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Abstract 

Non-systematically collected, a.k.a. opportunistic, species observations are accumulating at a 

high rate in biodiversity databases. Occupancy models have arisen as the main tool to reduce 

effects of limited knowledge about effort in analyses of opportunistic data. These models are 

generally using long closure periods (e.g. breeding season) for the estimation of probability 

of detection and occurrence. Here we use the fact that multiple opportunistic observations in 

biodiversity databases may be available even within days (e.g. at popular birding localities) to 

reduce the closure period to one day in order to estimate daily occupancies within the 

breeding season. We use a hierarchical dynamic occupancy model for daily visits to analyse 

opportunistic observations of 71 species from nine wetlands during 10 years. Our model 

derives measures of seasonal site use within seasons from estimates of daily occupancy. 
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Comparing results from our “seasonal site use model” to results from a traditional annual 

occupancy model (using a closure criterion of two months or more) showed that our model 

provide more detailed biologically relevant information. For example, when the aim is to 

analyse occurrences of breeding species, an annual occupancy model will over-estimate site 

use of species with temporary occurrences (e.g. migrants passing by, single itinerary 

prospecting individuals) as even a single observation during the closure period will be viewed 

as an occupancy. Alternatively, our model produce estimates of the extent to which sites are 

actually used. Model validation based on simulated data confirmed that our model is robust to 

certain changes and variability in sampling effort and species detectability. We conclude that 

more information can be gained from opportunistic data with multiple replicates (e.g. several 

reports per day almost every day) by reducing the time window of the closure criterion to 

acquire estimates of occupancies within seasons.  

 

Key-words: citizen science data, GBIF, migratory birds, non-systematic observations, 

species lists, Sweden, Swedish Species Gateway 

 

Introduction 

The occupancy of sites by species is a fundamental entity in macroecology, landscape 

ecology and metapopulation ecology (Hanski 1999; Royle & Dorazio 2008). From a practical 

perspective, the probability of occurrence of a species is a commonly used measure of habitat 

suitability (Boyce & McDonald 1999) and knowing the distribution of a species is basic 

knowledge needed to make management decisions. Knowledge about the occurrence of 

species can be gained from systematic surveys where detection/non-detection data of species 

is recorded (MacKenzie et al. 2006), but also from non-systematically collected (a.k.a. 

opportunistic) species observations that are accumulating at a high rate in biodiversity 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2612v1 | CC BY 4.0 Open Access | rec: 30 Nov 2016, publ:



3 
 

databases (especially for birds; Graham et al. 2004). Opportunistic data offer benefits in the 

form of a wide coverage at spatial and temporal scales (Suarez & Tsutsui 2004) and often a 

large number of repeated observations. However, opportunistic data are not collected in a 

standardised way and there are several potential sources of bias (Lukyanenko, Parsons & 

Wiersma 2016); absences of species are often not available as non-detections are frequently 

not reported, and corrections for variation in sampling effort are needed (Szabo et al. 2010). 

Other issues include spatial biases (e.g. more reports close to where people live: Fernández & 

Nakamura 2015; Mair & Ruete 2016), trends in recording intensity (Jeppsson et al. 2010; 

Snäll et al. 2014) and differential recording rates among species (Jeppsson et al. 2010; Snäll 

et al. 2011) that makes it difficult to compare distribution, occupancy or abundance patterns 

among species. These biases have to be considered when analysing opportunistic data in 

order to reduce the risk of inferring spurious patterns (van Strien, van Swaay & Termaat 

2013; Isaac et al. 2014).  

 

Occupancy models are popular in ecology because they enable disentangling the occurrence 

status from the probability of detection (MacKenzie et al. 2006; Royle & Dorazio 2008; Kéry 

2010). These models require replicated data on the detection or non-detection of species at 

multiple sites within a period for which the sites can be assumed closed to colonization and 

extinction in order to estimate both probability of occupancy and probability of detection 

(MacKenzie et al. 2006).  

 

Occupancy models were quickly adapted to deal with variation in recording effort in 

opportunistic citizen science data (van Strien et al. 2013). Recently, Isaac et al. (2014) 

highlighted the usefulness of applying occupancy models to opportunistic data, including 

measures of effort to partly overcome the problems with several sources of sampling bias. A 
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common approach is to construct absences of species by compiling species lists for individual 

observers visiting sites. The length of species lists corresponding to observer visits to specific 

sites are then used as covariates for detection probability, as a proxy for sampling effort and 

tendency to report species (Szabo et al. 2010; van Strien et al. 2013; Isaac et al. 2014).  

