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The dissolved organic carbon (DOC) pool on tropical coral reefs is mainly fueled by

photosynthates released from benthic primary producers (BPP), such as reef algae and

scleractinian corals. DOC concentrations near BPP have repeatedly been observed to be

elevated compared to those in the surrounding water column. As the DOC release of BPP

increases with increasing light availability, elevated DOC concentrations near them will, in

part, also depend on light availability. Consequently, DOC concentrations are likely to be

higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope.

We measured in situ DOC concentrations and light intensity in close proximity to the reef

alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth gradient

from 5 to 20 m depth and compared these to background concentrations in the water

column. DOC concentrations near Dictyota sp. were significantly higher at 10 m than at 5

and 20 m depth. Furthermore, at 10 m DOC concentrations near Dictyota sp. were

elevated by 15 µmol C L-1 compared to background concentrations in the water column,

but not at 5 and 20 m. DOC concentrations near O. faveolata and in the water column did

not differ between depths and concentrations near O. faveolata were not elevated

compared to background concentrations at any of the tested depths. Our results indicate

that DOC concentrations near Dictyota sp. can differ along a depth gradient from 5 to 20

m. However, the occurrence of elevated DOC concentrations did not follow a natural light

gradient across depth. Instead, a combination of light availability (including a restriction by

photoinhibition) and water movement are proposed to interactively determine the DOC

concentrations in the close vicinity of BPP across the reef slope.
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16 ABSTRACT

17 The dissolved organic carbon (DOC) pool on tropical coral reefs is mainly fueled by 

18 photosynthates released from benthic primary producers (BPP), such as reef algae and 

19 scleractinian corals. DOC concentrations near BPP have repeatedly been observed to be elevated 

20 compared to those in the surrounding water column. As the DOC release of BPP increases with 

21 increasing light availability, elevated DOC concentrations near them will, in part, also depend on 

22 light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-

23 lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC 

24 concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the 

25 scleractinian coral Orbicella faveolata along a depth gradient from 5 to 20 m depth and 

26 compared these to background concentrations in the water column. DOC concentrations near 

27 Dictyota sp. were significantly higher at 10 m than at 5 and 20 m depth. Furthermore, at 10 m 

28 DOC concentrations near Dictyota sp. were elevated by 15 µmol C L-1 compared to background 

29 concentrations in the water column, but not at 5 and 20 m. DOC concentrations near O. faveolata 

30 and in the water column did not differ between depths and concentrations near O. faveolata were 

31 not elevated compared to background concentrations at any of the tested depths. Our results 

32 indicate that DOC concentrations near Dictyota sp. can differ along a depth gradient from 5 to 20 

33 m. However, the occurrence of elevated DOC concentrations did not follow a natural light 

34 gradient across depth. Instead, a combination of light availability (including a restriction by 

35 photoinhibition) and water movement are proposed to interactively determine the DOC 

36 concentrations in the close vicinity of BPP across the reef slope.

37 INTRODUCTION

38 Dissolved organic carbon (DOC) is the largest pool of reduced carbon on tropical coral reefs 

39 (Atkinson & Falter 2003). Typically DOC concentrations are elevated in the reef overlying water 

40 compared to the surrounding ocean, suggesting a net production of DOC on coral reefs (Torréton 

41 et al. 1997; Van Duyl & Gast 2001). Moreover, the lack of a relationship between particulate 

42 organic carbon (POC as proxy for planktonic primary producers) and DOC concentrations 

43 (Tanaka et al. 2011), and increased DOC concentrations near the bottom compared to the surface 

44 water (Van Duyl & Gast 2001) further indicate that benthic primary producers (BPP) are the 

45 main source of DOC on tropical coral reefs. Reef algae and scleractinian corals release a 
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46 substantial portion of their photosynthetically fixed carbon as DOC into the surrounding water, 

47 yet reef algae generally release more DOC than corals (e.g., Haas et al. 2011; Haas et al. 2013b). 

