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In the face of increasing threats to biodiversity, the advancement of methods for surveying

biological communities is a major priority for ecologists. Recent advances in molecular

biological technologies have made it possible to detect and sequence DNA from

environmental samples (environmental DNA or eDNA); however, eDNA techniques have

not yet seen widespread adoption as a routine method for biological surveillance primarily

due to gaps in our understanding of the dynamics of eDNA in space and time. In order to

identify the effective spatial scale of this approach in a dynamic marine environment, we

collected marine surface water samples from transects ranging from the intertidal zone to

4 kilometers from shore. Using massively parallel sequencing of 16S amplicons, we

identified a diverse community of metazoans and quantified their spatial patterns using a

variety of statistical tools. We find evidence for multiple, discrete eDNA communities in

this habitat, and show that these communities decrease in similarity as they become

further apart. Offshore communities tend to be richer but less even than those inshore,

though diversity was not spatially autocorrelated. Taxon-specific relative abundance

coincided with our expectations of spatial distribution in taxa lacking a microscopic,

pelagic life-history stage, though most of the taxa detected do not meet these criteria.

Finally, we use carefully replicated laboratory procedures to show that laboratory

treatments were remarkably similar in most cases, while allowing us to detect a faulty

replicate, emphasizing the importance of replication to metabarcoding studies. While there

is much work to be done before eDNA techniques can be confidently deployed as a

standard method for ecological monitoring, this study serves as a first analysis of diversity

at the fine spatial scales relevant to marine ecologists and confirms the promise of eDNA

in dynamic environments.
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Abstract1

In the face of increasing threats to biodiversity, the advancement of methods for surveying biological2

communities is a major priority for ecologists. Recent advances in molecular biological technologies3

have made it possible to detect and sequence DNA from environmental samples (environmental DNA4

or eDNA); however, eDNA techniques have not yet seen widespread adoption as a routine method5

for biological surveillance primarily due to gaps in our understanding of the dynamics of eDNA in6

space and time. In order to identify the effective spatial scale of this approach in a dynamic marine7

environment, we collected marine surface water samples from transects ranging from the intertidal8

zone to 4 kilometers from shore. Using massively parallel sequencing of 16S amplicons, we identified9

a diverse community of metazoans and quantified their spatial patterns using a variety of statistical10

tools. We find evidence for multiple, discrete eDNA communities in this habitat, and show that11

these communities decrease in similarity as they become further apart. Offshore communities tend12

to be richer but less even than those inshore, though diversity was not spatially autocorrelated.13

Taxon-specific relative abundance coincided with our expectations of spatial distribution in taxa14

lacking a microscopic, pelagic life-history stage, though most of the taxa detected do not meet15

these criteria. Finally, we use carefully replicated laboratory procedures to show that laboratory16

treatments were remarkably similar in most cases, while allowing us to detect a faulty replicate,17

emphasizing the importance of replication to metabarcoding studies. While there is much work to18

be done before eDNA techniques can be confidently deployed as a standard method for ecological19

monitoring, this study serves as a first analysis of diversity at the fine spatial scales relevant to20

marine ecologists and confirms the promise of eDNA in dynamic environments.21

Introduction22

The patterns and causes of variability in ecological communities across space are both seminal and23

contentious areas of study in ecology (Hubbell, 2001; Anderson et al., 2011). One consistently24

observed pattern of community spatial heterogeneity is that communities close to one another tend25

to be more similar than those that are farther apart (Nekola and White, 1999). This decrease26

in community similarity with increasing spatial separation is called distance decay and has been27

reported from communities of tropical trees (Condit, 2002; Chust et al., 2006), ectomycorrhizal fungi28
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(Bahram et al., 2013), salt marsh plants (Guo et al., 2015), and microorganisms (Martiny et al.,29

2011; Chust et al., 2013; Wetzel et al., 2012; Bell, 2010). Typically, this relationship is assessed by30

regressing a measure of community similarity against a measure of spatial separation for a set of31

sites at which a set of species’ abundances (or presences) is calculated. Yet no existing biodiversity32

survey method completely censuses all of the organisms in a given area. The lack of a single ‘silver33

bullet’ method of sampling contributes inconclusiveness to the study of spatial patterning in ecology34

(Levin, 1992), and leaves open the possibility of new and more comprehensive methods.35

From a boat or aircraft, scientists can count whales by sight, but not the krill on which they36

feed. For example, towed fishing nets can efficiently sample organisms larger than the mesh and37

slower than the boat, but overlook viruses and have undesirable effects on charismatic air-breathing38

species. However, DNA-based surveys show great promise as an efficient technique for detecting a39

previously unthinkable breadth of organisms from a single sample.40

Microbiologists have used nucleic acid sequencing to quantify the composition and function of41

microbial communities in a wide variety of habitats (Handelsman et al., 1998; Tyson et al., 2004;42

Venter et al., 2004; Iverson et al., 2012). To do so, microorganisms are collected in a sample of43

environmental medium (e.g. water), their DNA or RNA is isolated and sequenced, and the identity44

and abundance of sequences is considered to reflect the community of organisms contained in the45

sample, which indirectly estimates the quantity of organisms in an area.46

Macroorganisms shed DNA-containing cells into the environment (environmental DNA or eDNA)47

that can be sampled in the same way (Ficetola et al., 2008; Thomsen et al., 2012). Potentially, eDNA48

methods allow a broad swath of macroorganisms to be surveyed from basic environmental samples.49

