1 summarizes108

other challenges, mainly those run in the Semantic Web community. Then, Section 2.2 recapitulates the109

Semantic Publishing Challenges run so far, including the definitions of their tasks, and their outcomes.110

2.1 State of the Art on Previously Organized Challenges111

Several related challenges were organized in the past for different purposes and application domains.112

In this section, we summarize the most well-known, long-lasting and closely related challenges in the113

Semantic Web field. Where applicable, we report on systematic reviews of challenges for lessons learned.114

2.1.1 Ontology Matching Challenges115

The Ontology Matching Challenges 9 have been organized since 2004 by the Ontology Alignment Eval-116

uation Initiative (OAEI)10 and co-located with several top Information Systems and Web conferences117

such as WWW11 or VLDB12. It aims to forge a consensus for evaluating the different emerging methods118

for schema or ontology matching. The OAEI aims to assess the strengths and weaknesses of alignment/-119

matching systems, compare the performance of techniques, and improve evaluation techniques to help120

improving the work on ontology alignment/matching through evaluating the techniques’ performances.121

Following a similar structure as the Semantic Publishing Challenge, the OAEI challenge provides a122

list of test ontologies as training datasets. The SEALS infrastructure13 to evaluate the results has been123

made available since 2011. The results are presented during the Ontology Matching workshop, which is124

usually co-located with the International Semantic Web Conference (ISWC14). The tests and results of125

the challenge are published for further analysis.126

2.1.2 Semantic Web Challenge127

The Semantic Web Challenge15 aims to apply Semantic Web techniques in building online end-user128

applications that integrate, combine and deduce information needed to assist users in performing tasks. It129

features a track about Big Data designed to demonstrate approaches which can work on Web scale using130

realistic Web-quality data. The Big Data Track, formerly known as the Billion Triples Challenge (BTC),131

started from 2008 mostly co-located with ISWC. The Billion Triples Challenge aimed to demonstrate132

the capability of Semantic Web technologies to process very large and messy data as typically found on133

the Web. The track was renamed to “Big Data Track” because very large data sets are now ubiquitous134

and the competition was opened to broader range of researchers dealing with their own big data. The135

functionality of submitted solutions is open but, to address real scalability issues, it forces all participants136

to use a specific Billion Triple Challenge Dataset provided by the challenge’s organizers.137

2.1.3 Question Answering over Linked Data (QALD)138

The Question Answering over Linked Data (QALD) challenge16 (Lopez et al., 2013; Unger et al., 2015)139

focuses on answering natural language or keyword-based questions over linked datasets. Co-located with140

the ESWC Semantic Web Conference (ESWC17) in its first two editions in 2011 and 2013, it moved to141

the Conference and Labs of the Evaluation Forum (CLEF18) for the three following editions, to return to142

ESWC as a part of its Semantic Web Evaluation Challenges track explained below. In all editions, a set of143

up to 340 questions over DBpedia19 served as input; participants were expected to answer these questions.144

The 2013 to 2016 editions had a task on multilingual questions, while from 2014, a task on hybrid question145

answering over RDF and free text was added. Some editions considered alternative datasets, e.g., about146

drugs or music, and had alternative sub-tasks on answering questions over interlinked datasets or finding147
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lexicalizations of ontological terms. Only few submitted solutions address the question/answering issues148

over a distributed and large collection of interconnected datasets.149

The first two editions of the QALD Challenge were reviewed (Lopez et al., 2013); similarly to our150

work, this review “discuss[es] how the second evaluation addressed some of the issues and limitations151

which arose from the first one, as well as the open issues to be addressed in future competitions”. Like152

us, Lopez et al. present the definition of the QALD challenge’s tasks and the datasets used, and draw153

conclusions for the subsequent evaluation of question answering systems from reviewing concrete results154

of the first two challenge editions. Their review of related work includes a review of methods for evaluating155

question answering systems, whereas the Semantic Publishing Challenge was created to address the lack156

of such methods for evaluating semantic publishing tools (cf. Section 2.2). We additionally present lessons157

learned for challenge organization (Section 3) and about semantic publishing tools (Section 4), which,158

together, constitute the main contribution of this paper.159

2.1.4 LAK Challenges160

The Learning Analytics and Knowledge Challenges (LAK20) use a specific dataset of structured metadata161

from research publications in the field of learning analytics. The challenge was organized in 2011 for162

the first time and has so far continued yearly with the LAK conference. Beyond merely publishing the163

data, the LAK challenges encourage its innovative use and exploitation. Participants submit a meaningful164

use case of the dataset in the scope of six topic categories, such as comparison of the LAK and EDM165

(Educational Data Mining) communities, innovative applications to explore, navigate and visualize,166

enrichment of the Dataset, and usage of the dataset in recommender systems. Considering that a lot of167

information is still available only in textual form, the submitted approaches can not only deal with the168

specific character of structured data. The aim for further challenges is to combine solutions for processing169

both structured and unstructured information from distributed datasets.170

2.1.5 LinkedUp171

The LinkedUp challenge was run by the LinkedUp project21 since 2014. The main purpose of the172

project was to push educational organizations to make their data publicly available on the Web. One of173

the activities towards this purpose was to organize the LinkedUp Challenge. The three editions of the174

challenge focused on three different levels of maturity: demo prototypes and applications, innovative175

tools and applications, and mature data-driven applications. Participants were asked to submit demos of176

tools that analyze and/or integrate open Web data for educational purposes. For all the above challenges,177

the participants were asked to submit a scientific paper along with their tool and dataset.178

d’Aquin et al. (2014) present lessons learned from the LinkedUp project (Linking Web Data for179

Education). However, their paper provides a summary of the outcomes of the project, including a180

summary of the LinkedUp Challenge, rather than a systematically structured account of lessons learned.181

2.1.6 Dialog State Tracking Challenge (DSTC)182

The challenge series review that is most closely related to ours in its methodology has been carried out by183

Williams et al. (2016) over a challenge series from a field of computer science that is related to semantics184

but not to the Web: the Dialog State Tracking Challenge (DSTC22) on “correctly inferring the state of [a]185

conversation [. . . ] given all of the dialog history”. Like our review, the one of DSTC is based on three186

editions of a challenge, each of which built on its predecessor’s results, and it presents the definition of187

the challenge’s tasks and the datasets used. Like we do in Section 4, they provide a structured overview of188

the submissions to the DSTC challenges. However, the focus of their review is on the evolution of tools in189

their domain of dialog state tracking, whereas our review additionally covers lessons learned for challenge190

design (cf. Section 3), besides tools in the domain of Semantic publishing.191

2.1.7 Other related works192

There are further related works and challenges that we consider out of the scope, as they are not focused193

on Linked Data sets. For example, the AI Mashup Challenge23 as a part of the ESWC conference194

focused on innovative mashups, i.e. web applications combining multiple services and datasets, that were195

evaluated by a jury. Information Retrieval campaigns are a series of comparative evaluation methods that196

originate from the 1960s and are used to compare various retrieval strategies or systems. As an example197

of such campaigns SemEval (Semantic Evaluation)24 is one of the ongoing series of evaluations of198

computational semantic analysis systems with a focus on Textual Similarity and Question Answering and199

Sentiment Analysis (Clough and Sanderson (2013)). The Computational Linguistics Scientific Document200
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Summarization Shared Task (CL-SciSumm)25 is based on a corpus of annotated documents; tasks focus on201

correctly identifying the underlying text that a summary refers to, but also on generating summaries.202

Table 1. Semantic Web Evaluation Challenges

Abbreviation Challenge Years

SemPub Semantic Publishing Challenge 2014, 2015, 2016

CLSA (Concept-Level) Sentiment Analysis Challenge 2014, 2015, 2016

RecSys Linked Open Data-Enabled Recommender System Challenge 2014, 2015

OKE Open Knowledge Extraction Challenge 2015, 2016

SAQ Schema-agnostic Queries over Linked Data 2015

QALD Open Challenge on Question Answering over Linked Data 2016

Top-K Top-K Shortest Path in Large Typed RDF Graphs Challenge 2016

2.1.8 Semantic Web Evaluation Challenges203

The Semantic Web Evaluation Challenges, including our Semantic Publishing Challenge, aim at de-204

veloping a set of common benchmarks and establish evaluation procedures, tasks and datasets in the205

Semantic Web field. They are organized as an official track of the ESWC Semantic Web Conference,206

which introduces common standards for its challenges, e.g., common deadlines for publishing the training207

and evaluation datasets. The purpose of the challenges is to showcase methods and tools on tasks common208

to the Semantic Web and adjacent disciplines, in a controlled setting involving rigorous evaluation. Each209

Semantic web Evaluation Challenge is briefly described here and all of them are summarized at Table 1.210

Concept-Level Sentiment Analysis Challenge The Concept-Level Sentiment Analysis Challenge211

(CLSA) focuses on semantics as a key factor for detecting the sentiment of a text, rather than just performing212

a lexical analysis of text; cf. Reforgiato Recupero and Cambria (2014) and Reforgiato Recupero et al.213

(2015). Participants are asked to use Semantic Web technology to improve their sentiment analysis system214

and to measure the performance of the system26 within the Sentiment Analysis track of the SEMEVAL215

2015 workshop27. An automatic evaluation tool28 was applied to the submissions; it was made available216

to the participants before their submission. In the second edition, participants were asked to submit a217

concept-level sentiment analysis engine that exploited linked datasets such as DBpedia.218

Linked Open Data-Enabled Recommender Systems Challenge The Linked Open Data-Enabled219

Recommender Systems Challenge (Di Noia et al., 2014) was designed with two main goals: i) establish220

links between the two communities of recommender systems and Semantic Web, ii) develop content-based221

recommendation systems using interlinking and other semantic web and technologies. The first edition222

featured three independent tasks related to a book recommendation use case. While the first edition was223

successful, the second edition was canceled because it had no participants.224

Open Knowledge Extraction Challenge The Open Knowledge Extraction Challenge (OKE) focuses on225

content extraction from textual data using Linked Data technology (Nuzzolese et al., 2015a). The challenge226

was divided into two sub-tasks29 focusing on entity recognition and entity typing. The participants of227

the challenge were the developers of four different well-known system in this community. The three228

defined tasks were focused on a) entity recognition, linking and typing for knowledge base population,229

b) entity typing for vocabulary and knowledge Base enrichment and c) Web-scale knowledge extraction230

by exploiting structured annotation. The submissions were evaluated using two different methods: i)231

using datasets for training purposes and for evaluating the performance of the submitted approaches, ii)232

establishing an evaluation framework to measure the accuracy of the systems. The applications of task 1233

and 2 were published as web services with input/output provided in the NLP Interchange Format NIF30.234

Schema-Agnostic Queries over Linked Data Challenge The Schema-Agnostic Queries over Linked235

Data Challenge (SAQ) was designed to invite schema-agnostic query approaches and systems (Freitas236

and Unger, 2015). The goal of this challenge is to improve querying approaches over complex databases237

with large schemata and to relieve users from the need to understand the database schema. Tasks were238

defined for two types of queries: schema-agnostic SPARQL queries and schema-agnostic keyword-based239

queries. Participants were asked to submit the results together with their approach without changing the240
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query syntax but with different vocabularies and structural changes. A gold standard dataset was used to241

measure precision, recall and F1-score.242

2.2 Semantic Publishing Challenge: 2014–2016243

In this section, we briefly summarize the history of the Semantic Publishing Challenge to provide the244

necessary background for the following discussion. More detailed reports for each edition have been245

published separately by Lange and Di Iorio (2014), Di Iorio et al. (2015), and Dimou et al. (2016).246

We sought a way to challenge the semantic publishing community to accomplish tasks whose results247

could be compared in an objective way. After some preliminary discussion, we focused on information248

extraction tasks. The basic idea was to provide as input some scholarly papers – in multiple formats – and249

some queries in natural language. Participants were asked to extract data from these papers and to publish250

them as an RDF dataset that could be used to answer the input queries. The best performing approach251

was identified automatically by comparing the output of the queries in the produced datasets against a252

gold standard, and by measuring precision and recall. Our selection of queries was motivated by quality253

assessment scenarios complementary to the traditional metrics based on counting citations: how can the254

extracted information serve as indicators for the quality of scientific output such as publications or events.255

The same motivation, structure and evaluation procedure have been maintained in the following years,256

with some improvements and extensions.257

All challenge’s series’ tasks (Section 2.2.1), the input to the tasks, namely the training and evaluation258

datasets (Section 2.2.2), the output, namely the submitted solutions and the produced dataset (Section 2.2.3)259

and how their evaluation was conducted (Section 2.2.4) are briefly explained below.260