 

So far, in order to gather sufficient replicate visits per sample unit (space and time units) to 

get robust estimates of occupancy probabilities, ecologist have defined appropriate grid 

square sizes (e.g. 1 km2; van Strien et al. 2013;  or 100 km2; Kamp et al. 2016) or selected 

habitat patches (Cruickshank et al. 2016) and closure periods, often a breeding season of  two 

months or more (Kendall et al. 2013; van Strien et al. 2013; Kamp et al. 2016; Cruickshank 

et al. 2016). In such an annual occupancy model occupancy is then defined as the proportion 

of occupied sites or grid squares at a landscape or regional scale during each season. Some 

previous studies relaxed the closure assumption by defining the period over which the species 

is available for detection (Kendall et al. 2013; Roth, Strebel & Amrhein 2014), but still 

assume that the species is always present during a consecutive period within the season and 

are still restricted to few (e.g. 1-4) sampling periods within the season. In this way, short-term 

dynamics in site use (e.g. as stop-over for migratory individuals; vagrants) will be 

oversimplified.  

 

For some taxonomic groups, such as birds, there are often multiple opportunistic observations 

reported within very short time-windows at certain sites. For example, at especially popular 

birding localities many different observers visit and report birds within the same day. Using 

frequent reports to narrow down the length of closure periods in occupancy models of 

opportunistic observations may enable us to address more detailed questions about within-

season population dynamics, as well as investigating how such dynamics change over time 
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within biologically relevant spatial units holding sub-populations. For example, using a daily 

closure period, we could estimate the number of days during the season for which a site is 

being used, which may be more informative than a binary annual occupancy only providing 

information about whether or not the species was present in a given year. Additionally, a 

seasonal site use model could potentially help to disentangle whether the species is using a 

site as a stop-over or as a breeding site, and between-year variation and trends can be 

estimated for individual sites. 

 

Here we introduce a seasonal site use model that exploits data-rich opportunistic citizen-

science data bases (e.g. GBIF www.gbif.org; Swedish Species Gateway www.artportalen.se) 

to narrow down the within-season closure assumption to within-day closure. The models are 

based on a dynamic, daily colonization-extinction occupancy sub-model within each season 

that copes with most common biases in opportunistic data. We use the model to analyse 

opportunistic reports from citizen-science data of 71 wetland bird species from nine wetlands 

collected during 2005-2014 to estimate species-specific patterns in site use within and 

between seasons. Then, we compared patterns of dynamics produced by our seasonal site use 

model based on daily occupancy estimates to the patterns of dynamics produced by the 

annual occupancy model with a three months closure period. To validate and further test to 

what extent our model is able to correct for variation in effort and reporting, we simulated 

data under nine scenarios displaying different patterns in expected levels of occupancy and 

temporal trends in persistence/colonisation rates, number of visits per day and in detection 

probabilities (see Table 1). With this we investigated whether model predictions were 

sensitive to systematic biases in the data.  
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Materials and methods 

Observational data for wetland bird species 

We obtained a total of 39 384 observations of 71 wetland bird species (Table S1) from nine 

wetland sites (Table S2 and Fig. S1) in Uppland Province, Sweden, recorded between April 1 

and June 30 over the years 2005-2014. Data were obtained via the Swedish Species Gateway 

(www.artportalen.se), a national gateway for storage of mainly voluntarily reported 

(opportunistic) biodiversity data. The selected wetland bird species are mainly migratory 

species that are nesting or foraging in the wetlands (including open waters, reeds, meadows 

and areas adjacent to the wetlands) during the investigated time period. The species include 

swans, ducks, geese, waders, gulls, terns and passerine birds associated with wetlands and 

surrounding wet grasslands. Nomenclature follows the dynamic taxonomic database of the 

organisms of Sweden (http://www.slu.se/dyntaxa). Subspecies were not analysed and 

observations with uncertain species determination were excluded from the analyses. 

 

Non-detection Records 

Each observation consists of a report of a single species, but there is no information about 

species that were not seen. In order to construct artificial data on non-detections we first 

consider each unique observer reporting at least one species at a site on a specific day to 

constitute a replicate visit within that day, following Kéry et al. (2010) and van Strien et al. 

(2010). Then, for each visit j, in day d, year t and site i any observation of the focal species 

was considered as a detection if the species was reported during the visit (yj,d,t,i = 1) and as a 

non-detection if it was not reported (yj,d,t,i = 0). A non-detection then corresponds to the focal 

species not being reported by an observer reporting at least one other species at the wetland in 

that day. This procedure was repeated for all study species. Observations were recorded as 
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“missing value” for days and sites without visits (i.e. when no observations were reported 

from the site in that day). 