48 This algal-derived DOC can promote the growth of opportunistic heterotrophic microbes in the 

49 water column as well as in the contact zone between corals and algae (Haas et al. 2013a; Haas et 

50 al. 2013b; Nelson et al. 2013). Increased microbial respiration in the coral-algal interface causing 

51 anoxia (Gregg et al. 2013; Haas et al. 2013a) in combination with the release of secondary 

52 metabolites, can lead to tissue loss or even coral death (Barott & Rohwer 2012; Morrow et al. 

53 2013). Moreover, while most heterotrophic organisms cannot utilize DOC for their nutrition an 

54 increasing number of reef sponges is found to predominantly rely on DOC as carbon source 

55 (Yahel et al. 2003; De Goeij et al. 2008; Mueller et al. 2014a;). And similar to microbes, sponges 

56 also appear to prefer algal- over coral-derived DOC (Rix et al. 2016). In the so-called sponge 

57 loop these sponges utilize the energy stored in DOC and make it available to higher trophic 

58 levels via subsequent detritus production (Alexander et al. 2014; De Goeij et al. 2013). Both 

59 heterotrophic microbes and DOC-feeding sponges are therefore likely to benefit from elevated 

60 DOC concentrations with potential consequences for carbon cycling and overall coral reef 

61 functioning (e.g., Rohwer & Youle 2010; Barott & Rohwer 2012; De Goeij et al. 2013; Haas et 

62 al. 2016).

63 Elevated DOC concentrations in close proximity to BPP have been repeatedly observed on 

64 tropical coral reefs (Van Duyl & Gast 2001; Hauri et al. 2010; Mueller et al. 2014b). However, 

65 most studies were conducted in shallow reef areas between 5 and 10 m and little attention was 

66 given to deeper reef sections or how DOC concentrations change across depth. Light availability 

67 decreases exponentially with depth and is an important environmental parameter that structures 

68 benthic communities across the reef slope (e.g. Bak 1974; Veron 2000; Vermeij & Bak 2002). 

69 Light availability positively affects the DOC release rates of BPP (Crossland 1987; Haas et al. 

70 2010b; Naumann et al. 2010; Barrón et al. 2014 and references therein). Moreover, also the 

71 occurrence of elevated DOC concentrations near them were found to be positively correlated 

72 with the availability of light (Mueller et al. 2014b). We therefore hypothesize that DOC 

73 concentrations change with depth and that elevated DOC concentrations near BPP are more 

74 likely to occur on the shallow, well-lit reef terrace (5 m) than at the drop off (10 m) or in deeper 

75 sections of the fore reef slope (20 m). To test this we measured in situ DOC concentrations and 

76 light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2610v1 | CC BY 4.0 Open Access | rec: 29 Nov 2016, publ:



77 Orbicella faveolata (former Montastraea annularis) along a depth gradient from 5 to 20 m depth 

78 and compared these to background concentrations in the water column.

79 MATERIALS AND METHODS

80 Fieldwork was performed under the research permit (#2012/48584) issued by the Curaçaoan 

81 Ministry of Health, Environment and Nature (GMN) to the CARMABI foundation.

82 DOC concentrations and light intensity across depth

83 To quantify DOC concentrations across depth, water samples were taken in situ in close 

84 proximity (<5 mm) to the abundant reef alga Dictyota sp., the scleractinian coral O. faveolata 

85 and the water column. Both, Dictyota sp. and O. faveolata are considered holobionts, including 

86 epi- and endophytes and associated microbial communities (sensu Barott et al. 2011), jointly 

87 affecting the water properties (e.g., DOC concentration) in their close vicinities. Sampling took 

88 place on July 24, 2012 at Snake Bay (12° 89 N, 68° 599 W) on the leeward coast of the Island of 

89 Curaçao in the Southern Caribbean. The site consists of an approximately 100 m wide sandy reef 

90 terrace with patchy coral communities. The reef terrace gradually slopes towards a drop-off that 

91 starts around 10 m depth. The reef then slopes down under a steep angle (20-30°; Van Duyl 

92 (1985)) and is characterized by a structurally complex reef topography and high coral cover 

93 (>30%; De Goeij and Mueller unpubl. data). At midday between 12:00 hrs and 13:00 hrs (when 

94 light intensities are the highest) patches of Dictyota sp. and colonies of O. faveolata were 

95 sampled at 5 (reef flat), 10 (drop-off) and 20 m depth (fore reef slope) (each n = 5). In addition, 