2.2.1 Tasks Evolution261

Table 2 summarizes the tasks’ full history. For each year and each task, we highlight the data source and262

the format of the input files, along with a short description of the task and a summary on the participation.263

2014 edition tasks. The first edition had two main tasks (Task 1 and Task 2) and an open task (Task 3;264

see Lange and Di Iorio (2014) for full details and statistics of this challenge’s edition).265

For Task 1, the participants were asked to extract information from selected CEUR-WS.org workshop266

proceedings volumes to enable the computation of indicators for the workshops’ quality assessment.267

The input files were HTML tables of content using different levels of semantic markup, as well as PDF268

full text. The participants were asked to answer twenty queries. For Task 2, the input dataset included269

XML-encoded research papers, derived from the PubMedCentral and Pensoft Open Access archives.270

The participants were asked to extract data about citations to assess the value of articles, for instance by271

considering citations’ position in the paper, their co-location with other citations, or their purpose. In total,272

they were asked to answer ten queries. Dataset and queries were completely disjoint from Task 1.273

After circulating the call for submissions, we received feedback from the community that mere274

information extraction, even if motivated by a quality assessment use case, was not the most exciting task275

related to the future of scholarly publishing, as it assumed a traditional publishing model. Therefore, to276

address the challenge’s primary target, i.e. ‘publishing’ rather than just ‘metadata extraction’, we widened277

the scope by adding an open task (Task 3). Participants were asked to showcase data-driven applications278

that would eventually support publishing. We received a good number of submissions; winners were279

selected by a jury.280

2015 edition tasks. In 2015 we were asked to include only tasks that could be evaluated in a fully281

objective manner, and thus we discarded the 2014’s edition open task (Task 3).282

While Task 1 queries remained largely stable from 2014 to 2015, the queries for Task 2 changed. We283

transformed Task 2 into a PDF mining task, instead of XML, and thus moved all PDF-related queries284

there. The rationale was to differentiate tasks on the basis of the competencies and tools required to solve285

them. Since the input format was completely new and we expected different teams to participate (as286

actually happened), we wanted to explore new areas and potentially interesting information. In fact, we287

asked participants to extract data not only on citations but also on affiliations and fundings. The number of288

queries remained unchanged (ten in total). We also decided to use the same data source for both tasks, and289

to make them interplay. CEUR-WS.org data has become the central focus of the whole Challenge, for two290

reasons: on the one hand, the data provider (CEUR-WS.org) takes advantage of a broader community that291

builds on its data, which, before the Semantic Publishing Challenges, had not been available as Linked292
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Table 2. Semantic Publishing Challenge Evolution from 2014 to 2016

2014 edition 2015 edition 2016 edition

Task 1 Task Extracting data on

workshops history

and participants

Extracting data on

workshops history

and participants

Extracting data on

workshops history

and participants

Source CEUR-WS.org

proceedings volumes

CEUR-WS.org

proceedings volumes

CEUR-WS.org

proceedings volumes

Format HTML and PDF HTML HTML

Solutions 3 4 0

Awards
best performance

innovation

best performance

innovation

–

Decision – chairs’ assessment chairs’ assessment

Task 2 Task Extracting data on

citations

Extracting data on

citations,

affiliations, fundings

Extracting data on

internal structure,

affiliations, fundings

Source PubMed CEUR-WS.org CEUR-WS.org

Format XML PDF PDF

Solutions 1 6 5

Awards – best performance

most innovative

best performance

most innovative

Decision – chairs’ assessment chairs’ assessment

Task 3 Task Open task:

showcasing semantic

publishing applications

Interlinking

cross-dataset entities

Interlinking

cross-dataset entities

cross-task entities

Source – CEUR-WS.org, Colinda

DBLP, Springer LD

Lancet, SWDF

CEUR-WS.org, Colinda

DBLP, Springer LD

Format – RDF RDF

Solutions 4 0 0

Awards most innovative

(jury assessment)

– –
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Data31. On the other hand, data consumers gain the opportunity to assess the quality of scientific venues293

by taking a deeper look into their history, as well as the quality of the publications.294

In 2015, we also introduced a new Task 3. Instead of being an open task, Task 3 was focused295

on interlinking the dataset produced by the winners of Task 1 from the 2014 edition of the Semantic296

Publishing Challenge with related datasets in the Linked Data Cloud.297

2016 edition tasks. The tasks of the 2016 edition were designed to ensure continuity and to allow298

previous participants to use and refine their tools.299

In particular, Task 1 was unchanged except for some minor details on queries. Task 2 was still on300

PDF information extraction but queries were slightly changed: considering the interest and results of the301

participants in the past, we did not include citations any more. Rather, we added some queries on the302

identification of the structural components of the papers (table of contents, captions, figures and tables)303

and maintained queries on funding agencies and projects. In total, we had ten queries in 2016 as well.304

Task 3 remained the same but it was repurposed. Instead of only aiming for cross-dataset links305

between the dataset produced by the Task 1 winners of the previous edition of the challenge and other,306

external datasets, Task 3 now focused on interlinking the datasets produced by the winners of Task 1 and307

Task 2 of the 2015 edition. Thus, the task aimed not only at cross-dataset but also at cross-task links: the308

goal was to link entities identified in the CEUR-WS.org website with the same entities that were extracted309

from the proceedings papers. Moreover, the number of external datasets was reduced.310

2.2.2 Input: Training and Evaluation Datasets311

In this section we give an overview of the datasets used for the above mentioned tasks. These datasets were312

incrementally refined and, as discussed below in Section 3.2.1, some valuable indications can be taken313

from their analysis. For each task, and for each year, we published two datasets: (i) a training dataset (TD)314

on which the participants could test and train their extraction tools and (ii) an evaluation dataset (ED)315

made available a few days before the final submission and used as input for the final evaluation.316

Training and Evaluation dataset for Task 1. The CEUR-WS.org workshop proceedings volumes317

served as the source for selecting the training and evaluation datasets of Task 1 in all challenge editions.318

In this data source, which included data spanning over 20 years, workshop proceedings volumes were319

represented in different formats and at different levels of encoding quality and semantics. An HTML 4320

main index page32 links to all workshop proceedings volumes, which have HTML tables of contents and321

contain PDF or PostScript full texts. A mixture of different HTML formats (no semantic markup at all,322

different versions of microformats, RDFa) were chosen for both the training and evaluation datasets. The323

training dataset comprised all volumes of several workshop series, including, e.g., the Linked Data on the324

Web workshop at the WWW conference, and all workshops of some conferences, e.g., of several editions325

of ESWC. In 2014 and 2015, the evaluation dataset was created by adding further workshops on top of326

the training dataset. To support the evolution of extraction tools, the training datasets of 2015 and 2016327

were based on the unions of the training and evaluation datasets of the previous years. In 2015 and 2016,328

the Task 1 dataset of the previous year served as an input to Task 3.329

Training and Evaluation dataset for Task 2. In 2014, the datasets for Task 2 included XML files330

encoded in JATS33 and TaxPub34, an official extension of JATS customized for taxonomic treatments (Cat-331

apano, 2010). The training dataset consisted of 150 files from 15 journals, while the evaluation dataset332

included 400 papers and was a superset of the training dataset. In 2015, we switched to PDF information333

extraction: the training dataset included 100 papers taken from some of the workshops analyzed in Task334

1, while the evaluation dataset included 200 papers from randomly selected workshops (uniform to the335

training dataset). In 2016, we reduced the number of papers increasing the cases for each query. Thus, we336

included 50 PDF papers in the training and 40 in the evaluation dataset. Again, the papers were distributed337

in the same way and used different styles for headers, acknowledgments and structural components.338

Training and Evaluation dataset for Task 3. The training dataset for Task 3 consists of the CEUR-339

WS.org dataset produced by the 2014 winning tool of Task 135, COLINDA36, DBLP37, Lancet38, SWDF39,340

and Springer LD40 in 2015 and the CEUR-WS.org datasets produced by the 2015 winning tools of Task341

141 and Task 242, of COLINDA, DBLP, and Springer LD in 2016.342
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Table 3. Task 1 solutions: their primary analysis methods, methodologies, implementations basis and

evaluation results.

Solution 1.1 Solution 1.2 Solution 1.3 Solution 1.4

Publications Kolchin et al. (2015) Heyvaert et al. (2015) Ronzano et al. (2015) Milicka and Burget (2015)

Kolchin and Kozlov (2014) Dimou et al. (2014) Ronzano et al. (2014) –

Primary analysis

structure-based X X

syntactic-based X X

linguistic-based X

layout-based X

Methodology

method Crawling
Generic solution for

abstracted mappings

Linguistic and

structural analysis

Visual layout multi-aspect

content analysis
case-specific X X(partly) X(partly)

template-based X X

NLP/NER X X

Implementation

basis n/a RML GATE FITLayout

language Python Java Java Java, HTML

rules language XPath RML, CSS JAPE HTML,CSS

code/rule separation X X

regular expressions X X X X

external services X X

open source X X X

license MIT MIT – GPL-3.0

Evaluation

precision improvement 11.1% 11.4% 10.7% –

recall improvement 11.3% 11.3% 10.9% –

best performing X(2014) X(2015)

most innovative X(2014) X(2015)9
/3
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Table 4. Task 1 and 2 solutions: the vocabularies used to annotate the data.

Sol 1.1 Sol 1.2 Sol 1.3 Sol 1.4 Sol 2.1 Sol 2.2 Sol 2.3 Sol 2.4 Sol 2.5 Sol 2.6 Sol 2.7 Sol 2.8

bibo93
X X X X X

co43 X X

DBO4.2.2 X X X X X

DC102
X X X X X X X

DCterms103 X X X X X

event107 X X

FOAF104 X X X X X X X X

schema109
X X

SKOS44 X

SPAR95 X X X X X X

BiRO X X

CiTO X

DoCO X X X

FaBiO X X X X X

FRAPO X X

FRBR X

PRO X X X X

SWC94 X X X

SWRC92 X X X X X X

timeline108 X X

vcard106
X X X

custom X X X X

1
0
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Table 5. Statistics about the model (Task 1 – 2014 and 2015 editions)

Solution 1.1 Solution 1.2 Solution 1.3 Solution 1.4

year 2014 2015 2014 2015 2014 2015 2015

Conferences swc:OrganizedEvent swc:OrganizedEvent swc:Event bibo:Conference swrc:Event swrc:Conference swrc:ConferenceEvent

Workshops bibo:Workshop bibo:Workshop swc:Event bibo:Workshop swrc:Event swrc:Workshop swrc:Section

Proceedings swrc:Proceedings bibo:Proceeding bibo:Volume bibo:Proceeding swrc:Proceedings swrc:Proceedings swrc:Proceedings

Papers swrc:InProceedings swrc:InProceedings,

foaf:Document

bibo:Article swrc:InProceedings swrc:Publication swrc:Publication swc:Paper

Persons foaf:Agent foaf:Person foaf:Person foaf:Person foaf:Person foaf:Person foaf:Person

1
1
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5
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2.2.3 Output: Solutions and Datasets produced343

There were four distinct solutions in total for Task 1 during the three editions of the challenge, eight344

distinct solutions in total for Task 2 and none for Task 3 during the last two editions. All solutions for345

each task are briefly summarized here.346

Task 1. There were four distinct solutions proposed to address Task 1 in 2014 and 2015 editions of the347

challenge. Three participated in both editions, whereas the fourth solution participated only in 2015. All348

solutions are briefly introduced here and summarized in Table 3, Table 4, Table 5, Table 6, and Table 7.349

Table 3 provides details about the methodologies, approach and implementation each solution followed.350

Table 4 summarizes the model and vocabularies/ontologies each solution used (both for Task 1 and Task351

2), whereas Table 7 provides statistics regarding the dataset schema/entities and triples/size each solution352

produced (again both for Task 1 and Task 2). Last, Table 5 summarizes the data model each solution353

considered and Table 6 the number of instances extracted and annotated per concept for each solution.354

Table 6. Number of entities per concept for each solution (Task 1 – 2014 and 2015 editions)

Solution 1.1 Solution 1.2 Solution 1.3 Solution 1.4

year 2014 2015 2014 2015 2014 2015 2015

Conferences 21 46 46 5 47

Workshops 132 252 14 1,393 1,516 127 198

Proceedings 126 243 65 1,392 124 202 1,353

Papers 1,634 3,801 971 2,452 1,110 720 2,470

Persons 2,854 6,700 202 6,414 2,794 3,402 11,034

Table 7. Statistics about the produced dataset (Task 1 – 2014 and 2015 editions)