However, the accuracy and reliability of indirect estimates of macroorganismal abundance has been50

debated because the entire organisms are not contained within the sample (Cowart et al., 2015).51

Concern surrounding eDNA methods is rooted in uncertainty about the attributes of eDNA in the52

environment relative to actual organisms (Shelton et al., 2016; Evans et al., 2016). Basic questions53

such as how long DNA can persist in that environment and how far DNA can travel remain largely54

unknown (but see Klymus et al. (2015); Turner et al. (2015); Strickler et al. (2015); Deiner and55

Altermatt (2014)) and impede inference about local organismal presence from an environmental56

sample. As a result, estimating the spatial and temporal resolution of eDNA studies in the field is57

a key step in making these methods practical.58
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The relationship between local organismal abundance and eDNA is further complicated in habi-59

tats where the environmental medium itself may transport eDNA away from its source. We know60

that genetic material can move away from its source precisely because organisms can be detected61

indirectly without being present in the sample (Kelly et al., 2016). One might reasonably expect62

eDNA to travel farther in a highly dynamic fluid such as the open ocean or flowing river than it63

would through the sediment at the bottom of a stagnant pond (Deiner and Altermatt, 2014; Shogren64

et al., 2016). Yet even studies of extremely dynamic habitats such as coastlines with high wave en-65

ergy have found remarkable evidence that eDNA transport is limited enough that DNA methods66

can detect differences among communities separated by less than 100 meters (Port et al., 2016).67

While rigorous laboratory studies have investigated the effects of some environmental factors on68

eDNA persistence (Klymus et al., 2015; Barnes et al., 2014; Sassoubre et al., 2016) and the transport69

of eDNA in specific contexts (Deiner and Altermatt, 2014), we suggest that field studies comparing70

the spatial distribution of communities of eDNA with expectations based on prior knowledge of71

organisms’ distributions are also critical to developing a working understanding of eDNA in the real72

world.73

We apply methods derived from community ecology to understand spatial patterns and patchi-74

ness of eDNA. The underlying mechanism thought to drive the slope of the distance decay relation-75

ship in ecological communities is the rate of movement of individuals among sites, which may be76

driven by underlying processes such as habitat suitability. Because eDNA is shed and transported77

away from its source, the increased movement of eDNA particles should homogenize community78

similarity, and thus erode the distance decay relationship of eDNA communities.79

Puget Sound is a deep, narrow fjord in Washington, USA, where a narrow band of shallow80

bottom hugs the shoreline and abruptly gives way to a central depth of up to 300 meters. This81

form allows the juxtaposition of communities associated with distinctly different habitats: shallow,82

intertidal benthos, and euphotic pelagic (Burns, 1985). At the upper reaches of the intertidal, the83

shoreline substrate varies from soft, fine sediment to cobble and boulder rubble. Soft intertidal84

sediments are inhabited by burrowing bivalves (Bivalvia), segmented worms (Annelida), and acorn85

worms (Enteropneusta), and in some lower intertidal and high subtidal ranges by eelgrass (Zostera86

marina) (Kozloff, 1973; Dethier, 2010) . Eelgrass meadows harbor epifaunal and infaunal biota,87

and attract transient species which use the meadows for shelter and to feed on resident organisms.88
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Hard intertidal surfaces support a well-documented biota including barnacles (Sessilia), mussels89

(Bivalvia:Mytilidae), anemones (Actinaria), sea stars (Asteroidea), urchins (Echinoidea), Bryzoans90

(Ectoprocta), crustaceans (Decapoda), and a variety of algae (Dethier, 2010). Hard bottoms of the91

lower intertidal and high subtidal are home to macroalgae such as Laminariales and Desmarestiales92

which provides habitat for a distinct community of fish and invertebrates. The upper pelagic is93

home to a diverse assemblage of microscopic plankton including diatoms and larvae (Strickland,94

1983), as well as transitory fish and marine mammals.95

We took advantage of this setting to explore the spatial variation and distribution of marine96

eDNA communities. Using PCR-based methods and massively parallel sequencing, we surveyed97

mitochondrial 16S sequences from a suite of marine animals in water samples collected over a grid98

of sites extending from the shoreline out to 4 kilometers offshore in Puget Sound, Washington, USA.99

We leverage this sampling design to perform the first explicitly spatial analysis of eDNA-derived100

community similarity. We investigate two primary objectives. First we examine the spatial pattern-101

ing of eDNA and determine the degree to which eDNA community similarity can be predicted by102

physical proximity. We expect that physical proximity will be a strong predictor of community sim-103

ilarity, and that community differences can be detected over small distances. Second, we examine104

the distribution of diversity from eDNA data, and compare it to our expectations based on distri-105

butions of macrobial communities. We expect that distinct eDNA communities exist in this setting,106

and that their spatial distribution coincides with that of adult macrobial organisms. Because of the107

vastly different communities of benthic macrobial metazoans as a function of distance from shore,108

we expect that more than one eDNA community is present across our 4 kilometer sampling grid,109

and that communities change as a function of distance from shore. For this reason, we examine two110

diversity measures of eDNA communities that have been widely used to reveal broad scale patterns111

based on macrobiota in many ecological systems. Finally, we identify the taxa represented in the112

eDNA communities, which span a range of life-history characteristics, and we expect that the spatial113

distribution of eDNA will most closely resemble the distribution of adults in taxa with low dispersal114

potential.115
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Methods116

There are seven discrete steps to our methodology: (1) Environmental sample collection, (2) isolation117

of particulates from water via filtration, (3) isolation of DNA from filter membrane, (4) amplification118

of target locus via PCR, (5) sequencing of amplicons, (6) bioinformatic translation of raw sequence119

data into tables of sequence abundance among samples, and (7) community ecological analyses of120

eDNA. We provide brief overviews of these steps here, and encourage the reader to review the fully121

detailed methods presented in the supplementary material (Supplemental Material).122