96 the water column 2 m off the reef bottom was sampled (n = 5) at the same depths and used to 

97 indicate background DOC concentrations (i.e., those not directly affected by DOC release of 

98 BPP). Sampling started at 20 m depth and 10 and 5 m were sampled consecutively. Per depth 

99 approx. 10 min were spent to collect all samples. The sampling procedure described by van Duyl 

100 and Gast (2001) and modified by Mueller et al. (2014b) was followed. In short, water samples 

101 were collected using 100 ml acid-washed, polypropylene syringes equipped with a flexible 

102 silicon tube attached to their tips. The tube was moved slowly above the surfaces of Dictyota sp. 

103 and O. faveolota, respectively, while collecting water. The water column was sampled using a 

104 similar syringe. All water samples were collected facing the water current to avoid potential 

105 contamination related to the diver9s presence. Ambient light intensity (PAR) was recorded 

106 simultaneously while sampling (approx. 10 min; sampling intervals 1 min) using a light meter in 
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107 a custom-made underwater housing (cosine LI-192SSA underwater quantum sensor connected to 

108 LI-1000 data logger; range: PAR 400-700). Water samples were transported (<30 min) to the lab 

109 and stored at 4°C until they were processed later that same day.

110 Processing of DOC samples

111 Water samples collected were filtered (<20 kPa Hg suction pressure) over a 0.2 ¿m 

112 polycarbonate filter (Whatman, 25 mm). Prior to filtration, filters, glassware and pipette tips 

113 were rinsed three times with acid (10 mL 0.4 M HCl) and twice with sample water (10 mL). 

114 Afterwards 20 mL of sample water was filtered and the filtrate containing DOC was transferred 

115 to pre-combusted (4 h at 450°C) Epa vials (40 mL). Samples were acidified with 637 drops of 

116 concentrated HCl (38%) to remove inorganic C and stored at 4°C until analysis. DOC 

117 concentrations were measured using the high-temperature catalytic oxidation (HTCO) technique 

118 in a total organic C analyzer (TOC-VCPN; Shimadzu). The instrument was calibrated with a 

119 standard addition curve of Potassium Hydrogen Phthalate (0; 25; 50; 100; 200 µmol C L-1). 

120 Consensus Reference Materials (CRM) provided by DA Hansell and W Chen of the University 

121 of Miami (Batch 12; 2012; 41-44 µmol C L-1) were used as positive controls for our 

122 measurements. Concentrations measured for the batch gave average values (±SD) of 45±3 µmol 

123 C L-1. Average analytical variation of the instrument was <3% (5-7 injections per sample).

124 Data analysis

125 Differences in DOC concentrations at the substrate-water-interface of Dictyota sp., O. faveolata 

126 and the water column from 5, 10 and 20 m were tested using a Kruskal-Wallis test followed by a 

127 Mann-Whitney U test in case of significant differences.

128 RESULTS

129 In situ DOC concentration in close proximity to Dictyota sp. differed significantly across depths 

130 (Kruskal-Wallis, p=0.01) (Figure 1 and Supplemental Information for raw data). The distribution 

131 of the data from 10 m was different from that at 5 (Mann-Whitney, p=0.02) and 20 m (Mann-

132 Whitney, p=0.01). Estimated mean DOC concentration at 10 m was 107±5 (±SD) µmol L-1 and 

133 thus 20 and 25 µmol L-1 higher compared to 5 and 20 m, respectively. No differences in DOC 

134 concentrations among depths were observed near O. faveolata (Kruskal-Wallis, p=0.93) and in 

135 the water column (Kruskal-Wallis, p=0.62). At 10 m depth the distribution of the data of 
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136 Dictyota sp. differed from that of the water column (Mann-Whitney, p=0.02), with estimated 

137 mean DOC concentrations near Dictyota sp. being elevated by 15 µmol L-1 compared to 

138 background concentrations. In contrast, the distribution of the data at 5 m (Mann-Whitney, 

139 p=0.81) and 20 m depth (Mann-Whitney, p=0.35) did not differ between Dictyota sp. and in the 

140 water column. Furthermore, estimated mean DOC concentration near O. faveolata did not differ 

141 from those in the water column at any of the tested depths. Interestingly, at 20 m estimated mean 

142 DOC concentration near Dictyota sp. was significantly lower than near O. faveolata (Mann-

143 Whitney, p=0.028). The sampling depths of 5, 10 and 20 m corresponded to a light intensity of 

144 1214±285, 702±79 and 374±71 µmol photons m-2 s-1 (mean±SD) during the sampling 

145 (Supplemental Information for raw data).