Solution 1.1 Solution 1.2 Solution 1.3 Solution 1.4

year 2014 2015 2014 2015 2014 2015 2015

dataset size 1.5M 25M 1.7M 7.2M 2.7M 9.1M 9.7M

# triples 32,088 177,752 14,178 58,858 60,130 62,231 79,444

# entities 4,770 11,428 1,258 11,803 9,691 11,656 19,090

# properties 60 46 43 23 45 48 23

# classes 8 30 5 10 10 19 6

Solution 1.1 Kolchin et al. (2015) and Kolchin and Kozlov (2014) presented a case-specific crawling355

based approach for addressing Task 1. It relies on an extensible template-dependent crawler that uses356

sets of special predefined templates based on XPath and regular expressions to extract the content from357

HTML and convert it in RDF. The RDF is then processed to merge resources using fuzzy-matching. The358

use of the crawler turns the system tolerant to invalid HTML pages. This solution improved its precision359

in 2015 as well the richness of the data model.360

Solution 1.2 Heyvaert et al. (2015) and Dimou et al. (2014) exploited a generic tool for generating RDF361

data from heterogeneous data. It uses the RDF Mapping Language (RML)45 to define how data extracted362

from CEUR-WS.org Web pages should be semantically annotated. RML extends R2RML46 to express363

mapping rules from heterogeneous data to RDF. CSS3 selectors47 are considered to extract the data from364

the HTML pages. The RML mapping rules are parsed and executed by the RML Processor48. In 2015 the365

solution reconsidered its data model and was extended to validate both the mapping documents and the366

final RDF, resulting in an overall improved quality dataset.367
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Solution 1.3 Ronzano et al. (2015, 2014) designed a case-specific solution that relies on chunk-based368

and sentence-based Support Vector Machine (SVM) classifiers which are exploited to semantically369

characterize parts of CEUR-WS.org proceedings textual contents. Thanks to a pipeline of text analysis370

components based on the GATE Text Engineering Framework49, each HTML page is characterized371

by structural and linguistic features: these features are then exploited to train the classifiers on the372

ground-truth provided by the subset of CEUR-WS.org proceedings with microformat annotations. A373

heuristic-based annotation sanitizer is applied to fix classifiers imperfections and interlink annotations.374

The produced dataset is also extended with information retrieved from external resources.375

Solution 1.4 Milicka and Burget (2015) presented an application of the FITLayout framework50. This376

solution participated in the Semantic Publishing Challenge only in 2015. It combines different page377

analysis methods, i.e. layout analysis and visual and textual feature classification to analyze the rendered378

pages, rather than their code. The solution is quite generic but requires domain/case-specific actions in379

certain phases (model building step).380

Task 2 There were eight distinct solutions proposed to address Task 2 in the 2015 and 2016 editions381

of the challenge. Three participated in both editions, three only in 2015 and two only in 2016. As the382

definition of Task 2 changed fundamentally from 2014 to 2015, the only solution submitted for Task 2 in383

2014 (Bertin and Atanassova, 2014) is not comparable to the 2015 and 2016 solutions and therefore not384

discussed here. All solutions for Task 2 – except for the one of 2014 – are briefly introduced here and385

summarized in Table 4, Table 8, Table 9, Table 10 and Table 11. Table 9 and Table 10 provide details386

about the methodologies and approach each solution followed. Table 11 summarizes details regarding387

the implementation and its components each solution employed to address Task 2. Table 4 summarizes388

the model and vocabularies/ontologies each solution used (both for Task 1 and Task 2), whereas Table 8389

provides statistics regarding the dataset schema/entities and triples/size each solution produced (again390

both for Task 1 and Task 2).391

Table 8. Statistics about the produced dataset (Task 2 – 2015 and 2016 editions)

Sol 2.1 Sol 2.2 Sol 2.3 Sol 2.4 Sol 2.5 Sol 2.6 Sol 2.7 Sol 2.8

year 2015 2015 2016 2016 2015 2015 2015 2016 2016

dataset size 2.6M 1.5M 285 184K 3.6M 2.4M 17M 152 235

# triples 21,681 10,730 2,143 1,628 15,242 12,375 98,961 1,126 1,816

# entities 4,581 1,300 334 257 3,249 2,978 19,487 659 829

# properties 12 23 23 15 19 21 36 571 23
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Table 9. Task 2 solutions: their primary analysis methods, their methodologies (i) in general as well as with respect to

(ii) extraction, (iii) text recognition and (iv) use of machine learning techniques, and evaluation results.

Solution 2.1 Solution 2.2 Solution 2.3 Solution 2.4 Solution 2.5 Solution 2.6 Solution 2.7 Solution 2.8

Publications Tkaczyk (2015) Klampfl (2016) Nuzzolese (2016) Sateli (2016) Kovriguina (2015) Ronzano (2015) Ahmad (2016) Ramesh (2016)

– Klampfl (2015) Nuzzolese (2015) Sateli (2015) – – – –

Primary Analysis

structure-based X X X X X

linguistic-based X X X X X X

presentation-based X X X X

Methodology
workflow parallel

pipelines

parallel

pipelines
single pipeline

iterative

approach
single pipeline single pipeline single pipeline

layered

approach

external services X X X X

Extraction

PDF-to-XML X X X(2016) X X

PDF-to-HTML X

PDF-to-text X X(2015) X X

Machine Learning

supervised X X X X X X

unsupervised X X

CRF X X X

Text recognition

NLP/NER X X X X X

heuristics X X X X X X X X

regEx X X X X X X X

Evaluation

best performing X(2015) X (2016)

most innovative X (2016) X (2015)

1
4

/3
5
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Table 10. Task 2 solutions: how they address different subtasks to accomplish Task 2. n/a stands for subtasks that were not

required the year the solution participated in the challenge. 7 stands for subtasks that were not addressed by a certain solution.

Information

to extract Solution 2.1 Solution 2.2 Solution 2.3 Solution 2.4 Solution 2.5 Solution 2.6 Solution 2.7 Solution 2.8

document

structure

enhanced

docstrum

max entropy,

merge & split,

clustering

NLP to break

the text down

in sections

& sentences

span between

Gazetteer’s

segment

headers

font characteristics,

text position

rule-based iterative

PDF analysis

heuristics on

titles, capital-case

and style

level I & II

CRF

fragments’

classification

SVM supervised ML Stanford

CoreNLP

& NLTK

Gazetteer font-based

blocks & sorting

structural features,

chunk-& sentence-

based SVM

pattern-matching level II

CRF

authors
SVM

(LibSVM)

unsupervised ML

& classification

heuristics,

NER,

CoreNLP

Gazetteer’s

person

first names

e-mail 1st part

frequent patterns &

string comparison

layout info,

ANNIE,

external repos

from plain text:

start/end identifiers

return character

level III

CRF

affiliations CRF unsupervised ML

& classification

NER,

statistical rules,

patterns

organizations

names

rules patterns

e-mail 2nd part

frequent patterns &

string comparison

ANNIE,

external repos

from plain text:

start/end identifiers

return character

level III CRF,

affiliation

markers,

POS, NER

funding 7 NER, sequence

classification

‘Acknowledg-

ments’ section,

regEx, number

or identifier

‘Acknowledg-

ments’ section,

upper-initial word

token or name of

organization

‘Acknowledg-

ments’ section,

string-matching:

‘support|fund|

sponsor’, etc.

manual

JAPE

grammars

‘Acknowledg-

ments’ section,

string matching:

‘the’. . . ‘project’, etc.

level II

CRF

references CRF geometrical

block

segmentation

ParseCit

CrossRef

hand-crafting

rules for

multiple cases

Heuristics on

‘References’

section

external

services

n/a level III CRF

(even though

n/a in 2016)

ontologies 7 n/a match named

entities to

indexed

ontologies

root tokens of

ontology names

‘Abstract’ stop-list

of acronyms
JAPE grammars n/a n/a

tables &

figures

n/a max entropy,

merge & split
7 ‘Table’|

‘Figure|Fig’

trigger words

n/a n/a heuristics on

captions,

string matching

level II

CRF

supplementary

material

n/a max entropy,

merge & split
7 heuristics on links n/a n/a

heuristics on links

and string matching
7

1
5

/3
5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2616v1 | CC BY 4.0 Open Access | rec: 5 Dec 2016, publ:



Table 11. Implementation details for Task 2 solutions

Solution 2.1 Solution 2.2 Solution 2.3 Solution 2.4 Solution 2.5 Solution 2.6 Solution 2.7 Solution 2.8

Implementation language

C++ X

Java X X X X X X X

Python X X X

PDF character extraction
Apache PDFBox51

X X X

iText52 X

Poppler53 X

PDFMiner54
X X

PDFX55 X(2016) X X

Xpdf56 X(2015)

Intermediate representation

HTML X

JSON X

text X X X X

XML X(NLM JATS) X X X(NLM JATS)

External components

CrossRef API X X

DBpedia Spotlight57
X X

GATE X X X

ANNIE58 X X

FreeCite X X

others

GRMM59,

LibSVM60,

Mallet61

crfsuite62

OpenNLP63,

ParsCit64,

FRED,
Stanford

CoreNLP
65,

NLTK66,

(WordNet67,

BabelNet68)

DBpedia

SPARQL

end-point

Grab spider69,

BeautifulSoup70

Bibsonomy71,

FundRef72

EDITpad

Pro73

Stanford

NERTagger
74,

CRF++75,

CoNLL76,

JATS2RDF77

(Open Source) License AGPL-3.0 AGPL-3.0 not specified LGPL-3.078 MIT not specified not specified not specified

1
6

/3
5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2616v1 | CC BY 4.0 Open Access | rec: 5 Dec 2016, publ:



Solution 2.1 Tkaczyk and Bolikowski (2015) relied on CERMINE79, an open source system for392

extracting structured metadata and references from scientific publications published as PDF files. It has a393

loosely captured architecture and a modular workflow based on supervised and unsupervised machine-394

learning techniques, which simplifies the system’s adaptation to new document layouts and styles. It395

employs an enhanced Docstrum algorithm for page segmentation to obtain the document’s hierarchical396

structure, Support Vector Machines (SVM) to classify its zones, heuristics and regular expressions for397

individual and Conditional Random Fields (CRF) for affiliation parsing and thus to identify organization,398

address and country in affiliation. Last, K-Means clustering was used for reference extraction to divide399

references zones into individual reference strings.400

Solution 2.2 Klampfl and Kern (2015, 2016) implemented a processing pipeline that analyzes a PDF401

document structure incorporating a diverse set of machine learning techniques. To be more precise, they402

employ unsupervised machine learning techniques (Merge-&-Split algorithm) to extract text blocks and403

supervised (Max Entropy and Beam search) to extend the document’s structure analysis and identify sec-404

tions and captions. They combine the above with clustering techniques to obtain the article’s hierarchical405

table of content and classify blocks into different meta-data categories. Heuristics are applied to detect the406

reference section and sequence classification to categorize the tokens of individual references to strings.407

Last, Named Entity Recognition (NER) is used to extract references to grants, funding agencies, projects,408

figure and table captions.409

Solution 2.3 Nuzzolese et al. (2015b, 2016) relied on the Metadata And Citations Jailbreaker (MACJa –410

IPA) in 2015, which was extended to the Article Content Miner (ACM) in 2016. The tool integrates hybrid411

techniques based on Natural Language Processing (NLP, Combinatory Categorial Grammar, Discourse412

Representation Theory, Linguistic Frames), Discourse Reference Extraction and Linking, and Topic413

Extraction. It also employs heuristics to exploit existing lexical resources and gazetteers to generate414

representation structures. Moreover, it incorporates FRED80, a novel machine reader, and includes415

modules to query external services to enhance and validate data.416

Solution 2.4 Sateli and Witte (2015, 2016), relying on LODeXporter81, proposed an iterative rule-based417

pattern matching approach. The system is composed of two modules: (i) a text mining pipeline based418

on the GATE framework to extract structural and semantic entities. It leverages existing NER-based419

text mining tools to extract both structural and semantic elements, employing post-processing heuristics420

to detect or correct the authors affiliations in a fuzzy manner, and (ii) a LOD exporter, to translate the421

document annotations into RDF according to custom rules.422

Solution 2.5 Kovriguina et al. (2015) relies on a rule-based and pattern matching approach, implemented423

in Python. Some external services are employed for improving the quality of the results (for instance,424