Environmental Sampling123

Starting from lower-intertidal patches of Zostera marina, we collected water samples at 1 meter124

depth from 8 points (0, 75, 125, 250, 500, 1000, 2000, and 4000 meters) along three parallel transects125

separated by 1000 meters (24 sample locations total; Figure 1). Samples were collected by attaching126

bottles to a PVC pole and lowering it over the side of a boat over the span of one hour on 27 June127

2014. To destroy residual DNA on equipment used for field sampling and filtration, we washed128

with a 1:10 solution of household bleach (8.25% sodium hypochlorite; 7.25% available chlorine) and129

deionized water, followed by thorough rinsing with deionized water. Each environmental sample130

was collected in a clean 1 liter high-density polyethylene bottle, the opening of which was covered131

with 500 micrometer nylon mesh to prevent entry of larger particles. Immediately after collecting132

the sample, the mesh was replaced with a clean lid and the sample was held on ice until filtering.133

Filtration134

One liter from each water sample was filtered in the lab on a clean polysulfone vacuum filter135

holder fitted with a 47 millimeter diameter cellulose acetate membrane with 0.45 micrometer pores.136

Filter membranes were moved into 900 microliters of Longmire buffer (Longmire et al., 1997) using137

clean forceps and stored at room temperature (Renshaw et al., 2014). To test for the extent of138

contamination attributable to laboratory procedures, we filtered three replicate 1 liter samples of139

deionized water. These samples were treated identically to the environmental samples throughout140

the remaining protocols.141
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DNA Purification142

DNA was purified from the membrane following a phenol:chloroform:isoamyl alcohol protocol follow-143

ing Renshaw (Renshaw et al., 2014). Preserved membranes were incubated at 65C for 30 minutes144

before adding 900 microliters of phenol:chloroform:isoamyl alcohol and shaking vigorously for 60145

seconds. We conducted two consecutive chloroform washes by centrifuging at 14,000 rpm for 5146

minutes, transferring the aqueous layer to 700 microliters chloroform, and shaking vigorously for 60147

seconds. After a third centrifugation, 500 microliters of the aqueous layer was transferred to tubes148

containing 20 microliters 5 molar NaCl and 500 microliters 100% isopropanol, and frozen at -20C149

for approximately 15 hours. Finally, all liquid was removed by centrifuging at 14000 rpm for 10150

minutes, pouring off or pipetting out any remaining liquid, and drying in a vacuum centrifuge at151

45C for 15 minutes. DNA was resuspended in 200 microliters of ultrapure water. Four replicates of152

genomic DNA extracted from tissue of a species absent from the sampled environment (Oreochromis153

niloticus) served as positive control for the remaining protocols.154

PCR Amplification155

From each DNA sample, we amplified an approximately 115 base pair (bp) region of the mito-156

chondrial gene encoding 16S RNA using a two-step polymerase chain reaction (PCR) protocol157

described by O’Donnell et al. (2016). In the first set of reactions, primers were identical in ev-158

ery reaction (forward: AGTTACYYTAGGGATAACAGCG; reverse: CCGGTCTGAACTCAGAT-159

CAYGT); primers in the second set of reactions included these same sequences but with 3 variable160

nucleotides (NNN) and an index sequence on the 52 end (see Sequencing Metadata). We used the161

program OligoTag (Coissac, 2012) to generate 30 unique 6-nucleotide index sequences differing by162

a minimum Hamming distance of 3 (see Sequencing Metadata). Indexed primers were assigned to163

samples randomly, with the identical index sequence on the forward and reverse primer to avoid164

errors associated with dual-indexed multiplexing (Schnell et al., 2015). In a UV-sterilized hood,165

we prepared 25 microliter reactions containing 18.375 microliters ultrapure water, 2.5 microliters166

10x buffer, 0.625 microliters deoxynucleotide solution (8 millimolar), 1 microliter each forward and167

reverse primer (10 micromolar, obtained lyophilized from Integrated DNA Technologies (Coralville,168

IA, USA)), 0.25 microliters Qiagen HotStar Taq polymerase, and 1.25 microliter genomic eDNA169
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template at 1:100 dilution in ultrapure water. PCR thermal profiles began with an initialization170

step (95C; 15 min) followed by cycles (40 and 20 for the first and second reaction, respectively) of171

denaturation (95C; 15 sec), annealing (61C; 30 sec), and extension (72C; 30 sec). 20 identical PCRs172

were conducted from each DNA extract using non-indexed primers; these were pooled into 4 groups173

of 5 in order to ensure ample template for the subsequent PCR with indexed primers. In order to174

isolate the fragment of interest from primer dimer and other spurious fragments generated in the175

first PCR, we used the AxyPrep Mag FragmentSelect-I kit with solid-phase reversible immobiliza-176

tion (SPRI) paramagnetic beads at 2.5x the volume of PCR product (Axygen BioSciences, Corning,177