 

List length as a proxy for effort 

We calculated the length of the list of observed species for each visit (Species List Length; 

SLL hereafter), later to be used as a measure of effort (Szabo et al. 2010). For computational 

reasons, we restricted the maximum number of visits to 40 per day and site, prioritizing visits 

with the longest species lists. SLLs ranged from 1 to 45 species. Around 60% of all visits 

consisted of single observations (SLL = 1), although this proportion decreased over time (Fig. 

1). In Figure S3 we compare the results of the model using the full dataset and only visits 

with long species lists (SLL ≥ 10). 

 

Seasonal site use model: Daily site occupancies using daily-based replicated observations  

For each species, we use a dynamic state-space occupancy model (MacKenzie et al. 2006; 

van Strien et al. 2013) to estimate daily occurrence status, adjusted for detection and 

reporting probability (hereafter simply called detection probability). The occupancy model 

consists of two sub-models coupled hierarchically: a process model (for the daily occurrence 

status) and an observation model (for the stochasticity of species detections); the latter being 

conditional on the process sub-model. In this way, each observation yj,d,t,i is modelled as  

𝑦𝑗,𝑑,𝑡,𝑖 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑢𝑑,𝑡,𝑖×𝑝𝑗,𝑑,𝑡,𝑖) (eqn 1) 

where ud,t,i is the (binary) occurrence status of the species in day d, year t and site i, and pj,d,t,i 

is the detection probability of the species in each visit j, given that the species is present. The 

occurrence status u depends on the occurrence probability ψ per day d, year t and site i 

recursively through: 

𝑢𝑑,𝑡,𝑖 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑑,𝑡,𝑖),  (eqn 2) 
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𝜓𝑑,𝑡,𝑖 = 𝑢𝑑−1,𝑡,𝑖×𝜑𝑑−1,𝑡,𝑖 + (1 − 𝑢𝑑−1,𝑡,𝑖)×𝛾𝑑−1,𝑡,𝑖, (eqn 3) 

Thus, whether site i that is occupied in day d-1 is still occupied in day d is determined by the 

persistence probability (φ), whereas whether site i that is unoccupied in day d-1 is occupied 

in day d depends on the colonization probability (γ). Because we expect persistence and 

colonization probabilities to vary along the season, we further modelled these parameters as 

𝑝𝑟𝑜𝑏𝑖𝑡(𝜑𝑑−1,𝑡,𝑖) = 𝑝𝐶𝑜𝑒𝑓1 + 𝑝𝐶𝑜𝑒𝑓2×𝐽𝐷𝑎𝑦𝑑−1 + 𝑝𝐶𝑜𝑒𝑓3×𝐽𝐷𝑎𝑦𝑑−1
2 + 𝜀𝑝𝐼𝑖 + 𝜀𝑝𝑇𝑡,  (eqn 4) 

𝑝𝑟𝑜𝑏𝑖𝑡(𝛾𝑑−1,𝑡,𝑖) = 𝑔𝐶𝑜𝑒𝑓1 + 𝑔𝐶𝑜𝑒𝑓2×𝐽𝐷𝑎𝑦𝑑−1 + 𝑔𝐶𝑜𝑒𝑓3×𝐽𝐷𝑎𝑦𝑑−1
2 + 𝜀𝑔𝐼𝑖 + 𝜀𝑔𝑇𝑡,  (eqn 5) 

where JDay is the Julian date. We modelled the effect of the Julian date as a quadratic 

function to allow the colonization and persistence parameters to increase, decrease or both 

within the season. In this way the model may be suitable for a wider range of species with 

different phenology. We also added random effects for site (εpI and εgI) and year (εpT and 

εgT) (see Appendix S1 for commented scripts).  

 

The annual average use of site i by the focal species can be defined from the derived quantity 

𝑧𝑡,𝑖 = (∑ 𝑢𝑑,𝑡,𝑖
𝑛
𝑑=1 ) 𝑛⁄  where n is the number of days during the season. In the same way, a 

regional annual site use (Zt) can be defined as the average number of occurrence across all 

days and sites.  