DBLP for validating author’s data), as well as regular expressions, NLP methods and heuristics for HTML425

document style and standard bibliographic description. It also relies on an external tool to extract the426

plain text from PDFs.427

Solution 2.6 Ronzano et al. (2015) extended their framework used for Task 1 (and indicated as Solution428

1.3 above) to extract data from PDF as well. Their linear pipeline includes text processing and entity429

recognition modules. It employs external services for mining PDF articles and heuristics to validate,430

refine, sanitize and normalize the data. Moreover, linguistic and structural analysis based on chunk-based431

& sentence-based SVM classifiers are employed, as well as enrichment by linking with external resources432

such as Bibsonomy, DBpedia Spotlight, DBLP, CrossRef, FundRef & FreeCite.433

Solution 2.7 Ahmad et al. (2016) proposed a heuristic-based approach that uses a combination of434

tag-/rule-based and plain text information extraction techniques combined with generic heuristics and435

patterns (regular expressions). Their approach identifies patterns and rules from integrated formats.436

Solution 2.8 Ramesh et al. (2016) proposed a solution based on a sequential three-level Conditional437

Random Fields (CRF) supervised learning approach. Their approach follows the same feature list as438

Klampfl and Kern (2015). However, they extract PDF to an XML that conforms to the NLM JATS DTD,439

and generate RDF using an XSLT transformation tool dedicated for JATS.440
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2.2.4 Tasks Evaluation441

The evaluation of the submitted solutions was conducted in a transparent and objective way by measuring442

precision and recall. To perform the evaluation, we relied on (i) a gold standard and (ii) an evaluation tool443

which was developed to automate the procedure.444

Gold standard The gold standard used for each task’s evaluation was generated manually. It consisted445

of a set of CSV files, each corresponding to the output of one of the queries used for the evaluation.446

Each file was built after checking the original sources – for instance HTML proceedings in case of447

Task 1 and PDF papers for Task 2 – and looking for the output of the corresponding query; then, it448

was double-checked by the organizers. Furthermore, we also made available the gold standard to the449

participants (after their submission) so as they have the chance to report inaccuracies or inconsistencies.450

The final manually-checked version of the CSV files was used as input for the evaluation tool.451

Evaluation tool The evaluation tool82 compares the queries output provided by the participants (in452

CSV) against the gold standard and measures precision and recall. It was not made available to the453

participants after the 2014 edition, it was only made available after the 2015 edition, while it was made454

available already by the end of the training for the 2016 edition. This not only increased transparency but455

also allowed participants to refine their tools and address output imperfections, increasing this way the456

quality of their results.457

3 BEST PRACTICES FOR CHALLENGE ORGANIZATION458

In this section we discuss lessons learned from our experience in organizing the challenge and from459

(even unexpected) aspects that emerged while running the challenge. This section presents the lessons460

learned by looking at the solutions and data produced by the participants. We have grouped the lessons in461

categories for clarity, even though there is some overlap between them.462

Moreover, we validated our lessons learned with respect to other Semantic Web Evaluation Challenges,463

aiming to assess whether the lessons learned from the Semantic Publishing Challenge are transferable to464

their settings too. Besides the Semantic Publishing Challenge, another five challenges are organized in465

the frame of the Semantic Web Evaluation Challenges track at the ESWC Semantic Web Conference (cf.466

Section 2.1). To validate our challenge’s lessons learned, we conducted a survey, which we circulated467

among the organizers of the different Semantic Web Evaluation Challenges. One organizer per challenge468

filled in the questionnaire, providing representative answers for the respective challenge. Based on our469

survey’s results, we distill generic best practices that could be applied to similar events. Our lessons470

learned are outlined in this section, together with their validation based on the other challenges, as well as471

the corresponding distilled best practices.472

3.1 Lessons learned from defining tasks473

For the Semantic Publishing Challenge, it was difficult to define appealing tasks that bridge the gap be-474

tween building up initial datasets and exploring possibilities for innovative semantic publishing. Therefore,475

as discussed in Section 2.2, we refined the challenge’s tasks over the years according to the participants’476

and organizers’ feedback.477

3.1.1 Task continuity478

Lesson: In the case of the Semantic Publishing Challenge, the first edition’s tasks were well perceived479

by potential participants and all of them had submissions. In the second edition (2015), in fact, the480

challenge was re-organized aiming at committing participants to re-submitting overall improved versions481

of their first edition’s submissions. Results were positive, as the majority of the participants of the first482

edition competed in the second one too. Therefore, task continuity is a key aspect of the Semantic483

Publishing Challenge, whose tasks in every year are broadly the same as the previous year’s edition,484

allowing participants to reuse their tools to adapt to the new call after some tuning.485

Validation: Three of the other four Semantic Web Evaluation challenges have also been organized for486

several times. Table 1 shows the sustainability of the challenges considering recency and regularity of487

revisions over their lifetimes. Task continuity was embraced in all challenges by their participants, who488

not only resubmitted their solutions but also showed continuously improved performance for all three489

challenges that had multiple editions, according to the organizers’ answers to our survey.490
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Best Practice: Tasks should be continued over the course of different editions. Nevertheless, they491

should be adjusted to pose new challenges that allow the authors of previous editions’ submissions492

to participate again in the challenge, thus offering them incentives to improve their solution, without493

excluding though new submissions at the same time.494

3.1.2 Distinct Tasks495

Lesson: The initial goal of the Semantic Publishing Challenge was to explore a larger amount of496

information derived from CEUR-WS.org data and to offer a broad spectrum of alternative options for497

potential participants but, in retrospect, such heterogeneity proved to become a limitation. One of the498

main problems we faced was that some of the queries classified under the same task were cumbersome499

for the participants. For instance, in particular the submissions to Task 2 – extraction from XML and500

PDF – showed an unexpectedly low performance. The main reason, in our opinion, is that the task was501

actually composed of two sub-tasks that required different tools and technologies: some queries required502

participants to basically map data from XML/PDF to RDF, while the others required additional processing503

of the content. Potential participants were discouraged to participate as they only felt competitive for504

the one and not for the other. A sharper distinction between tasks would have been more appropriate.505

In particular, it is important to separate tasks on plain data extraction from those on natural language506

processing and semantic analysis.507

Validation: According to the results of our survey, the Semantic Web Evaluation challenges were508

designed with more than one task, more precisely, on average three tasks per challenge. In addition, all509

the individual tasks of the challenges were defined related to each other but independently at the same510

time, so that participants could take part in all or some of the tasks. Nevertheless, only two challenges511

had submissions for all tasks, while three out of five challenges lacked submissions only for one task.512

All challenges though, according to our survey, split the tasks considering the required competencies to513

accomplish them. Three out of five challenges even distinguish the training dataset used by each task514

to render the different tasks even more distinct. This contributes to enabling participation in certain515

tasks, while more challenging tasks or tasks of different nature are isolated. Thus, participants are not516

discouraged from participating if they are not competent for these parts; they can still participate in the517

tasks where they feel competent.518

Best Practice: Splitting tasks with a clear and sharp distinction of the competencies required to519

accomplish them is a key success factor. Task should be defined taking into consideration the technology,520

tools and skills required to accomplish them.521

3.1.3 Participants involvement522

Lesson: One of the incentives of the challenge’s successive editions was to involve participants in the523

tasks’ definition, because potential tasks or obstacles might be identified more easily, if not intuitively, by524

them. However, even though we collected feedback from previous years’ participants when designing the525

tasks, we noticed that such a preliminary phase was not given enough attention. Even though participants526

provided feedback immediately after the challenge was completed they were not equally eager to give527

feedback when they were asked just before the new edition was launched. Talking to participants, in fact,528

helped us to identify alternative tasks.529

Validation: It is common practice that challenge organizers ask for the participants’ feedback. According530

to our survey three out of four challenges (including Semantic Publishing Challenge) which had more531

than one submission took into consideration the participants’ feedback to adjust the tasks or to define new.532

Best Practice: Exploiting participants feedback and involving them in the task definition creating a533

direct link between different editions is a key success factor. The participants’ early feedback can help to534

identify practical needs and correspondingly shape and adjust tasks. Tasks proposed or emerged from the535

community can be turned into an incentive to participate.536

3.1.4 Community traction537

Lesson: Although the challenge was open to everyone from industry and academia, we originally538

expected participants from the Semantic Web community. However, the submitted solutions include539

participants with completely different research focus areas, even without any Semantic Web background.540

This changed our perception of the core communities in the challenge. In future, one might therefore541

consider defining a cross-domain task, e.g., using a dataset of publications from the biomedical domain.542
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Validation: Evaluating the scientific profiles of participants and the submitted solutions highlights the543

diversity of professions. The participants of Task 2 are mainly active researchers in the fields of NLP544

(Natural Language Processing), Text Mining, and Information Retrieval. Submissions to Task 1 are545

mostly from the Linked Data and semantic publishing communities, addressing various subjects of interest546

such as User Modeling, Library Science, and Artificial Intelligence. This diversity of professions was547

acknowledged while inviting the members of the challenge’s program committee, and during the process548

of assigning them as reviewers to submissions.549

Best Practice: Defining independent tasks and using datasets related to other fields of study can build a550

bridge across disciplines. The use case dataset contains data about computer science publications, and the551

super-event of the Semantic Publishing Challenge series, the ESWC conference, is highly ranked, and552

thus of potential interest to a wide audience, but focused on a dedicated sub-field of computer science.553

This choice of subject potentially restricts the target audience and the publicity of the challenge; however,554

with a slight shift of any of these, it becomes possible to involve other research communities.555

3.2 Lessons learned from building training and evaluation datasets556

The training and output dataset definition are also crucial parts when organizing a challenge. In the557

Semantic Publishing Challenge case, we experimented with (i) maintaining the same training and output558

dataset, as well as the same tasks, as in the case of Task 1, and (ii) modifying the dataset but keeping559

almost the same tasks, as in the case of Task 2 and 3. This way, we bridged the gap between building up560

initial datasets and exploring possibilities for innovative semantic publishing. As mentioned in Section 2.2,561

we refined both the datasets and their corresponding tasks over the years according to the participants’562

and organizers’ feedback.563

3.2.1 Dataset continuity564

Lesson: We noticed benefits of not only continuing the same tasks but also using the same datasets565

across multiple editions of the challenge. In Task 1 of each edition, we evolved training and evaluation566

datasets based on the same data source over the three years. Participants were able to reuse their existing567

tools and extend the previously-created knowledge-bases with limited effort. However, for the other tasks,568

whose datasets were not equally stable, we had to rebuild the competition every year without being able to569

exploit the past experience. Once solutions were submitted for Task 2 though and it was repeated with the570

same dataset in 2016 as in 2015, the Semantic Publishing Challenge immediately gained corresponding571

profit as for Task 1, as the majority of the submitted solutions were resubmitted. This did not happen with572

Task 3, which did not gain traction in the first place and changing the training dataset and tasks did not573

attract submissions. Therefore, the “continuity” lesson is equally applicable to tasks as well as to datasets.574

Validation: Dataset continuity is not as persistent as task continuity for most challenges, but it still575

occurs. To be more precise, most challenges in principle reuse the same datasets across different editions:576

two of the four Semantic Web Evaluation challenges with multiple editions reused the same dataset, while577

the other two did the same except for one of their editions, where a different dataset was considered, albeit578

one of the same nature.579

Best Practice: Same datasets should be continuously reused over the course of different editions.580

Nevertheless, eventually substituting them by another dataset of the same nature, where the same tasks581

and tools are equally applicable, does not harm the challenge.582

3.2.2 Single dataset for all tasks583

Lesson: Similarly, we observed that it is valuable to use the same dataset for multiple tasks. For584

instance, in the Semantic Web Challenge case, completely different datasets were used for Task 1 and 2585

for the first edition, but complementary datasets were used for the same tasks during the second and third586

edition, while Task 3 considered the previous year’s output of Task 1.587

The participants can extend their existing tools to compete for different tasks, with limited effort. This588

also opens new perspectives for future collaboration: participants’ work could be extended and integrated589

in a shared effort for producing useful data. It is also worth highlighting the importance of such uniformity590

for the organizers. It reduces the time needed to prepare and validate data, as well as the risk of errors and591

imperfections. Last but not least, it enables designing interconnected tasks and producing richer output.592
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Validation: All four Semantic Web Evaluation challenges with multiple editions used the same dataset593

or subsets of it for all different tasks of the challenge.594

Best Practice: It is clearly beneficial for the challenge to consider the same dataset for all tasks.595