NY, USA). A 1:5 dilution in ultrapure water of the product was used as template for the second178

reaction. PCR products of the second reaction were purified using the Qiagen MinElute PCR Pu-179

rification Kit (Qiagen, Hilden, Germany). Ultrapure water was used in place of template DNA and180

run along with each batch of PCRs to serve as a negative control for PCR; none of these produced181

visible bands on an agarose gel. In total, four separate replicates from each of 31 DNA samples182

were carried through the two-step PCR process for a total of 124 sequenced PCR products. These183

were combined with additional samples from other projects, totaling 345 samples for sequencing.184

DNA Sequencing185

Up to 30 PCR products were combined according to their primer index in equal concentration into186

one of 14 pools, and 150 nanograms from each were prepared for library sequencing using the KAPA187

high-throughput library prep kit with real-time library amplification protocol (KAPA Biosystems,188

Wilmington, MA, USA). Each of these ligated sequencing adapters included an additional 6 base189

pair index sequence (NEXTflex DNA barcodes; BIOO Scientific, Austin, TX, USA). Thus, each190

PCR product was identifiable via its unique combination of index sequences in the sequencing191

adapters and primers. Fragment size distribution and concentration of each library was quantified192

using an Agilent 2100 BioAnalyzer. Libraries were pooled in equal concentrations and sequenced193

for 150 base pairs in both directions (PE150) using an Illumina NextSeq at the Stanford Functional194

Genomics Facility (machine NS500615, run 115, flowcell H3LFLAFXX), where 20% PhiX Control195

v3 was added to act as a sequencing control and to enhance sequencing depth. Raw sequence data196

in fastq format is publicly available (see Data Availability).197
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Sequence Data Processing (Bioinformatics)198

Detailed bioinformatic methods are provided in the supplemental material, and analysis scripts199

used from raw sequencer output onward can be found in the public project directory (see Analysis200

Scripts). Briefly, we performed five steps to process the sequence data: (1) Merge paired-end201

reads, (2) eliminate low-quality reads, (3) eliminate PCR artifacts (chimeras), (4) cluster reads by202

similarity into operational taxonomic units (OTUs), and (5) match observed sequences to taxon203

names. Additionally, we checked for consistency among PCR replicates, excluded extremely rare204

sequences, and rescaled (rarefied) the data to account for differences in sequencing depth. The data205

for input to further analyses are a contingency table of the mean count of unique sequences, OTUs,206

or taxa present in each environmental sample.207

Ecological Analyses208

After gathering the data, we use the eDNA community observed at each location to make inferences209

about the spatial patterning of eDNA communities. We use statistical tools from community ecology210

to assess the spatial structure of eDNA communities. We report similarity (1- dissimilarity) rather211

than dissimilarity in all cases for ease of interpretation.212

Objective 1: Community similarity as a function of distance213

Distance Decay214

To address our first objective and determine whether or not nearby samples are more similar than215

distant ones, we fit a nonlinear model to represent decreasing community similarity with distance.216

We calculated the pairwise Bray-Curtis similarity (1 - Bray-Curtis dissimilarity) between eDNA217

communities using the R package vegan (Oksanen et al., 2016) and the great circle distance between218

sampling points using the Haversine method as implemented by the R package geosphere (Hijmans,219

2016). This model is similar to the Michaelis-Menten function, but with an asymptote fixed at 0:220

yij =
AB

B + xij
(1)

Where the relationship between community similarity (yij) and spatial distance (xij) between221
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observations i and j is determined by the similarity of samples at distance 0 (A), and the distance at222

which half the total change in similarity is achieved (B). This allows for a samples collected very close223

together (near 0) to have similarity significantly less than one. We assessed model fit using the R224

function nls (R Core Team, 2016), using the nl2sol algorithm from the Port library to solve separable225

nonlinear least squares using analytically computed derivatives (http://netlib.org/port/nsg.f). We226

set bounds of 0 and 1 for the intercept parameter and a lower bound of 0 for the distance at half227

similarity; starting values of these parameters were 0.5 and xmax/2, respectively. We calculated228

a 95% confidence interval for the parameters and the predicted values using a first-order Taylor229

expansion approach implemented by the function predictNLS in the R package propagate (Spiess,230

2014).231

There are other conceptually reasonable forms to expect the space-by-similarlity relationship232

to take; we present these in the supplemental material along with alternative data subsets and233

similarity indices (see Supplemental Material).234

Objective 2: Spatial distribution of diversity235

Community Classification236

To determine the spatial distribution and variation of eDNA communities (objective 2), we used237

multivariate classification algorithms. We simultaneously assessed the existence of distinct com-238

munity types and the membership of samples to those community types using an unsupervised239

classification algorithm known as partitioning around medoids (PAM; sometimes referred to as k-240

medoids clustering) (Kaufman and Rousseeuw, 1990), as implemented in the R package cluster241

(Maechler et al., 2016). The classification of samples to communities was made on the basis of242

their pairwise Bray-Curtis similarity, calculated using the function vegdist in the R package vegan243