 

The observation sub-model contains a detection probability p per visit j. Because we expected 

detection to vary between visits, we modelled it as a saturation function of each visit’s SLL, 

𝑝𝑗,𝑑,𝑡,𝑖 = 1 − 𝛿𝑡,𝑖 (𝑆𝐿𝐿𝑗,𝑑,𝑡,𝑖 + 𝛿𝑡,𝑖)⁄ , (eqn 6) 

where δt,i is a real positive number defining the SLL required to obtain a detection probability 

equal to 0.5 for a visit. Consequently, the shorter the list the lower the assumed observation 

effort or the likelihood to report an observed species(Szabo et al. 2010; van Strien et al. 

2013). With this function pj,d,t,i converges asymptotically to 1 as SLLj,d,t,i gets closer to ∞; 
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however, note that pj,d,t,i will be lower than 1 even when SLL is equal to the local species 

richness. We further modelled δt,i as  

log(𝛿𝑡,𝑖) = 𝑑𝐶𝑜𝑒𝑓1𝑖 + 𝑑𝐶𝑜𝑒𝑓2×𝑃𝐿𝐿𝑡,  (eqn 7) 

where dCoef1 is a site-specific parameter accounting for detectability varying among sites. 

The variable PLLt is the proportion of long species lists (≥ 10 of the study species) over the 

total number of lists each year among the nine sites (Fig. S2) and serves as a proxy to account 

for potential non-linear changes in reporting behaviour among observers over time. 

Preliminary results showed that this model cannot estimate variability in probability of 

detection as a function of Julian date because it interfered with the estimation of the 

persistence and colonization parameters in the occurrence sub-model. Therefore, detectability 

is assumed to be constant within the season (see the Discussion section for pros and cons of 

this model feature).  

 

Annual site-occupancy model using within-season replication of observations  

We also fitted a dynamic occupancy model to estimate annual occupancy probability (i.e. 

using a closure period of 90 days; see e.g. van Strien et al. 2013), in order to directly compare 

our results to previous methods adopted for opportunistic data. Given the abundance of 

replicated visits we only used visits with SLL ≥ 10. 

 

All models were fitted within the Bayesian framework using JAGS (Appendix S1; Plummer 

2012). We chose conventional vague priors for all parameters, using Normal distributions 

centred at zero and with standard deviation (SD) 1000 for effect parameters. We assumed 

random effects to follow a Normal distribution centred at zero with independent standard 

variation defined as σ = (1/τ)1/2 where τ is a precision parameter following a Gamma 

distribution with shape and scale parameters equal 0.001. We used sufficient MCMC 
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iterations to achieve convergence of the models (burn-in = 5000, update = 15000). We used 

95% quantiles as credible intervals to describe the precision of parameter estimates (Kéry 

2010).  

 

Goodness of fit through prediction 

To investigate goodness-of-fit we checked if the model was able to reconstruct the original 

data given the estimated parameter values (Gelman & Hill 2007; Kéry 2010; Chambert, 

Rotella & Higgs 2014). To do so, we predicted observation events of a species given its 

estimated daily occupancy status, and the effort spent in each visit. We summarized daily 

observations (both observed and predicted data) into mean observed annual site use by 

keeping the maximum detection status among the daily visits (1 if detected at least once 

during the day, 0 otherwise) and averaging these values across the seasons (90 days) at each 

site. We then graphically compared observed and predicted data of mean annual site use on a 

1:1 discrepancy plot for all sites together. 

 

We also evaluated goodness-of-fit of the models using site-specific Bayesian p-values, a.k.a. 

“posterior predictive checks” (Kéry 2010; Chambert et al. 2014). Bayesian p-values quantify 

the probability that the lack of fit of data replicated under the fitted model (i.e. data replicated 

from the posterior distributions) is smaller than the lack of fit of the observed data. P-values 

close to 0.5 indicate the model fits the data adequately and values close to 0 or to 1 indicate 

under- or overfitting (Kéry 2010). The measure of discrepancy chosen in this case is the sums 

of squares of differences (SSQ; eqn 8) between observed mean annual site use (𝑤𝑡,𝑖 =

(∑ max
𝑗

𝑦𝑗,𝑑,𝑡,𝑖
𝑛
𝑑=1 ) 𝑛⁄ ; and w.newt,i for replicated data) and the model prediction of observed 

mean annual site use (i.e. the average of the daily probabilities of detecting the species at 

least once if present; 𝑤̅𝑡,𝑖 = (∑ 𝑢𝑑,𝑡,𝑖×(1 − ∏ (1 − 𝑝𝑗,𝑑,𝑡,𝑖))𝑗
𝑛
𝑑=1 ) 𝑛⁄ ), as follow: 
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𝑆𝑆𝑄𝑖
𝑜𝑏𝑠 = ∑ (𝑤𝑡,𝑖 − 𝑤̅𝑡,𝑖)