146  

147 Figure 1 Mean in situ DOC concentrations (n=5, except for water column 10 m and 

148 Dictyota sp. 5 m with n=4) measured in the water column (2 m off the reef slope; black) 

149 and at the substrate-water interfaces of the reef algae Dictyota sp. (dark grey) and the 

150 scleractinain coral Orbicella faveolata (white) at 5, 10 and 20 m depth. Error bars indicate 

151 SE. Concentrations with the same letter are not significantly different at ³ = 0.05. Measured in 

152 situ light intensity (mean±SD) during the sampling is given in ¿mol photons m-2 s-1.

153

154 DISCUSSION
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155 In this study we investigated DOC concentrations in close proximity to the reef alga Dictyota sp., 

156 the scleractinian coral O. faveolata, and in the water column across a depth gradient from 5 to 20 

157 m. DOC concentrations near Dictyota sp. differed between depths, whereas those near O. 

158 faveolata and in the water column remained similar over the tested depth range. Elevated DOC 

159 concentrations compared to the background concentrations in the water column were only 

160 observed near Dictyota sp. at 10 m, but not at 5 and 20 m depth, or near O. faveolata at any of 

161 the tested depths.

162 Elevated DOC concentrations in close proximity to BPP occur when DOC release exceeds 

163 removal processes. Consequently, environmental parameters that affect the DOC release of BPP 

164 (e.g., light availability (Haas et al. 2010b; Barrón et al. 2012), temperature (Gillooly et al. 2001; 

165 Haas et al. 2010b), grazing pressure (Berman & Holm-Hansen 1974), senescence (Khailov & 

166 Burlakova 1969), nutrient availability (Lopéz-Sandoval et al. 2011; Mueller et al. 2016), 

167 hydrodynamic conditions (Wild et al. 2012)), in combination with factors which affect the 

168 accumulation of DOC near them (e.g. morphology of the BPP, hydrodynamic conditions (Losee 

169 & Wetzel 1993, Escart1�n & Aubrey 1995), DOC consumption by heterotrophic microbes and 

170 sponges (Gast et al. 1999; Yahel et al. 2003; Scheffers et al. 2005; De Goeij et al. 2008)) 

171 interactively determine the DOC concentrations in close vicinity to BPP (Figure 2). The lack of 

172 elevated DOC concentrations near Dictyota sp. at 5 m depth could thus be explained by (1) 

173 insufficient DOC release, (2) high DOC removal or (3) a combination of both.
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174

175 Figure 2 In situ DOC concentrations near benthic primary producers are interactively 

176 determined by factors that are affecting the DOC release of the benthic primary producers 

177 and by those affecting the accumulation of DOC. Green and red arrows indicate positive and 

178 negative effects on in situ DOC concentrations, respectively. Black arrows indicate the general 

179 effect of the organism under consideration and its morphology.

180

181 Light availability is generally considered to have a strong positive effect on DOC release of reef 

182 algae. However, Haas et al. (2010b) reported that this positive correlation in the reef alga 

183 Caulerpa sp. only held until a maximum light intensity was reached. At these light intensities 

184 DOC release rates steeply decreased to levels comparable to those in the dark. They explained 

185 this decrease with the onset of photoinhibition at a species-specific light intensity, which is a 

186 common phenomenon in coral reef BPP (Franklin 1994; Hanelt et al. 1994; Brown et al. 1999; 

187 Hoegh-Guldberg & Jones 1999; Iglesias-Prieto et al. 2004). Accordingly, photoinhibition likely 

188 reduced the DOC release of Dictyota sp. at 5 m depth and therefore contributed to the fact that 

189 no elevated DOC concentrations in its close proximity were found at this depth.
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190 Similar to light availability also hydrodynamic conditions can affect in situ DOC concentrations 

191 near BPP in two ways. Either positively, when water movement increases the metabolism and 

192 DOC release rates of BPP by alleviating the limitation of the diffusive boundary layer around 

193 them (Carpenter et al. 1991; Lesser et al. 1994; Wild et al. 2012), or negatively, when water 

194 movement and water exchange hamper the accumulation of DOC by dilution (Hauri et al. 2010). 