(Oksanen et al., 2016). Other distance metrics were evaluated but had no appreciable effect on the244

outcome of the analysis (Figure 8). In order to chose an optimal number of clusters (K), we evalu-245

ated the distribution of silhouette widths, a measure of the similarity between each sample and its246

cluster compared to its similarity to other clusters. We repeated the analysis using fuzzy clustering247

(FANNY, (Kaufman and Rousseeuw, 1990); however, the results were qualitatively similar to the248

results using PAM so we omit them here.249
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Aggregate Measures of Diversity250

We calculated two measures of diversity, richness and evenness, to ask if aggregate metrics of the251

eDNA community showed evidence of spatial patterning. Richness is a measure of the number of252

distinct types of organisms present and so ranges from 1 (only one taxon observed) to S, the number253

of taxa observed across all samples. To calculate the evenness of the distribution of abundance of254

taxa in a sample, we used the complement of the Simpson (1949) index (1 2 Σp2i , where pi is the255

proportional abundance of taxon i). The values of this index ranges from 0 to 1, with the value256

interpreted as the probability that two sequences randomly selected from the sample will belong to257

different taxa; thus, larger values of the index indicate more evenly divided communities (Magurran,258

2003). We calculated Moran’s I for both diversity metrics to test for spatial autocorrelation. We259

also tested for a linear effect of log-transformed distance from shore on each measure of diversity to260

ask how diversity changes over this strong environmental gradient.261

Taxon and Life History Patterns262

After assigning taxon names to the abundance data, we plotted the distribution in space of a263

selection of taxa to compare with our expectations on the basis of adult distributions (objective 2).264

Our aim was to understand where each taxon occurred in the greatest proportional abundance, and265

its distribution in space relative to that maximum. Thus, we rescaled each sample to proportional266

abundance, extracted the data from a single taxon, and scaled those values between 0 and 1.267

We collated life history characteristics for each of the major taxonomic groups recovered, including268

dispersal range of the gametes, larvae, and adults, adult habitat type and selectivity, and adult body269

size. Dispersal range was given as an order-of-magnitude approximation of the scale of dispersal:270

for example, internally fertilized species were assigned a gamete range of 0 km, while broadcast271

spawners were assigned a gamete range of 10 km. Similarly, adult range size was approximated as272

0 km (sessile), 1 km (motile but not pelagic), or 10 km (highly mobile, pelagic). Variables were273

specified as ’multiple’ for groups known to span more than 1 magnitude of range size. For groups to274

which sequences were annotated with high confidence, but for which life history strategy is diverse or275

poorly known (e.g. families in the phylum Nemertea), we used conservative, coarse approximations276

at a higher taxonomic rank (see Life History Data).277
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Results278

Sequence Data Processing (Bioinformatics)279

Preliminary sequence analysis strongly suggested that the observed variation among environmental280

samples reflects true variation in the environment, rather than variability due to lab protocols, for281

the following reasons (note that all value ranges are reported as mean plus and minus one standard282

deviation). First, all libraries passed the FastQC per-base sequence quality filter, generating a total283

of 371,576,190 reads passing filter generated in each direction. Second, samples in this study were284

represented by an adequate number of reads (333,537.9 ± 112,200.5), with no individual sample285

receiving fewer than 130,402 reads. Third, there was a very low frequency of cross-contamination286

from other libraries into those reported here (5e-05±8e-05; max proportion 0.00034). Fourth, after287

scaling all samples to the same sequencing depth, OTUs with abundance greater than 178 reads288

(0.14% of a sample’s reads) experienced no turnover among PCR replicates within a sample. Fifth,289

sequence abundances among PCR replicates within water samples were remarkably consistent. A290

single sample had low similarity among PCR replicates (0.659) after removing this outlier, the291

lowest mean similarity among replicates within a sample was 0.966. Overall similarities among292

PCR replicates within a sample were extremely high (0.976 ± 0.013), and far higher than that of293

than among samples (0.3 ± 0.16).294

Ecological Analyses295

Distance Decay296

Physical proximity is a good predictor of eDNA community similarity: Similarity decreased from297

0.40 (95%CI = 0.36, 0.45) to half that amount at 4500 meters (95%CI = 2900, 7500) (Figure 2).298

Community Classification299

Despite a clear trend in community similarity as a function of spatial separation, the results from300

our classification analysis are difficult to interpret. The silhouette analysis indicated the presence301

of 8 distinct communities; however, the gain in mean silhouette width from 2 was small (0.1), and302

lacked a distinctive peak (Figure 4), indicating substantial uncertainty in the clustering algorithm.303
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Thus, we present the results of cluster assignment for both K = 2 and K = 8 to illustrate the304

range of results (Figure 3). Excluding taxa which occur in only one site had no discernible effect305

on the outcome of the PAM analysis (number of clusters, assignment to clusters). While there was306

no distinct spatial divide indicating the presence of an inshore versus an offshore community, one307

of the two communities (at K = 2) occurred in only 2 out of 18 samples inside 1000 meters from308

shore, and never occurred within 125 meters of shore, suggesting the presence of an inshore and309

offshore community.310

Diversity in Space311

Sites offshore tend to be less rich and more even than those inshore (Figure 6). Mean OTU richness312

declined by 1.42 per 1000 meters from a mean of 17.6 taxa (95%CI = 2.15) inshore to 11.9 taxa313