2 (𝑤̅𝑡,𝑖 + 0.5)⁄𝑡 ;  

𝑆𝑆𝑄𝑖
𝑛𝑒𝑤 = ∑ (𝑤. 𝑛𝑒𝑤𝑡,𝑖 − 𝑤̅𝑡,𝑖)

2 (𝑤̅𝑡,𝑖 + 0.5)⁄𝑡 ,  (eqn 8) 

where 0.5 in the denominator is a correction for binomial variables to avoid dividing by 

zeros. 

 

Validation through simulations 

We tested the assumptions and performance of our model under different scenarios by fitting 

it to simulated data with known occurrence and sampling patterns. We simulated data using 

the same sampling structure as for the real data, that is, daily replicates of visits during ten 

90-day seasons at five sites, and using the observed increasing proportion of long lists 

through time (PLLt, Fig. S2). The number of visits per day was drawn from a Poisson 

distribution constrained at [1, 50] with expected value = 5 and site specific variability (see 

Appendix S2). The length of each visits` species lists was randomly drawn according to the 

observed proportion of single, short and long species lists (see Appendix S2 for more details). 

We fitted the model to nine simulated datasets partly mimicking patterns that are likely 

observed in the opportunistic data (scenarios hereafter; Table 1), each featuring a known 

combination of patterns in occupancy levels and effort that may influence model performance 

but that are not explicitly accounted for in the model:  

i) high, medium or low overall occupancy levels with variability among lakes in all 

other parameters but stable occupancy through time;  

ii) positive or negative trends over time on the persistence and colonization rates  

iii) increasing or decreasing number of visits over time (maintaining the variability in 

effort among sites) 

iv) positive or negative trends in detection (and reporting) probabilities, on top of the 

observed trend in PLLt that is common to all scenarios.  
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For more details about the simulation procedure and parameters settings, read Appendix 

S2. We evaluated the goodness-of-fit of the models in the same way as described above, 

and the ability of the models to estimate the known occurrence data.  

 

Results  

Analyses with real data on wetland birds 

The model estimates daily occupancy statuses by correcting for false absences based on each 

day’s effort (both number of visits and each visit’s SLL) and on the assumed species 

colonization/extinction dynamics at a site and year (Fig. 2). Estimated mean annual site use 

(summarised from estimated daily occupancy status) varies from year to year, displaying 

large between-year changes for some species (Fig. 3, exemplified with nine selected bird 

species). Estimates of occupancy probability were in general precise (i.e. small credible 

intervals) even for rare species, as long as some of the sites were well sampled (i.e. enough to 

confidently separate occupancy and detection probabilities) and if the species occurred 

regularly at those sites (i.e. consistently during the same periods across all years it was 

present; e.g. Asio otus). The probability of detection depended on the visits’ SLL and on the 

proportion of long lists, PLLt. Estimates of the probability of detection were less precise for 

species with lower site use (Fig. 4). We observed low discrepancy between observations and 

predicted observations of mean annual site use, and no systematic bias was observed for 64 

out of 71 investigated species (Appendix S3). However, deviations from the 1:1 line between 

observations and expectations (to either side) were noted for seven species with anecdotic 

occurrences in some sites. Bayesian p-values (posterior predictive checks) were useful to 

corroborate if the observed local daily dynamics adjust to the overall daily dynamics 

estimated from all sites. Bad fit was then only observed on individual sites with little data 

were the local dynamics does not match the dynamics observed in other sites (Appendix S3).  
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Comparing patterns of dynamics from the seasonal site use vs. the annual occupancy model  

Using the visits with long species list we calculated the corresponding annual occupancy over 

the nine wetlands between 2005 and 2014. Although annual occupancy levels are generally 

higher than the mean site use, they frequently display a similar broad pattern of temporal 

dynamics (Fig. 3). However, for some more common or widespread species the annual 

occupancy model often displayed no temporal variation in occupancy, as all sites were 

determined occupied in all years (e.g. A. penelope and C. cyaneus, and C. cygnus and H. 

minutus after 2008, Fig. 3). By contrast, for some of these species the site use model 

suggested a positive trend (C. cygnus) or a possible negative trend (C. cyaneus) in site use. 

Similarly, large differences between annual occupancy and mean site use as estimated by the 

annual vs. daily occupancy models respectively, show that the annual model fails to handle 

the effects of temporary visits by over-estimating the species annual occupancy during the 

breeding season (see Discussion for an example). 