195 Water movement generally decreases exponentially as a function of depth (Shashar et al. 1996) 

196 and significantly higher water movement rates are reported at 5 compared to 10 or 20 m depth on 

197 the reef slope of Curaçao (Vermeij & Bak 2003). Thus, a reduced DOC release rate of Dictyota 

198 sp. due to photoinhibition in combination with high water movement and water exchange that 

199 hamper the accumulation of DOC, could explain the lack of elevated DOC concentrations near 

200 Dictyota sp. at 5 m depth. It can be further assumed that the negative effect of water movement 

201 and water exchange on the accumulation of DOC at 10 m was higher than at 20 m, i.e., a higher 

202 DOC release rate was necessary to result in elevated DOC concentrations at 10 m. Yet, despite 

203 higher water movement, elevated DOC concentrations near Dictyota sp. were only found at 10, 

204 but not at 20 m. This suggests that DOC release rates were higher at 10 m than at 20 m, which is 

205 in line with the aforementioned positive relation between light availability and DOC release. 

206 Interestingly, at 20 m depth DOC concentrations in close proximity to Dictyota sp. were depleted 

207 compared to concentrations near O. faveolata (and lower relative to, but not significantly 

208 different from those in the water column). Reduced water movement and thus a prolonged water 

209 residence time combined with a low, but steady release of bio-available DOC by Dictyota sp., 

210 could have stimulated the growth of heterotrophic microbial communities. The bio-available 

211 DOC could have further allowed those communities to metabolize otherwise refractory 

212 components of the DOC pool and thereby deplete the local DOC stock, as described for the 

213 water columns overlying algal-dominated reefs (Dinsdale et al. 2008; Haas et al. 2016).

214 No elevated DOC concentrations were observed near the scleractinian coral O. faveolata at any 

215 of the sampling depths. In general, the DOC release of scleractinian corals is more variable than 

216 that of reef algae and an increasing number of studies suggest that scleractinian corals only 

217 contribute marginally to the local DOC on tropical coral reefs (e.g., Haas et al. 2010a; Naumann 

218 et al. 2010; Haas et al. 2011). Furthermore, the massive morphology of O. faveolata is less likely 

219 to restrict water exchange than the bushy thalli of Dictyota sp. and is thereby less favorable for 

220 the accumulation of DOC in its vicinity (Stocking et al. 2016). Given the positive effect of light 
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221 availability on the DOC release by BPP, we expected to find significantly higher DOC 

222 concentrations on the shallow and well-lit reef terrace compared to deeper reef sections, 

223 following the natural light gradient across depth. Surprisingly, significant differences in the mean 

224 DOC concentrations between the sampled depths were only observed in Dictyota sp., but not in 

225 O. faveolata or the water column. The absence of significant differences in DOC concentrations 

226 across the water column was also observed in other studies (Torréton et al. 1997; Nelson et al. 

227 2011). To date only Slattery & Lesser (2015) reported a significant decline in DOC 

228 concentration with depth from coral reefs on the Bahamas, albeit this decrease occurred at 

229 mesophotic depths below 30 m. This may indicate that at least above mesophotic depths, DOC 

230 released by BPP is either quickly taken up by DOC feeding organisms (i.e. heterotrophic bacteria 

231 and reef sponges) and/or mixed and diluted throughout the reef overlying water column.

232 CONCLUSION

233 While light availability has a strong positive effect on the DOC release of BPP, the occurrence of 

234 elevated DOC concentrations near them did not follow a natural light gradient across the reef 

235 slope in our study system. Instead, a combination of light availability, which affects the release 

236 of DOC (including the restriction by photoinhibition) and water movement, which affects the 

237 accumulation of DOC, are proposed to interactively determine the DOC concentrations in the 

238 close vicinity of BPP.
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