(95%CI = 4.31) at offshore locations (p = 0.0415; Figure 6). Evenness, the probability that two314

reads chosen at random from a sample belong to different species, increased by .0666 per 1000315

meters from 0.225 (95%CI = 0.0558) to 0.491 (95%CI = ± 0.112), indicating that sequence reads316

were less evenly distributed among taxa in offshore samples (p j 0.05; Figure 6). There was no317

evidence for spatial autocorrelation for any of the diversity metrics (Moran’s I, p > 0.05; Figure 5).318

Taxon and Life History Patterns319

We were able to assign a taxon name with confidence to 136 of 146 OTU sequences. The vast ma-320

jority of sequences (97.6%) and OTUs (96.9%) were matched to organisms that have high potential321

for dispersal at either the gamete, larval, or adult stage, making it impossible to determine whether322

the source of that DNA was adults with well-documented spatial patterns (e.g. sessile nearshore323

specialists) or highly mobile early life history stages. Of the 6 OTUs for which dispersal is limited324

during all life history stages, only 2 occurred in more than two samples, precluding a quantita-325

tive comparison of spatial dispersion based on life history characteristics. These were assigned to326

Cymatogaster aggregata, a viviparous nearshore fish with internal fertilization, and Cupolaconcha327

meroclista, a sessile Vermetid gastropod with presumed internal fertilization and short larval dis-328

persal (Strathmann and Strathmann, 2006; Phillips and Shima, 2010; Calvo and Templado, 2004).329

Cymatogaster aggregata was distinctly more abundant close to shore, with no sequences occurring in330

any sample beyond 250 meters (Figure 7). Cupolaconcha meroclista showed no such distinct spatial331

13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2608v1 | CC BY 4.0 Open Access | rec: 29 Nov 2016, publ:



trend, occurring in nearly equal abundance at three sites, 75, 500, and 2000 meters from shore. An332

additional species that was highly abundant in the sequence data, the krill Thysanoessa raschii,333

has pelagic adults, highly seasonal reproduction, and sinking eggs; their distribution was consistent334

with our expectations based on a tendency of adults to aggregate offshore. Finally, the two most335

abundant taxa in the dataset were the mussel genus Mytilus and the Barnacle order Sessilia; the336

adults of both taxa are sessile and occur exclusively on hard intertidal substrata but have highly337

motile larvae.338

Discussion339

Indirect surveys of organismal presence are a key development in ecosystem monitoring in the face340

of increased anthropogenic pressure and dwindling resources for ecological research. Monitoring341

of organisms using environmental DNA is an especially promising method, given the rapid pace342

of advancement in technological innovation and cost efficiency in the field of DNA sequencing and343

quantification. For the first time in a marine environment, we document four key patterns: (1) eDNA344

communities far from one another tend to be less similar than those that are nearby, (2) distinct345

eDNA communities exist and are distributed in a non-random fashion, (3) diversity declines with346

distance from shore, and (4) spatial patterning of eDNA is associated with taxon-specific life history347

characteristics.348

(1) Communities far from one another tend to be less similar than those that are349

nearby350

We demonstrate that more distant locations have less similar eDNA communities than more proxi-351

mate locations in Puget Sound, a dynamic marine environment. Our finding is in line with observa-352

tions based on traditional surveys of terrestrial plants and fungi (Nekola and White, 1999; Bahram353

et al., 2013; Condit, 2002; Chust et al., 2006) and of microorganisms in freshwater (Wetzel et al.,354

2012), marine (Chust et al., 2013), and estuarine (Martiny et al., 2011) environments. To our knowl-355

edge, it is the first to report such a pattern using massively parallel sequencing of environmental356

DNA in the marine environment, and the first using any technique to describe this pattern from357

macrobial metazoans. We note that the theoretical expectation is that samples at very close distance358
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be nearly completely similar, while our samples separated by the 50 meters were only 40% similar.359

We interpret this to reflect the highly dynamic nature of this environment, which could cause DNA360

to be distributed quickly from its source, eroding the rise in similarity at small distances. At the361

same time, community similarity decreased to very low levels at larger scales, indicating that DNA362

distribution is not completely unpredictable. This finding implies that the effectively sampled area363

of individual water samples for eDNA analysis is likely to be quite small (<100m) in this nearshore364

environment. Our estimated distance-decay relationship does indicate that proximate samples are365

more similar than distant samples, but we suggest this pattern is partially obscured by other factors,366

including signal from mobile, microscopic life-stages.367

(2) Distinct eDNA communities exist and are distributed in a non-random fashion368

We demonstrate strong evidence for distinct community types and the non-random spatial pattern-369

ing of those communities. While the spatial distributions of communities is surprising if one were370

concerned only with the macroscopic life stages of metazoans, it indeed does align with the broader371

view that even offshore pelagic communities are comprised of and influenced by nearshore organ-372

isms. This result underscores the idea that areas immediately offshore act as ecotones, a mixing373

zone of taxa characteristic of benthic and pelagic environments. While there was no distinct break374

in community types between onshore and offshore sites, there was some clustering of community375

types that may be explained by oceanographic features such as nearshore eddies generated by strong376

tidal exchange in a steep bathymetric setting (Yang and Khangaonkar, 2010). It would be useful to377

better understand such features during the period of sampling, by way of oceanographic monitoring378

devices.379

(3) Richness declines and evenness increases with distance from shore380

We detected a general pattern of declining richness and increasing evenness with increasing distance381

offshore. Such a pattern is consistent with many other ecosystems which show strong clines in382