3.2.3 Exhaustive output dataset description596

Lesson: An aspect that was underestimated in the first editions of the Semantic Publishing Challenge597

was the training and output dataset description. While we completely listed all data sources, we did not598

provide enough information on the expected output: we went into details for the most relevant and critical599

examples, but we did not provide the exact expected output for all cases in the training dataset. Such600

information should have been provided, as it directly impacts the quality of the submissions and helps601

participants to refine their tools.602

Validation: According to the survey results, the other Semantic Web Evaluation challenges seem to603

share the same principle about the exhaustive description of the expected output dataset. To be more604

precise, only one of the Semantic Web Evaluation challenges does not provide a detailed and exhaustive605

description of the expected output.606

Best Practice: Exhaustive and detailed description of both the training and evaluation dataset is required,607

as it affects the submissions’ quality and helps participants to refine their tools.608

3.3 Lessons learned from evaluating results609

All three editions of the Semantic Publishing Challenge shared the same evaluation procedure (see610

Section 2.2.4 for details). However, it presented some weaknesses, especially in the first two editions,611

which we subsequently addressed. Three lessons are derived from the issues that are explained below.612

3.3.1 Entire dataset evaluation613

Lesson: Even though we asked participants to run their tools on the entire evaluation dataset, we614

considered only a subset for the final evaluation. The subset has been randomly selected from clusters615

representing different cases, which participants were required to address. On the one hand, since the616

subset was representative of these cases, we received a fair indication of each tool capabilities. On the617

other hand, some submissions were penalized as their tool could have worked well on other values, which618

were not taken into account for the evaluation. In the second edition, we tried to resolve this issue by619

increasing the number of evaluation queries, without reaching the desired results though, but causing620

instead some additional overhead to the participants. In the third edition, we reduced the number of621

evaluation queries, but we radically increased their coverage to assure that the greatest part of the dataset622

(or even the whole dataset) is covered.623

Validation: Our lesson learned was validated by our survey in this case too. only one of the Semantic624

Web Evaluation challenges does not take into consideration the entire dataset for the evaluation.625

Best Practice: The evaluation method should cover the entire evaluation dataset to be fair, to avoid bias626

and to reinforce submissions to maintain a high quality across the entire dataset.627

3.3.2 Disjoint training and evaluation dataset628

Lesson: During the first two editions of the Semantic Publishing Challenge, the evaluation dataset was629

a superset of the training one. This may have resulted in some over-training of the tools, and caused630

imbalance in the evaluation, as certain tools performed very well for the training dataset but not for the631

entire dataset. In an effort to avoid this, we made the training and evaluation datasets disjoint for the third632

edition of the Semantic Publishing Challenge. It is more appropriate to use completely disjoint datasets,633

as a solution to avoid over-trained tools.634

Validation: Our lesson learned regarding disjoint training and evaluation datasets was validated by the635

other challenge organizers. Only one of the Semantic Web Evaluation challenges considers an evaluation636

dataset which is a subset of the training dataset. All the others consider disjoint training and evaluation637

datasets.638

Best Practice: The training and evaluation dataset should be disjoint to avoid over-trained tools.639
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3.3.3 Available evaluation tool640

Lesson: The evaluation was totally transparent and all participants received detailed feedback about641

their scores, together with links to the open source tool used for the final evaluation. However we were642

able to release the evaluation tool only after the challenge for the last two editions. The evaluation tool643

was not made available after the 2014 edition, it was only made available after the 2015 edition, while644

it was made available by the end of the training for the 2016 edition. It is instead more meaningful to645

make it available during the training phase, as we did for the challenge’s third edition. Participants can646

then refine their tool and improve the overall quality of their output. Moreover, such an approach reduces647

the (negative) impact of output imperfections. Though the content under evaluation was normalized and648

minor differences were not considered as errors, some imperfections were not expected and were not649

handled in advance. Some participants, for instance, produced CSV files with columns in a different650

order or with minor differences in the IRI structure. These all could have been avoided if participants651

had received feedback during the training phase, with the evaluation tool available as a downloadable652

stand-alone application or as a service.653

Validation: Our lesson learned regarding the availability of the evaluation tool was also validated by our654

survey. To be more precise, all the Semantic Web Evaluation challenges make the evaluation tool available655

to the challenge participants. There is only one that does not, but only because there is no evaluation tool.656

Best Practice: The evaluation tool should be made available to the participants as early as possible657

while the participants are still working with the training dataset and fine tuning their approaches.658

3.4 Lessons learned from expected output use and synergies659

In all three editions of the Semantic Publishing Challenge, the potential use of the expected output was660

clearly stated in the call, but not the output dataset license; it was up to the participants to choose one.661

Moreover, the challenge was disseminated and supported thanks to synergies with other events. In this662

section, we outline lessons learned regarding how the expected use of the challenge output and synergies663

reflect on the challenge perspective, also on the participants and their submissions.664

3.4.1 Expected output use665

Lesson: The uppermost goal of the Semantic Publishing challenge was to obtain the best output dataset.666

To achieve that, it is required to identify the best performing tool, namely the tool that actually produces667

the best output dataset. This tool – or a refined version – is subsequently used to generate the RDF668

representation of the whole CEUR-WS.org corpus83. The fact that the submitted tools are expected to be669

reused becomes a critical issue: participants’ submission should not only target the challenge, but they670

should produce an output that is directly reusable. Therefore, it is in fact critical to state how the results of671

the challenge will be eventually used, in order to encourage and motivate participants.672

Validation: Three out of the other four Semantic Web Evaluation challenges do clearly mention the673

expected output use, as the Semantic Publishing Challenge does too.674

Best Practice: The expected output use and conditions should be explicitly specified in advance.675

3.4.2 License676

Lesson: The incentive to organize the Semantic Publishing Challenge was to reuse the output dataset.677

Thus, having the permission to do so, which is specified through the dataset license, but also to reuse678

the tool that produces this output to systematically generate the CEUR-WS.org dataset, is of crucial679

importance. Particular attention should be given to the licensing of the output produced by the participants.680

We did not explicitly say which license the submitted solutions should have: we just requested from681

participants to use an open license on data (at least as permissive as the source of data) and we encouraged682

open-source licenses on the tools (but not mandatory). Most of the participants did not declare which683

exact license applies to their data. This is an obstacle for its reusability: especially when data come from684

heterogeneous sources (e.g., paper full texts copyrighted by the individual authors, as well as metadata685

copyrighted by the workshops’ chairs) and are heterogeneous in content and format, as in the case of686

CEUR-WS.org, it is very important to provide an explicit representation of the licensing information.687
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Validation: Like the Semantic Publishing Challenge, none of the other Semantic Web Evaluation688

Challenges specified the tool or output dataset license. As a result, none of the submitted solutions689

provided any licensing information, apart from one challenge where some of the submitted solutions690

provided licensing information. Even though all Semantic Web Evaluation Challenges follow the same691

practice of not specifying the output dataset potential license, it becomes obvious based on the results that692

explicitly specifying it is important if the challenge output is desired to be reused.693

Best Practice: The output dataset license should be explicitly requested to be provided for each one694

of the submitted solutions. Moreover, participants should be advised to respectively specify their tools’695

licensing information, to enable inference of their potential re-usability.696

3.4.3 Conflicts and synergies697

Lesson: Based on our experience from organizing three editions of the Semantic Publishing Challenge,698

we realized that the dissemination should happen in a targeted way. To this extent, other events thematically699

relevant to the challenge are considered important synergies that contribute to generating interest and700

identifying potential participants: For instance, in the Semantic Publishing Challenge case the fact that701

the SePublica 2014 workshop on semantic publishing was organized at ESWC 2014 reflected positively702

on our challenge, since we had fruitful discussions with its participants. Moreover, the fact that results703

from the first two editions of the Semantic Publishing Challenge (Vahdati et al., 2016) were presented704

at the SAVE-SD workshop on semantics, analytics, visualization and enhancement of scholarly data705

(SAVE-SD2016 84), which was co-located with WWW 2016, contributed to the challenge dissemination’s706

and in particular to an audience both thematically and technologically relevant to the challenge. To707

the contrary, in 2015, we introduced a task on interlinking and realized possible conflicts with other708

challenges, like OAEI (Ontology Alignment Evaluation Initiative), which may have resulted in the lack of709

participation to Task 3 – even though Task 3 did not intend to cover the specialized scope of OAEI, but710

rather put the interlinking task into the scope of a certain use case that merely served in aligning the tasks’711

outputs among each other and with other datasets in the LOD Cloud. Therefore, we concluded that it is712

important not only to generate interest but also to identify and avoid potential conflicts.713

Validation: All Semantic Web Evaluation challenges collaborate with the ESWC conference, as they714

are co-located with this event. Besides the main conference, which drives the challenges, it appears that715

most of them, and in particular the most long-standing ones, also collaborate with other events and, in716

particular, with other workshops. For instance, the QALD challenge collaborates with the CLEF QA717

track85, and the challenge on Semantic Sentiment Analysis collaborates with the workshop on Semantic718

Sentiment Analysis86, which is also co-organized with ESWC. Last, the OKE challenge collaborates with719

the Linked Data for Information Extraction workshop (LD4IE)87 which, in turn, is co-located with ISWC.720

According to our survey, none of the other challenges experienced conflicts with further challenges.721

Best Practice: Establish synergies with other events that are thematically and/or technologically relevant722

to reinforce dissemination and to identify potential participants.723

4 CHALLENGE SOLUTIONS ANALYSIS724

In this section, we discuss observations from the participants’ solutions and derive corresponding conclu-725

sions that can be used in the Linked Data publishing domain. We group the lessons into four categories:726

tools, ontologies, data and evaluation process, even though there is some overlap between these aspects.727

4.1 Lessons learned from the tools728

Valuable indications can be derived by looking at the tools implemented by the participants. In particular,729

we focus on the software used to address Tasks 1 and 2.730

4.1.1 Primary Analysis.731

Observation: The Semantic Publishing Challenge tasks could be addressed by both generic and ad-hoc732

solutions, as well as different methodologies and approaches; nevertheless, solutions tend to converge.733

For Task 1, two out of four solutions primarily consisted of a tool developed specifically for this task,734

whereas the other two solutions only required task-specific templates or rules to be used within their735

otherwise generic implementations. In the latter case, Solution 1.2 abstracts the extraction rules from the736

implementation, whereas Solution 1.4 keeps them inline with the implementation. Those two solutions737
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are generic enough to be adapted even to other domains. Even though solutions were methodologically738

different, four approaches for dealing with the HTML pages prevailed: (i) structure-based (relying on739

the HTML code/structure), (ii) layout-based (relying on the Web page layout), (iii) linguistic-based, and740

(iv) presentation-based. Most tools relied on structured-/layout-based approach (three out of four)741

and only one on a partially linguistic-based approach (Solution 1.3).742

As far as Task 2 is concerned, there were different methodologies and approaches combined in different743

ways. The overall picture is summarized in Table 9 and Table 10. The nature of the task influenced744

the proposed solutions. In fact the task was composed of two subtasks: (i) identifying the structural745

components of the PDF papers and (ii) processing the extracted text. Thus, some solutions mainly746

focused on structure-based analysis (five out of eight); others gave more relevance to the linguistic-747

based analysis (three out of eight) for their primary analysis. Last, up to four used the linguistic-based748

analysis to complement their primary approach, while two solutions also used formatting styles/rules749

to increase the quality of their output (style-based analysis).750

We also observed that most solutions implemented a modular pipeline. In particular, the solutions751

that followed a structure-based analysis had a workflow with a single pipeline, whereaslinguistic-based752

approaches required parallel or iterative pipelines to address different aspects of the solution and753

to increase performance. It is also worth mentioning that two solutions over eight, one being the 2015754

most innovative solution, adopted an iterative approach. One of them iterates over the same analysis755

multiple times to refine the results (Solution 2.4); the other one (Solution 2.8) adopted a layered approach,756

in which each iteration adds new information to the previously-produced output.757

Conclusion: The solutions were methodologically different among each other, and modular and hybrid758

solutions prevailed compared to case-specific ones. This is important as case-specific solutions do not759

extend beyond the scope of challenges, but generic ones do. It is interesting to note that both 2015 and760