 

Validation of the seasonal site use model by simulated data  

The daily occupancy model gave accurate and robust estimates of annual site use for the 

simulated data regardless of the mean site use level (i.e. number of days present in any site in 

the region; Scenarios 1, 2 and 3), and trends in occupancy (Scenarios 4 and 5), number of 

visits (Scenarios 6 and 7) or in detectability (Scenarios 8 and 9). Most of the simulated yearly 

site use data points were overlapping with the site use values estimated from the model (i.e. 

all simulated points were within the 95% CI, but mostly close to the median of the estimates) 

across all scenarios (Fig. 5).  
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The model uncertainty (95% CI), however, depends on the combined effect of number of 

daily visits and each visit’s SLL, but also on the mean site use level (i.e. number of days 

present at the site).When mean site use level is very low (Scenario 3), there are too few 

detections to inform the model, which becomes less accurate and less precise at estimating 

the probabilities of detection and the colonization/extinction probabilities (Fig. 5, Scenario 3). 

This results in high uncertainties unless the sampling effort is high enough to detect every 

presence of the species. 

 

The model estimated temporal trends in site use regardless of trends in number of 

observations per day (Scenarios 4 and 5). As expected, model uncertainty is higher the lower 

the number of visits per day (Scenarios 6 and 7) and the lower the species detectability 

(Scenarios 8 and 9). Regardless of the probability of detection, the higher the number of visits 

per day the more likely the species is detected if present. Therefore, the higher the number of 

visits per day, the smaller the discrepancy between observations and the occupancy status of 

the species (Scenario 6). Alternatively, even accounting for an increase in PLLt in all visits, 

detections are not guaranteed if the number of visits are too few (Scenario 7). Despite an 

increase in model uncertainty, the model correctly estimated the occurrence status of the 

species under both changing number of visits and changing species detectability.  

 

The model identifies changes in detectability independently of the trends in number of visits 

and PLLt. Despite the observed increase in proportion of long lists (PLLt, Fig. 1 and Fig. S2) 

is included in the model as a time-dependent variable affecting the probability of detection, 

the model also adjusts the effect parameter for PLLt to non-observed changes in detectability 

(Scenarios 8 and 9, Figs. 5 and red arrows in Fig. 6). That is, even when the proportion of 

long lists among visits is high (high PLLt), detectability can naturally decrease due to e.g. 
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change in habitat conditions. However, for the simulated data the model is able to correct for 

this trend and estimates of occupancy are not affected. 

 

Discussion  

We estimate the daily probability of occupancy at sites and the average site use during each 

breeding season for wetland birds, including migratory species that may display strong 

seasonal dynamics depending on the timing of arrival and departure from breeding areas. We 

use dynamic occupancy models within seasons by narrowing the time window traditionally 

used from a year or season to a single day. We achieve this by making use of opportunistic 

citizen science data that contain multiple visits made by different observers at a site within a 

day. The two occupancy model variants (annual- and daily-based) summarize different 

aspects of the species dynamics in the study area. While the annual occupancy model used so 

far inform us about the proportion of sites in which we can expect a species to be present at 

some point during the season, the seasonal site use model informs us about the proportion of 

days each site is likely to be used. Although there are similarities between yearly summaries 

of both models (Fig. 3), the seasonal site use model make opportunistic data available to 

answer new questions and investigate within-season dynamics. As an example, one could 

study phenology of arrival and departure (Fig. 2), and actual site use to potentially separate 

temporary occurrences, e.g. by migrants and prospectors, from those linked to breeding 

activities. Furthermore, model validation based on simulated data suggests that the 

performance of the seasonal site use model in terms of capturing the species mean site use 

over time is robust to underlying variability and trends in effort and species detectability. 
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Seasonal site use vs. annual occupancy models  

Previous annual occupancy models have typically used the breeding season (e.g. two-three 

months) as the time window to estimate annual occupancy at sites (e.g. 1 km2 grid squares) 

(Royle & Kéry 2007; Royle & Dorazio 2008; van Strien et al. 2013; Isaac et al. 2014). 