diversity metrics over environmental gradients. The coastal ocean is a highly productive and diverse383

ecosystem (Ray, 1988). However, our study is novel in that it corroborates a cline well-known on384

macroscales for macrobiota on a much smaller spatial scale for microscopic animals, suggesting that385

there may be a self-similarity across scales in diversity patterning (Levin, 1992). Intriguingly, the386
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cline in diversity from inshore to offshore was not determined by shared changes in communities387

as one moved offshore; the classification analysis suggested a fair amount of differences among388

communities at a given offshore distance (Figure 3). Furthermore, the uncertainty in identification389

of the number of distinct clusters to best characterize the community underlines the difficulty of390

identifying community patterns with the number of taxonomic groups considered here. We suspect391

that the signature of eDNA from microscopic life-stages may explain our inability to easily detect392

spatial community level patterns that align with our initial expectations.393

(4) Spatial patterning of eDNA is associated with taxon-specific life history character-394

istics.395

In contrast to our expectations, other taxa including species with sessile adult stages restricted396

to benthic hard substrates (e.g. barnacles, mussels) are among the most abundant taxa at sites397

furthest from shore. However, the larvae and gametes of these taxa are abundant, pelagic, and398

can be transported long distances by water movement (Strathmann, 1987). This indicates that we399

likely detected DNA of their pelagic phase gametes and larvae. It is always possible that DNA400

of adults was advected over long distances and detected offshore but in light of our results with401

krill and surfperch, we view this as unlikely. We interpret our results as evidence that the chaotic402

spatial distribution of eDNA communities (Figure 3) results from our primers’ affinity for many403

species which at some point exist as microscopic pelagic gametes or larvae. Our results emphasize404

that expected results based on easily visually observed individuals or detectable with traditional405

sampling gear such as nets may be very different from results using eDNA. This does caution that406

eDNA surveys may have different purposes and may not be directly comparable to existing surveys407

(Shelton et al., 2016).408

We acknowledge that sampling artifacts may have affected our results. For example if entire409

multicellular individuals were captured in our samples, their DNA could be in much greater density410

than eDNA, affecting the observed community. Our sampling bottles excluded particles larger than411

500 micrometers, but gametes and very small larvae could have gained entry. It is possible that412

even a single small individual, containing many thousand mitochondria, would overwhelm the signal413

of another species from which hundreds of cells had been sloughed from many, larger individuals.414

Data on larval size distribution at the time of sampling from each species in our data set would415
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allow us to estimate the frequency of such events. Nevertheless, it is precisely the sensitivity to416

small particles that makes the eDNA approach powerful, so we are reluctant to recommend that417

aquatic eDNA sampling use finer pre-filtering. Instead, we emphasize the importance of designing418

and selecting primer sets that selectively amplify target organisms. In the case of the present study,419

in order to recover patterns matching our expectations, this would be non-transient, benthic marine420

organisms lacking any pelagic life stage.421

Our results also highlight the need for curated life-history databases. As technological advances422

increase the speed and throughput of DNA sequencing and sequence processing, making sense of423

these data in a timely manner requires that natural history data be stored in standard formats in424

centralized repositories. The rate at which we can make sense of high-throughput survey methods425

will be limited by our ability to collate auxiliary data. Databases such as Global Biodiversity426

Information Facility (GBIF), Encyclopedia of Life (EOL), and FishBase (Parr et al., 2014; Froese427

and Pauly, 2016) contain records of taxonomy, occurrence, and other rudimentary data types, but428

there is no centralized, standardized repository for even basic natural history data such as body429

size. As NCBI’s nucleotide and protein sequence database (GenBank) has facilitated transformative430

studies in diverse fields, an ecological analog would be a boon for biodiversity science.431

Surveys based on eDNA are intensely scrutinized because of the danger that the final data are432

subject to complicated laboratory and bioinformatic procedures. Finding virtually no variability433

among lab and bioinformatic treatments from the point of PCR onward, we were confident our434

results represented actual field-based differences among samples. However, we note that one PCR435

replicate had a clear signal of contamination in that the sequence community was extremely similar436

to those from a different environmental sample. The source of this error is difficult to identify, but437

seems most likely to be an error during PCR preparation, either in assignment or pipetting during438

preparation of indexed primers. While the remainder of our results would be largely unchanged439

had we sequenced a single replicate per environmental sample, we believe the sequencing of PCR440

replicates is critical for ensuring data quality in eDNA sequencing studies.441

While there is much work to be done before eDNA techniques can be confidently deployed as a442

standard method for ecological monitoring, this study serves as a first analysis of diversity at the443

fine spatial scales that are likely to be relevant to eDNA work in the field across a range of study444

systems.445
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Figure 1: Map of study area. Depth in meters below sea level is indicated by shading and 25 meter

contours. Sampled locations are indicated by red points.
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Figure 2: Distance decay relationship of environmental DNA communities. Each point represents

the Bray-Curtis similarity of a site sampled along three parallel transects comprising a 3000 by 4000

meter grid. Blue dashed line represents fit of a nonlinear least squares regression (see Methods),

and shading denotes the 95% confidence interval. Boxplot is comparisons within-sample across

PCR replicates, separated by a vertical line at zero, where the central line is the median, the

box encompasses the interquartile range, and the lines extend to 1.5 times the interquartile range.