2016 the best solutions for Task 2 relied primarily on structure analysis, whereas the most innovative761

solutions focused on linguistic analysis. This might indicate that further research on linguistic approaches762

might bring interesting results for optimizing the output of such tasks. A deep analysis of the structure,763

in fact, made participants capture more information; on the other hand, these approaches were quite764

straightforward and less innovative. It is interesting, though, to note here that the best performing tool765

of 2016 grounded its structured-based approach on a prior linguistic analysis, whereas most solutions766

grounded their linguistic analysis on a prior structure analysis. Thus, hybrid solutions are obviously767

required but their execution order should not be taken for granted. It is also worth discussing the recall768

score of the linguistic-based tools: these tools most probably suffer from noisy text extraction. In fact769

the three solutions (Solution 2.2, Solution 2.3 and Solution 2.4) that mainly rely on linguistic analysis770

achieved the lowest recall scores both in 2015 and 2016 editions, even though they showed significant771

improvement in the latter edition.772

Similarly, the tool that relied on a linguistic analysis for Task 1 showed significantly lower precision773

and recall, compared to the other tools, indicating that linguistic-based solutions are not enough, if not774

supported by a precise structure analysis. Even though the linguistic-based approach was considered a775

rather innovative way of dealing with Task 1, the evaluation showed that a linguistic-based analysis might776

not be able to perform as well as a structure-based one.777

4.1.2 Methodologies: extraction, intermediate format and machine learning778

Observation: Diverse methodologies were employed by the participants to extract and analyze content.779

There were no prevalent approaches, but some tendencies were observed.780

For Task 1, three out of four solutions considered rules to extract data from the HTML pages; two781

of them considered CSS to define the rules, while the other one, which relied on linguistic-based analysis,782

considered JAPE; the latter solution was based on crawling. Last, all solutions used regular expressions783

at some point of their workflow.784

For Task 2, half of the solutions in 2015 but only two out of five in 2016 extracted the text from PDF785

documents and turned it into plain text. On the contrary, the majority extracted the text from the PDF786

files but turned it into XML (two out of six solutions in 2015 and four out of five in 2016). There was787

only one solution that used HTML as intermediate format. We noted that, both in 2015 and 2016, the788

best performing solutions relied on a PDF-to-XML extraction. Moreover, one solution changed from789

PDF-to-text to PDF-to-XML and indeed performed better in 2016, but we cannot state with high certainty790

if this was the determining factor. Besides extraction, as far as text analysis is concerned, five solutions791
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in 2015 and four in 2016 relied on supervised Machine Learning. Only two solutions in 2015 and one792

in 2016 (the same as in 2015) additionally relied on unsupervised Machine Learning to address Task793

2. Last, all solutions employed heuristics and regular expressions. Five out of six solutions in 2015794

employed Natural Language Processing (NLP) and Named Entity Recognition (NER), and those that also795

participated in 2015 kept NLP/NER in their workflows in 2016.796

Conclusion: Solutions based on supervised Machine Learning were awarded as the most innovative797

both in 2015 and in 2016. Therefore, it seems that there is potential on experimenting with supervised798

Machine Learning approaches to address such a task. Nevertheless, even though the best performing799

solution in 2015 did use supervised Machine Learning, it is not the case for 2016, which makes us800

conclude that fundamentally alternative solutions might show good results too. Overall, there is potential801

for improvement and plenty alternative methodologies can be investigated. The intermediate format used802

by each solution, on the other hand, had no relevant impact on the final results.803

4.1.3 Source tools804

Observation: The Semantic Publishing Challenge call did not prescribe (i) the implementation language,805

(ii) the license, as well as whether the tools should (iii) reuse existing components or external services,806

and (iv) be open-sourced or not. The participants were allowed to follow their preferred approaches.807

Three out of four Task 1 solutions, as shown in Table 3, and seven out of eight Task 2 solutions,808

as shown in Table 11, primarily relied on Java-based implementations. In both cases, the remaining809

solution relied on Python. Two out of eight solutions for Task 2 complemented their Java-based imple-810

mentations with Python-based parts. Moreover, as it is observed in Table 3, for Task 1, three out of four811

solutions relied on tools totally open-sourced, while the fourth one, the one that addressed both Task 1812

and Task 2, relied on a stack of tools which are open-sourced, but the workflow used was not. This is813

also observed in most tools for Task 2, as shown in Table 11 (six out of the eight solutions).814

MIT88 was the most popular license, with half solutions for Task 1 using it and one out of eight815

solutions for Task 2, followed by AGPL-3.089, with two out of eight solutions for Task 2 using it. Last,816

half of the solutions incorporated external services to accomplish the tasks (two out of four for Task 1817

and four out of eight for Task 2). The one of the two solutions for Task 1 that used external services was818

the one that participated both in Task 1 and Task 2. GATE, DBpedia, CrossRef API90, and FreeCite91 are819

the most used external services.820

Conclusion: Open-sourced tools prevailed over closed-sourced ones. None of the participants used a821

totally closed or proprietary software. Most of the them used an open license, and Java and Python based822

implementations prevailed both for Task 1 and Task 2. The integration of external services was also a823

valuable solution for the participants.824

4.2 Lessons learned from models and ontologies825

In this section, we discuss the different solutions with respect to the data model, the vocabularies and the826

way they used them to annotate the data.827

4.2.1 Data model828

Observation: All Task 1 solutions tend to converge regarding the data model, identifying the829

same core concepts: Conference, Workshop, Proceedings, Papers, and Person. A few solutions covered830

more details, for instance, Solution 1.1 identified also the concepts of Invited Papers and Proceedings831

Chair, while Solution 1.3 captured different types of sessions by identifying additionally the concepts of832

Session, Keynote Session, Invited Session and Poster Session, as well as the concepts of Organization and833

Topic. In particular for Task 1, Solution 1.4 domain modeling was inspired by the model used in Solution834

1.1, with some simplifications, a practice commonly observed in real Linked Data set modeling.835

In contrast, Task 2 solutions used more heterogeneous data models. There are six high-level836

properties identified by all solutions: identifier, type, title, authors, affiliation and country. Other entities837

were instead described in different ways and with different granularity. That happened, for instance, to838

the entities organization, funding agency and grant. In certain cases they are identified as separate entities839

and in other cases their details constitute part of other entities descriptions (and are expressed as data or840

object properties). The coverage of the data models was also heterogeneous: for the 2016 edition, for841

instance, not all solutions identify the sections and capture the notion of caption of figures and tables.842
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Conclusion: Based on the aforementioned, we observe a trend of converging in respect to the model843

the CEUR-WS.org dataset should have according to the submitted solutions. Most solutions converge on844

the main identified concepts in the data (Conference, Workshop, Proceedings, Paper and Person) and on845

the CEUR-WS.org dataset’s graph at least for Task 1, namely the publications’ metadata. The way the846

tasks and their corresponding queries are described contributes towards this direction.847

4.2.2 Vocabularies848

Observation: There is a wide range of vocabularies and ontologies that can be used to annotate scholarly849

data. Most of the solutions preferred to (re)use almost the same existing ontologies and vocabularies,850

as summarized in Table 4. Six out of twelve solutions for both Task 1 and 2 used the Semantic Web for851

Research Communities (swrc) vocabulary92, five used the Bibliographic Ontology (bibo) vocabulary93
852

and three used the Semantic Web Conference (swc) vocabulary94. Moreover, six solutions used one or853

more vocabularies of the Semantic Publishing and Referencing Ontologies95 (SPAR). In particular, five854

solutions used the FRBR-aligned Bibliographic Ontology96 (FaBiO) ontology, three the Publishing Roles855

Ontology97 (PRO), three the Document Components Ontology98 (DoCO), two the Bibliographic Reference856

Ontology99 (BiRO), two the Funding, Research Administration and Projects Ontology 100 (FRAPO) and857

one the Functional Requirements for Bibliographic Records101 (FRBR). Besides the domain-specific858

vocabularies and ontologies, eight solutions used the Dublin Core vocabulary (dc102 and dcterms103),859

eight the Friend of a Friend vocabulary104 (foaf ), five solutions used the DBpedia ontology105 (dbo), three860

the VCard106 (vcard) and two the event107 and timeline108 ontologies and schema.org109. Last, there were861

four solutions that used their own custom vocabularies, in combination with existing ones in most862

cases, but only one used barely its custom vocabulary.863

In contrast to Task 1 solutions, which all converged on using same vocabularies and ontologies864

intuitively, Task 2 solutions reused a wider range and relatively different vocabularies and ontolo-865

gies to annotate same entities appearing in the same data, which is extracted from PDF documents. This866

is a consequence of the rather diverse data models considered by different solutions. Interestingly, most867

Task 2 solutions use sub-ontologies of the SPAR ontologies family. Last, most solutions reuse the three868

most popular vocabularies in the education field according to Schmachtenberg et al. (2014). The general869

purpose vocabularies – such as FOAF – used by the participants are also listed high in the same ranking.870

Conclusion: It is evident that the spirit of vocabulary reuse gains traction. However, it is interesting that871

different solutions used the same ontologies to annotate the same data differently (see also Section 4.2.3).872

4.2.3 Annotations873

Observation: Even though all solutions used almost the same vocabularies, not all of them used874

the same vocabulary terms to annotate the same entities. As far as Task 1 is concerned, all solutions875

only converged on annotating Persons using the foaf:Person class. For the other main concepts the876

situation was heterogeneous, as reported in Table 6. A few of them also explicitly annotated Persons using877

the foaf:Agent class, even though foaf:Person is a subclass of foaf:Agent. foaf:Agent878

was also used by one of the solutions during the first edition, but it was then replaced by the more explicit879

foaf:Person. The Conference concept was well-captured by all solutions.880

It is interesting to note that, for the first edition, most solutions used relatively generic vocabulary881

terms, e.g., swrc:Event, swc:Event or swc:OrganizedEvent to annotate the data. How-882

ever, in the second edition, most solutions preferred to use more explicit vocabulary terms for the883

same concept, e.g., swrc:Conference and bibo:Conference, while they also maintained the884

more generic vocabulary terms for events. The same occurred with the Paper concept. The 2014 edi-885

tion datasets were annotated using more generic vocabulary terms, e.g., swrc:Publication or even886

foaf:Document, whereas in 2015 more explicit terms were preferred, such as swrc:InProceedings887

or bibo:Article. In particular swrc:InProceedings was adopted by three out of four solutions.888

In contrast to Task 1 solutions, which focus on identifying and describing concrete entities, Task889

2 solutions mainly focus on capturing their properties. This is also evident from the fact that Task890

2 solutions rarely provide the entities’ types, whereas Task 1 solutions always do, even though this891

information could be inferred from the properties used. Moreover, Task 2 solutions generate much fewer892

entities than Task 1 solutions. All Task 2 solutions use approximately the same number of properties.893

It is interesting though to note that solutions that follow in principle the linguistic approach tend to use894

more predicates, which are more explicit and more descriptive too.895
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All solutions have approximately the same number of predicates, but their precision is still not896

accurate. Only one of Task 2 solutions (Solution 2.7) has a significantly higher number of predicates com-897

pared to the other solutions. This occurs because different URIs are used for the same relationships appear-898

ing in different files to annotate the data. For instance, the section-title property appears with 37 different899

URIs, such as the following: <http://ceur-ws.org/Vol-1558/paper5#section-title>,900

or <http://ceur-ws.org/Vol-1303/paper_4#section-title>. However, such a choice901

prevents easily identifying same relationships.902

DCMI is the vocabulary most frequently used by all solutions for annotating the identifier and903

the title. RDF(S) is also used for the title (represented as rdfs:label), as well as for the entities’904

types. For the remaining properties, a wide range of different vocabularies are considered, but they do not905

converge on their choices. Indicatively: one of the solutions considers schema:mentions to describe906

a citation, whereas other solutions consider bibo:cites or biro:references. In the same context,907

some solutions associate authors to papers with the dcterms:creator property, whereas others con-908

sider foaf:maker. Moreover, some solutions indicate the affiliation using the swrc:affiliation909

property, whereas others use pro:relatesToOrganization, or some solutions represent the publi-910

cation year using swrc:year, whereas others use fabio:hasPublicationYear. Last, it is inter-911

esting to note that solutions may even use vocabulary terms that do not exist, such as swrc:Section.912

Conclusion: On the one hand, the more familiar the data publishers get with the data, the more explicit913

they become with the annotations they use and the more they converge on the choices they make. On the914

other hand, the way different solutions extract particular properties reflects on the final data model.915