However, using such long time window may likely violate the assumption of closure for 

mobile species with within-season dynamics, thus potentially reducing estimates of 

probability of detection and increase the uncertainty of occupancy estimates (MacKenzie et 

al. 2003). For example, when the aim is to analyse occurrences of breeding species, an annual 

occupancy model will over-estimate site use of species with temporary occurrences (e.g. 

migrants passing by, single itinerary prospecting individuals) as even a single observation 

during the closure period will be viewed as an occupancy. On the other hand, an occupancy 

model with within-season dynamics, such as our seasonal site use model will produce 

estimates of the extent to which sites are actually used. Two illustrative examples are the little 

gull (H. minutus) and the hen harrier (Circus cyaneus) which we know from careful 

observations made by the local ornithological society attempted to breed in only three and 

none of the nine wetlands, respectively, during 2005 to 2014 (Annual birds reports from the 

Ornithological Society of Uppland 2005-2014). These species regularly stop-over at these 

wetlands on their way to their breeding areas in northern Sweden and Finland, being 

frequently observed for several days during spring and early summer. The annual model 

therefore suggests an occupancy probability close to one for most years for this species (Fig. 

3). The seasonal site use model, on the other hand, suggest a relatively low site use. In this 

way, the site use model may be used to detect these passages of migrants thus enabling a 

separation between potential breeders and migrants or vagrants (Fig. 3 and Appendix S3). 

Furthermore, as individuals may move in and out of the sites during the study period, daily 

occupancy of a site may indicate how site use is changing during the season. In this way such 
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a seasonal site use model may also be able to estimate the relative importance of different 

sub-localities as foraging or stop-over sites in a network of e.g. wetland sites.  

 

Opportunistic data at frequently visited sites offer good opportunities to narrow the time 

window of the closure period because of the large amount of data at specific sites. Several of 

the localities in our study, which include popular birding wetlands with observation towers, 

were visited two or more times per day by different observers during the spring 2005-2014. 

In general, the span of the within season closure period of our model may be optimized to the 

data at hand. If, for instance, multiple visits to sites are common on a weekly but not on a 

daily basis, a closure period of one week might be used instead. 

 

Opportunistic data and the robustness of the seasonal site use model 

The probability of at least one reported observation of a species at a site on a particular day is 

the result of a combination between the probability of detection of each visit, and the number 

of visits made. The probability of detection during each visit depends on effort allocated to 

observing species and the willingness to report them if seen. SLL is an established surrogate 

for the effort of a visit in opportunistic data (Szabo et al. 2010; van Strien et al. 2013; Barnes 

et al. 2015). Even though detection probability and willingness to report an observation differ 

largely among species, it is expected that the longer the SLL the lower the chance of 

deliberately leaving species out of the report (van Strien et al. 2013). However, even “low-

quality” observations (e.g. SLL = 1) may be informative for the occupancy status of the few 

species that are on such a list. If there are sufficient visits reporting only one or a few species 

they can be useful for estimating occupancy (e.g. beginning of Scenario 7, where plenty of 

visits each with very short species lists are enough to precisely estimate the mean site use). 

Therefore, as an alternative to the seminal species list comparison approach proposed by 
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Szabo et al. (2010) where short species list were omitted, we also make use of even single 

(incidental) observations that have often been regarded as containing little information 

(Szabo et al. 2010; Isaac & Pocock 2015). This addition does not add noise but rather 

improves precision in estimates of daily occupancy and mean site use of rare species (Fig. 

S3). 

 

In our site use model, detectability is assumed to be site- and year-specific but constant 

within the season. This is because trying to estimate daily variations in detectability would 

interfere with the estimation of the daily persistence and colonization parameters in the 

occurrence sub-model. However, because the probability of detection is determined by each 

visit’s SLL that varies among visits and may decrease along the season (Strebel et al. 2014), 

the model implicitly allows for some variation in the probability of detection within the 

season. Alternatively, in case there are good reasons to believe that detectability changes 

during the breeding season (e.g. due to increased cryptic behaviour) a change in detectability 

between intermediate time windows (e.g. months) could be parameterized and tested with this 

model by adding a time covariate to Equation 7 (see methods).  

 

The seasonal site use model presented here accounts for effects of changes in the behaviour 

of observers over time on species detectability, using the overall proportion of species lists 

longer than 10 (PLLt) as a proxy. Specifically, PLLt captures a non-linear increase in the 

proportion of visits with long lists during the first few years in the data analysed here, 

suggesting that the overall quality of reports may have increased. The effect of PLLt was, 

however, negative for some species (red arrows in Fig. 4) indicating that observers are 

decreasingly reporting certain species despite an overall change towards longer lists. This 

may suggest a negative trend in the species abundance that is not reflected in the species 
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occupancy. Alternative proxies, such as temporal trend, could also be used to adjust for 

changes in reporting behaviour over time, although when tested in this study the model did 

not converge into a solution. 