4.3 Lessons learned from submitted RDF datasets916

In this section, we discuss the different solutions with respect to the RDF dataset they produce.917

4.3.1 Successive submissions improvements918

Observation: From the first edition to the second edition of the Semantic Publishing Challenge, we919

noticed that the participants who re-submitted their solutions had improved the overall dataset, not920

only the parts useful to answer the queries. For instance, all three solutions of Task 1 that had participated921

in both the 2014 and the 2015 editions modified the way they represented their data, and this resulted in922

corresponding improvements to the overall dataset.923

Indicatively, as far as Task 1 is concerned, Solution 1.2 addressed a number of shortcomings the924

previous tool’s version had, in particular regarding data transformations, which might have influenced925

their precision improvement. Heyvaert et al. (2015) also assessed their mappings’ quality to verify the926

schema is valid with respect to the used vocabularies and ontologies. To address the same issue and avoid927

inconsistencies in their dataset, Solution 1.1 preferred to align different ontologies’ classes and properties,928

e.g., aligning BIBO to the SWRC ontologies, as SWC already has some dependencies on SWRC.929

As far as Task 2 is concerned, some parts of Solution 2.2, for instance, were changed for participating930

in the 2016 edition. The authors employed different processing steps of their tool, which were not used in931

the previous edition, e.g., processing section headings, hierarchy and captions, but they also introduced932

novel aspects driven by the challenge tasks and queries, e.g., extracting links from supplementary material.933

Among the changes of Solution 2.4, it was the PDF extraction tool used, whose change might have partially934

contributed to their recall improvement, while a number of additional or new conditional heuristics most935

probably led to their precision improvement. Overall, it was observed that improvements to extraction936

might reflect on the solutions’ recall, whereas improvements to text analysis on their precision.937

Conclusion: The improvement of the dataset was evident on some aspects and indeed the results were938

satisfying, but we still see room for improvement. It is interesting though to note that solutions did not939

remain focused on improving just the data extraction parts of the challenge, but also the data modeling,940

even though the latter is not directly assessed by the challenge.941

4.3.2 Dataset Structure942

Observation: The different solutions differ significantly with respect to the size of the produced943

dataset. This happens for different reasons. Solution 1.1 shows an extraordinary number of triples com-944

pared to other solutions. This occurs to a certain extent because each concept is annotated with at least two945

classes, making one fourth of the dataset to be type declarations. Moreover, they include even annotations946

that indicate the type of the resource or property on a very low level, namely they use rdfs:Class,947
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rdfs:Property, as well as owl:ObjectProperty or owl:AnnotationProperty etc., which948

counts for almost 2,000 triples of the total dataset. Solution 1.4 also shows a high number of triples.949

This occurs because the same dataset contains triples describing the structure of the HTML page,950

as well as triples describing the actual content of the pages. Nevertheless, the main reason that951

causes the flow of triples is the fact that a new URI is generated each time a concept appears in952

one of the CEUR-WS.org volumes. For instance, the person Ruben Verborgh appears to have 9953

URIs, e.g., <http://ceur-ws.org/Vol-1034/#RubeniVerborgh> for the Vol-1034 proceed-954

ings or <http://ceur-ws.org/Vol-1184/#RubeniVerborgh> for the Vol-1184 proceedings.955

The person Christoph Lange appears to have 15 distinct URIs, e.g., for Vol-360 proceedings, the956

<http://ceur-ws.org/Vol-360/#ChristophiLange>, or for Vol-1184 proceedings, the957

<http://ceur-ws.org/Vol-1184/#ChristophiLange>110. Solutions 1.2 and 1.3 are ap-958

proximately at the same number of triples both for the 2014 and the 2015 editions.959

Conclusion: There is a very high heterogeneity in the produced datasets; although solutions tend to960

agree on used vocabularies, their design choices are very different and, as a consequence, the number and961

organization of the triples is very heterogeneous.962

4.3.3 Coverage963

Observation: We further noticed that solutions rarely agree upon the extracted information. For964

instance, some skip the extraction of wrong data or certain other information. Overall, we observed965

significant differences with respect to the number of identified entities per category. The results for Task 1966

are summarized in Table 7 and Table 6, while the results for Task 2 are summarized in Table 8.967

Produced datasets were very heterogeneous in term of size, number of triples and entities. As968

far as Task 1 is concerned, apparently, Solution 1.1 and Solution 1.3 used the individual pages to identify969

the proceedings, whereas Solution 1.2 and Solution 1.4 used the index page to identify the proceedings,970

this is the reason that there is so big difference in the number of Proceedings entities. The number of971

identified papers is also significantly different among the different solutions, but in the Persons case we972

observe the greatest variation in terms of numbers because of different practices of assigning URIs; a973

few solutions reuse URIs across different proceedings volumes, others do not.111
974

As far as Task 2 is concerned, solutions tend to omit certain subtasks and to optimize their975

performance on others due to the nature of the task – queries were quite heterogeneous, with a clear976

distinction, for instance, between the analysis of the structural components and of the textual content977

of the papers. For instance, in 2015, the best performing solution focused on precisely addressing the978

subtasks which were related to the document structure and totally omitted queries related to funding and979

ontologies, as shown in Table 10. Similarly, in 2016, certain solutions completely omitted the queries that980

were related to supplementary material or tables and pictures captions. Consequently, the dataset size, as981

well as the number of triples and entities significantly diverge among the solutions.982

Conclusion: The datasets’ heterogeneity is also evident in the amount and type of information each983

dataset provides. However, the more the solutions improve, the more the solutions converge at least984

regarding the number of retrieved and/or distinctly identified entities.985

4.4 Lessons learned from the solutions with respect to the evaluation986

In this section, we discuss the different solutions with respect to the dataset evaluation.987

4.4.1 Ranking988

Observation: For Task 1, in 2015 the performance ranking of the three tools evolved from 2014 has not989

changed but their performance has improved except for Solution 1.1, which improved precision but recall990

remain the same. Disregarding the two queries that were new in 2015, Solution 1.1, which had won the991

best performance award in 2014, performs almost as well as Solution 1.4.992

The trend was slightly different for Task 2: all tools participating in the Challenge for the second time993

increased their performance, but the overall ranking changed. Solution 2.4 obtained a higher score than994

Solution 2.2 in 2016, contrarily to what happened in 2015. The position of Solution 2.3 was stable.995

Conclusion: Continuity helps participants to improve their tools; the overall ranking keeps stable if996

the tasks (and queries) are kept stable; adjustments to the tasks (and queries) may impact the ranking,997

favoring one team more than another.998
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4.4.2 New and legacy solutions999

Observation: Task 1 participants both in 2014 and 2015 had an improved version of different aspects of1000

their solution, which resulted in correspondingly improved versions of the final dataset. The new Solution1001

1.4, which introduced a fundamentally new approach, achieved equally good results as the best solution1002

of 2014. The same trend was evident in Task 2, with a general improvement of all solutions that were1003

re-proposed for the second year (2015 and 2016).1004

Conclusion: Legacy solutions might be able to improve and bring stable and good results, however1005

there is still room for improvement and mainly for fundamentally new ideas that surpass problems that1006

legacy solutions cannot deal with.1007

4.4.3 Equal chances1008

Observation: Solution 1.1, the winners of Task 1 in 2014, participated in 2015 with an improved1009

version but did not win. The 2015 winner was a new tool with a brand new approach (Solution 1.4). The1010

same happened for Task 2: in 2016, one winner (Solution 2.7) was a brand-new solution, the other one1011

(Solution 2.2) was an extension and improvement of a legacy solution but did not win the year before.1012

Conclusion: The winners were not the same in subsequent versions of the challenge: creativity won.1013

5 DISCUSSION: CHALLENGE IMPACT ON LINKED DATA QUALITY1014

In Section 1 we motivated the Semantic Publishing Challenge as a means of producing high-quality1015

Linked Data. In this section, we assess the potential impact of the challenge on the quality of the Linked1016

Data produced. To be more precise, the quality of the Linked Data produced by the tools submitted has1017

been assessed by comparing the output of a number of prescribed queries against our gold standard and1018

measuring precision and recall, as explained in Section 2.2.4. Assessing the quality of Linked Data by1019

running queries over it is a common approach, as the comparison of tools by Zaveri et al. (2016) confirms,1020

whose recent survey we refer to for a comprehensive review of the state of the art regarding Linked Data1021

quality assessment. Therefore, a challenge designed as the Semantic Publishing Challenge could act as a1022

means to assess the Linked Data quality, and, the better the results, the higher the Linked Data quality is1023

expected to be.1024

The specific quality metrics that our evaluation setup assesses can be connected to the general quality1025

dimensions (accessibility, intrinsic, contextual and representational) and certain of their corresponding1026

metrics, as they are identified by Zaveri et al. (2016). Moreover, few other quality dimensions’ metrics1027

that are not covered by the challenge’s evaluation are assessed in the frame of this review. Note that some1028

metrics are applicable for all tasks, whereas others are only for a certain task.1029

5.1 Accessibility dimensions1030

The accessibility dimensions involve aspects related to the Linked Data access, authenticity and re-1031

trieval (Zaveri et al., 2016). Our challenge required participants to make their data available, forcing this1032

way the solutions to cover the availability dimension. Making the data available as an RDF dump was1033

the minimum requirement set by the challenge, covering this way the accessibility of the RDF dumps1034

metric. Participants were also encouraged to publish their data via other Triple Pattern Fragment (TPF)1035

interfaces, such as SPARQL endpoints, but assessing its availability was not part of the challenge’s1036

evaluation. Moreover, participants were encouraged to publish their data using a certain license, without1037

being a requirement though, boosting this way the licensing dimension (the corresponding detailed1038

discussion is available in Section 3.4.2). While the aforementioned referred to all challenge’s tasks, the1039

interlinking dimension was only promoted by Task 3, which, after all, is its actual goal. Overall, even1040

though the submitted solutions only made their datasets available as RDF dumps and did not specify the1041

license, the challenge achieved to enable solutions to achieve the minimum requirement of making the1042

produced datasets accessible. It is evident that, if the challenge had turned high values w.r.t. each of the1043

aforementioned metrics mandatory, the produced dataset accessibility would have been increased.1044

5.2 Intrinsic dimensions1045

According to Zaveri et al. (2016), the intrinsic dimensions focus on whether the information correctly,1046

compactly and completely represents the real world and is logically consistent in itself. As the Semantic1047

Publishing Challenge requires SPARQL queries to be executed against the Linked Data produced by the1048
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different solutions, the syntactic validity of the dataset is a prerequisite, boosting this way the metrics for1049

syntax error free documents and the absence of malformed datatypes. While our challenge evaluation1050

covers well the syntactic validity, the semantic accuracy is not evaluated. Nevertheless, the metric which1051

is related to the misuse of properties is discussed and assessed in a qualitative way in Section 4.2.3 of this1052

paper, but it is not assessed quantitatively. Similarly, the population completeness, i.e., the percentage1053

of real-world objects of a particular type that are represented in a dataset, is indirectly evaluated on the1054

side. Namely, it is not thoroughly assessed if all real-world entities appear, but to successfully answer1055

the evaluation queries, the population completeness is prerequisite. Moreover, a comparative evaluation1056

of the population completeness is performed in this work (see more detailed discussion at Section 4.3.31057

and Table 7, Table 8). Last, even though the solutions’ dataset consistency dimension could have been1058

evaluated and shed more light to their quality, it was not done by any of the challenge’s series so far. All1059

in all, as the challenge was not focused on assessing the dataset quality, certain metrics of the intrinsic1060

dimension were not covered intentionally, others were indirectly assessed, while a few others were only1061

discussed in this paper. Nevertheless, if it had been intended, the challenge could have covered even more1062

metrics of the intrinsic dimension and could have reinforced the datasets quality even more.1063

5.3 Contextual dimensions1064

The contextual dimensions highly depend on the context of the task at hand. In the case of relevancy1065

dimension, the Semantic Publishing Challenge did not perform any relevant evaluation. Nevertheless,1066

in this paper the coverage metric is addressed. To be more precise, in Section 4.3.3, the coverage is1067

thoroughly discussed. The Semantic Publishing Challenge does contribute to the timeliness dimension.1068

To be more precise, thanks to its continuity, it is assured that at least every year the challenge is organized,1069

a new dataset for the underlying CEUR-WS.org data is generated, boosting the freshness metric. In1070

particular the final extraction has to be made from the evaluation dataset published a few days before the1071

final submission deadline. As a conclusion, the challenge succeeded in indirectly promoting the coverage1072

and timeliness dimensions; however, there is potential for other dimensions to be covered as well.1073