 

In addition to the assumption that species list length serves as a reasonable proxy for 

sampling effort, site-occupancy models of opportunistic data rely on additional assumptions. 

For example, a general assumption of site-occupancy models is that reports from different 

visits are independent, which may not be the case if observers share their sightings. Despite 

estimates of site use being robust to the deviations explored in the simulated scenarios, there 

is thus no guarantee that the model correctly adjusts for variation in effort, observer 

behaviour and observer willingness to report a species. Unfortunately, no further conclusion 

can be drawn without validation against systematically collected data. Currently, little is 

known about variations in observer behaviours and the decisions underlying whether 

observations are reported or not. Some studies comparing analyses of opportunistic data 

against survey data do suggest that occupancy models may handle the most serious causes of 

bias (van Strien et al. 2013; Isaac et al. 2014), while other studies suggest a poor fit between 

opportunistic and survey data (Kamp et al. 2016). 

 

In conclusion, by making use of dense opportunistic data at popular localities we could 

markedly reduce the time interval for the closure criterion (here to one day periods) and get 

repeated estimates of occupancy within a pre-defined time period (here the breeding season 

of three months) to estimate: (i) daily site occupancy and (ii) site use during the breeding 

season (here mean number of days a species is present at a site) in contrast to a binary 

variable produced by an annual occupancy model, and hence (iii) the possibility to redefine 

the criteria for counting a species as present at a site based on its activity within the season. 
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Furthermore, the seasonal site use model has the potential to estimate the relative importance 

of each site in a wetland network in terms of site use. 

 

Data Accessibility 

Species daily observations: We intend to archive the original data on Dryad, but it could also 

be obtained from www.artportalen.se at any time.  
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Table 1: Description of the nine simulated datasets (scenarios), each featuring a known 

combination of patterns in occupancy levels and sampling effort. 

Scenario Occupancy Level Trend in 

Occupancy 

No. visits Detection 

probability 

1 High None Constant Observed 

2 Medium None Constant Observed 

3 Low None Constant Observed 

4 Medium Positive Constant Observed 

5 Medium Negative Constant Observed 

6 Medium None Positive trend Observed 

7 Medium None Negative trend Observed 

8 Medium None Constant Positive 

9 Medium None Constant Negative 
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Figure 1: Mean number of visits and mean Species List Length (SLL) per day (a, b), year (c, 

d) and site (e, f). Dots show means through years (or sites when years are in the x axis), and 

the shades of grey differentiate dots by years (or sites; e.g. white dots are year 2005, or site 

Dannemorasjön). Red dashes show overall means of the data. Dotted lines show the SLL 

threshold used for long species lists. 
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Figure 2: Observed and estimated daily occupancy of 9 species (filled green and empty 

circles, respectively). The black lines shows the daily mean occupancy probability. Red and 

blue lines show the mean daily persistence and colonization probabilities, respectively 

(shades show the 50% and 95% CI). Example data from site Hjälstaviken in 2014. 
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Figure 3: Estimated annual occupancy (green) and seasonal site use (black) over the study 

region (nine sites) for nine selected wetland bird species. Solid lines and shaded areas show 

the median and 95% CI around the estimated occupancy and mean site use, respectively. 

Black dots indicate observed mean site use. 
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Figure 4: Detection probability for nine selected species, as a function of species list length 

(SLL), for 2005 (solid lines, dark shades) and 2014 (dashed lines, light shades). The arrows 

indicate the direction of the change in detection through time (i.e. the effect of PLLt). On each 

plot, short lines on the top and bottom axis indicate the visits’ SLL for 2005 (black lines on 

the top) and 2014 (grey lines on the bottom). 
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Figure 5: Estimated (black line) and simulated (blue dots) seasonal site use in the study 

region (nine sites) over time for nine scenarios of simulated datasets (Table 1), each featuring 

a known combination of patterns in occupancy levels and sampling effort. Black lines and 

shaded areas show the median and 95% CI around the estimated mean site use. Black dots 

indicate observed mean site use. 
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Figure 6: Detection probability as a function of species list length. Known (blue line) and 

estimated (black lines and shades) functions are shown for year 1 (solid lines) and year 10 

(dashed line). The arrows indicate the direction of the change in detection through time (i.e. 

the effect of PLLt). Short vertical lines (ticks) on the top and bottom axis indicate the 

distribution of SLL for 2005 (black lines on the top) and 2014 (grey lines on the bottom). 
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