5.4 Representational dimension1074

The representational dimension captures aspects related to the data design (Zaveri et al., 2016). As far as1075

the interoperability dimension is concerned, the Semantic Publishing Challenge promotes the reuse of1076

existing terms and vocabularies and, as shown in Table 4 and discussed in Section 4.2.3, the Semantic1077

Publishing Challenge achieves its goal of promoting the re-use of existing vocabularies, even though the1078

corresponding metric is not evaluated automatically. Moreover, thanks to Task 3, the Semantic Publishing1079

Challenge also promotes the re-use of existing terms. Even though it failed to attract participation, it is1080

proven that such a task contributes into increasing the overall dataset quality. Thus, the challenge enables1081

the produced datasets to cover even the representational quality dimension.1082

6 CONCLUSIONS1083

One of the objectives of the Semantic Publishing Challenge is to produce Linked Data that contributes to1084

improving scholarly communication. Nevertheless, the lessons learned from organizing this challenge are1085

not only applicable in the case of a challenge on Semantic Publishing but in the case of other challenges1086

too. Therefore, this work shed light not only on the three editions of this challenge organized by ourselves1087

and distilled lessons learned from our experience, but we have also validated them against other challenges1088

and concluded on general best practices for organizing such challenges. In a nutshell, continuity both1089

in terms of the dataset and in terms of the tasks is important. Nevertheless, tasks should remain distinct,1090

but they should refer to the same training and evaluation dataset, while participants’ feedback should1091

be taken into consideration to define or refine the tasks. Regarding the output, the larger the evaluation1092

dataset is and the less overlapping with the training dataset, the best it is for verifying high coverage. The1093

sooner the evaluation tool is made available, the better it is for the quality of the final output. Finally, it is1094

a critical incentive for the participants to know how their output is intended to be reused.1095

Besides the challenge’s organizational aspects, we looked for evidence from the solutions proposed1096

by the participants. Therefore, we analyzed them, reported our observations and came up with different1097

conclusions related to Linked Data publishing practices followed by different participants. There are1098

several positive aspects, among them the high participation and the quality of the produced results. This1099

work allowed us to share those observations on semantifying scholarly data, using different ontological1100
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models, refining and extending existing datasets. Even though the Semantic Publishing Challenge focuses1101

on scholarly data, the conclusions we draw based on our analysis are of interest for the entire community1102

that publishes Linked Data. The possibility of sharing knowledge and solutions among participants was1103

another key factor of the Semantic Publishing Challenge. In a nutshell, most solutions relied on generic1104

and open-sourced tools, which allows and enables their reuse for corresponding cases. Solutions, and1105

thus the tools that produce them, have improved from one edition to the other. Even though different1106

methodologies were followed, there are certain prevailing approaches – based on structure/layout or on1107

linguistics – which were instantiated in different ways. Despite the fact that tools diverge, the produced1108

data model and final annotations converge, as solutions become more mature from one edition to the other,1109

while well-known vocabularies are reused.1110

Last, we assessed how the challenge’s organization reflects on the submitted solutions’ output, namely1111

how the challenge’s organization affects the datasets’ quality. We showed that indeed the challenge’s1112

organization may have a positive impact on increasing the quality of the Linked Data produced.1113
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1Semantic Web Challenge; see http://challenge.semanticweb.org/1241

2LinkedUp Challenge http://linkedup-challenge.org/1242

32014 SemPub Challenge, http://2014.eswc-conferences.org/semantic-publishing-challenge.html1243

42015 SemPub Challenge, http://2015.eswc-conferences.org/important-dates/call-SemPub1244

52016 SemPub Challenge, http://2016.eswc-conferences.org/assessing-quality-scientific-output-its-ecosystem1245

62014 Semantic Web Evaluation Challenges, http://2014.eswc-conferences.org/important-dates/call-challenges.1246

html1247

72015 Semantic Web Evaluation Challenges, http://2015.eswc-conferences.org/call-challenges1248

82016 Semantic Web Evaluation Challenges, http://2016.eswc-conferences.org/call-challenges1249

9Ontology Matching Challenges http://ontologymatching.org/1250

10Ontology Alignment Evaluation Initiative http://oaei.ontologymatching.org/1251

11World Wide Web Conferences, https://en.wikipedia.org/wiki/International_World_Wide_Web_Conference1252

12Very Large Databases Conferences, https://en.wikipedia.org/wiki/VLDB1253

13SEALS infrastructure, http://oaei.ontologymatching.org/2016/seals-eval.html1254

14ISWC Conferences, http://swsa.semanticweb.org/content/international-semantic-web-conference-iswc1255

15Semantic Web Challenge http://challenge.semanticweb.org/1256

16QALD Challenge, http://qald.sebastianwalter.org/1257

17ESWC Conferences, http://eswc-conferences.org/1258

18CLEF, https://en.wikipedia.org/wiki/Conference_and_Labs_of_the_Evaluation_Forum1259

19DBpedia, https://dbpedia.org1260

20LAK Challenges; see http://meco.l3s.uni-hannover.de:9080/wp2/?page_id=181261

21Linking Data for Education, http://linkedup-project.eu/1262

22DSTC, http://workshop.colips.org/dstc5/1263

23AI Mashup Challenge, http://aimashup.org/1264

24SemEval campaigns, http://alt.qcri.org/semeval2016/1265

25CL-SciSumm, http://wing.comp.nus.edu.sg/cl-scisumm2016/1266

26http://alt.qcri.org/semeval2015/task12/1267

27SEMEVAL 2015 workshop, http://alt.qcri.org/semeval2015/1268

28ESWC-CLSA 2015, https://github.com/diegoref/ESWC-CLSA1269
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29OKE Challenge 2016, https://github.com/anuzzolese/oke-challenge-2016#tasks-overview1270

30NIF, http://persistence.uni-leipzig.org/nlp2rdf/1271

31On a more pragmatic level, a further reason was that one of the challenge organizers, Christoph Lange, has been technical1272

editor of CEUR-WS.org since 2013 and thus has (i) the mandate to advance this publication service technically, and (ii) a deep1273

understanding of the data.1274

32CEUR-WS, http://ceur-ws.org/1275

33JATS, http://jats.nlm.nih.gov/1276

34TaxPub, https://github.com/plazi/TaxPub1277

352014 CEUR-WS dataset, https://github.com/ceurws/lod/blob/master/data/ceur-ws.ttl1278

36COLINDA, http://www.colinda.org/1279

37DBLP, http://dblp.l3s.de/dblp++.php1280

38Lancet, http://www.semanticlancet.eu/1281

39SWDF, http://data.semanticweb.org/1282

40Springer LD, http://lod.springer.com/1283

412015 CEUR-WS Task 1 dataset, http://rml.io/data/SPC2016/CEUR-WS/CEUR-WStask1.rdf.gz1284

422015 CEUR-WS Task 2 dataset, http://rml.io/data/SPC2016/CEUR-WS/CEUR-WStask2.rdf.gz1285

43Collections Ontology, http://purl.org/co/1286

44SKOS, http://www.w3.org/2004/02/skos/core#1287

45RML, http://rml.io1288

46R2RML, https://www.w3.org/TR/r2rml/1289

47CSS3, https://www.w3.org/TR/selectors/1290

48RMLProcessor, https://github.com/RMLio/RML-Mapper1291

49GATE, https://gate.ac.uk/1292

50FITLayout framework, http://www.fit.vutbr.cz/~burgetr/FITLayout/1293

51Apache PDFBox, https://pdfbox.apache.org/1294

52iText, http://itextpdf.com/1295

53Poppler, https://poppler.freedesktop.org/1296

54PDFMiner, http://www.unixuser.org/~euske/python/pdfminer/1297

55PDFX, http://cs.unibo.it/save-sd/2016/papers/html/pdfx.cs.man.ac.uk1298

56Xpdf, http://www.foolabs.com/xpdf/1299

57DBpedia Spotlight, http://spotlight.dbpedia.org/1300

58ANNIE, https://gate.ac.uk/sale/tao/splitch6.html1301

59GRMM, http://mallet.cs.umass.edu/grmm/1302

60LibSVM, https://www.csie.ntu.edu.tw/~cjlin/libsvm/1303

61Mallet, http://mallet.cs.umass.edu/1304

62crfsuite, http://www.chokkan.org/software/crfsuite/1305

63OpenNLP, https://opennlp.apache.org/1306

64ParsCit, http://wing.comp.nus.edu.sg/parsCit/1307

65Stanford CoreNLP, http://stanfordnlp.github.io/CoreNLP/1308

66NLTK, http://www.nltk.org/1309

67WordNet, https://wordnet.princeton.edu/1310

68BabelNet, http://babelnet.org/1311

69Grab spider, http://grablib.org/1312

70BeautifulSoup, http://www.crummy.com/software/BeautifulSoup/1313

71Bibsonomy, http://www.bibsonomy.org/help/doc/api.html1314

72FundRef, http://www.crossref.org/fundingdata/1315

73EDITpad Pro, https://www.editpadpro.com/1316

74Stanford NERTagger, http://nlp.stanford.edu/software/CRF-NER.shtml1317

75CRF++, https://taku910.github.io/crfpp/1318

76CoNLL, http://www.cnts.ua.ac.be/conll2000/chunking/1319

77JATS2RDF, https://github.com/Klortho/eutils-org/wiki/JATS2RDF1320

78LGPL-3.0, https://opensource.org/licenses/lgpl-3.0.html1321

79CERMINE, http://cermine.ceon.pl/1322

80FRED, http://wit.istc.cnr.it/stlab-tools/fred1323

81LODeXporter, http://www.semanticsoftware.info/lodexporter1324

82SemPubEvaluator, https://github.com/angelobo/SemPubEvaluator1325

83The extraction tool’s integration in the CEUR-WS.org production workflow is still in progress but expected to conclude in 2016.1326

84SAVE-SD2016 Workshop, http://cs.unibo.it/save-sd/2016/1327

85CLEF QA track, http://nlp.uned.es/clef-qa/1328

86Semantic Sentiment Analysis Workshop, http://www.maurodragoni.com/research/opinionmining/events/1329

87LD4IE2016 Workshop, http://web.informatik.uni-mannheim.de/ld4ie2016/LD4IE2016/Overview.html1330

88MIT, http://opensource.org/licenses/mit-license.html1331

89AGPL-3.0, https://www.gnu.org/licenses/agpl-3.0.en.html1332

90CrossRef API, http://api.crossref.org/1333

91FreeCite, http://freecite.library.brown.edu/1334

92SWRC, http://swrc.ontoware.org/ontology#1335

93bibo, http://purl.org/ontology/bibo/1336

94SWC, http://data.semanticweb.org/ns/swc/ontology#1337

95SPAR, http://www.sparontologies.net/1338

96FaBiO, http://purl.org/spar/fabio/1339
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97PRO, http://purl.org/spar/pro/1340

98DoCO, http://purl.org/spar/doco/1341

99BiRO, http://purl.org/spar/biro/1342

100FRAPO,http://purl.org/cerif/frapo/1343

101FRBR, http://purl.org/spar/frbr/1344

102DC, http://purl.org/dc/elements/1.1/1345

103DCTerms, http://purl.org/dc/terms/1346

104FOAF, http://xmlns.com/foaf/0.1/1347

105DBO, http://dbpedia.org/ontology/1348

106VCard, http://www.w3.org/2006/vcard/ns#1349

107event ontology, http://purl.org/NET/c4dm/event.owl#1350

108timeline ontology, http://purl.org/NET/c4dm/timeline.owl#1351

109Schema.org, http://schema.org1352

110The definition of Task 1 was not explicit with regard to whether different persons with the same name (within or across different1353

workshops proceedings volumes) should be assumed to be the same person or not. Our current work towards the release of a1354

consolidated CEUR-WS.org dataset shows that the far majority of same names refers to the same person, which is plausible as1355

CEUR-WS.org focuses on the relatively small computer science community. However, a general solution would be wrong to simply1356

assume that same names mean same persons, whereas a full disambiguation of names would require a lot of information to be taken1357

into account beyond the proceedings’ tables of content: the title pages of the PDF papers plus possibly external resources.1358

111Our instructions did not prescribe whether or not participants should assume persons with the same name to be the same. In1359

the reality of the CEUR-WS.org data, there are very few cases in which the same name refers to two different persons, as the data1360

covers the relatively small domain of computer science researchers.1361
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