Boxplot outliers are omitted for clarity.
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Figure 3: Cluster membership of sampled sites. Distance from onshore starting point is log scaled.

Sites are colored and labeled by their assignment to a cluster by PAM analysis for number of clusters

(K) chosen based on a priori expectations (2) and mean silhouette width (8).
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the interquartile range. Boxplot outliers are omitted for clarity.
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Figure 7: Distribution of eDNA from select taxa. Circles are colored and scaled by the proportion

of that taxon’s maximum proportional abundance. That is, the largest circle is the same size in

each of the panels, and occurs where that taxon contributed the greatest proportional abundance

of reads to that sample.
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Supplemental Material631

Methods632

Bioinformatics633

Reads passing the preliminary Illumina quality filter were demultiplexed on the basis of the adapter634

index sequence by the sequencing facility. We used fastqc to assess the fastq files output from the635

sequencer for low-quality indications of a problematic run. Forward and reverse reads were merged636

using PEAR v0.9.6 Zhang et al. (2014) and discarded if more than 0.01 of the bases were uncalled.637

If a read contained two consecutive base calls with quality scores less than 15 (i.e. probability of638

incorrect base call = 0.0316), these bases and all subsequent bases were removed from the read.639

Paired reads for which the probability of matching by chance alone exceeded 0.01 were not assembled640

and omitted from the analysis. Assembled reads were discarded if assembled sequences were not641

between 50 and 168 bp long, or if reads did not overlap by at least 100 bp.642

We used vsearch v2.1.1 (Rognes et al., 2016) to discard any merged reads for which the sum of the643

per-base error probabilities was greater than 0.5 (“expected errors”) Edgar (2010). Sequences were644

demultiplexed on the basis of the primer index sequence at base positions 4-9 at both ends using the645

programming language AWK. Primer sequences were removed using cutadapt v1.7.1 Martin (2011),646

allowing for 2 mismatches in the primer sequence. Identical duplicate sequences were identified,647

counted, and removed in python to speed up subsequent steps by eliminating redundancy, and648

sequences occurring only once were removed. We checked for and removed any sequence likely to be649

a PCR artifact due to incomplete extension and subsequent mis-priming using a method described650

by Edgar (2010) and implemented in vsearch v2.0.2. Sequences were clustered into operational651

taxonomic units (OTUs) using the single-linkage clustering method implemented by swarm version652

2.1.1 with a local clustering threshold (d) of 1 and fastidious processing (Mahé et al., 2014).653

Cross-contamination of environmental, DNA, or PCR samples can result in erroneous inference654

about the presence of a given DNA sequence in a sample. However, other processes can contribute655

to the same signature of contamination. For example, errors during oligonucleotide synthesis or656

sequencing of the indexes could cause reads to be erroneously assigned to samples. The frequency657

of such errors can be estimated by counting the occurrence of sequences known to be absent from658
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a given sample, and of reads that do not contain primer index sequences in the expected position659

or combinations. These occurrences indicate an error in the preparation or sequencing procedures.660

We estimated a rate of incorrect sample assignment by calculating the maximum rate of occur-661

rence of index sequences combinations we did not actually use, as well as the rates of cross-library662

contamination by counting occurrences of primer sequences from 12S amplicons prepared in a lab663

more than 1000 kilometers away, but pooled and sequenced alongside our samples. This represents664

a general minimum rate at which we can expect that sequences from one environmental sample665

could be erroneously assigned to another, and so we considered for further analysis only those reads666

occurring with greater frequency than this across the entire dataset.667

We checked for experimental error by evaluating the Bray-Curtis similarity (1 - Bray-Curtis668

dissimilarity) among replicate PCRs from the same DNA sample. We calculated the mean and669

standard deviation across the dataset, and excluded any PCR replicates for which the similarity670

between itself and the other replicates was less than 1.5 standard deviations from the mean.671

To account for variation in the number of sequencing reads (sequencing depth) recovered per672

sample, we rarefied the within-sample abundance of each OTU by the minimum sequencing depth673

(Oksanen et al., 2016).674

Because each step in this workflow is sensitive to contamination, it is possible that some se-675

quences are not truly derived from the environmental sample, and instead represent contamination676

during field sampling, filtration, DNA extraction, PCR, fragment size selection, quantitation, se-677

quencing adapter ligation, or the sequencing process itself. We take the view that contaminants678

are unlikely to manifest as sequences in the final dataset in consistent abundance across replicates;679

indeed, our data show that the process from PCR onward is remarkably consistent. Thus, after680

scaling to correct for sequencing depth variation, we calculated from our data the maximum number681

of sequence counts for which there is turnover in presence-absence among PCR replicates within an682

environmental sample. We use this number to determine a conservative minimum threshold above683

which we can be confident that counts are consistent among replicates and not of spurious origin,684

and exclude from further analysis observations where the mean abundance across PCR replicates685

within samples does not reach this threshold. For further analyses we use the mean abundance686

across PCR replicates for each of the 24 environmental samples.687

In order to determine the most likely taxon from which each sequence originated, the representa-688
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tive sequence from each OTU was then queried against the NCBI nucleotide collection (GenBank;689

version October 7, 2015; 32,827,936 sequences) using the blastn command line utility (Camacho690

et al., 2009). In order to maximize the accuracy of this computationally intensive step, we imple-691

mented a nested approach whereby each sequence was first queried using strict parameters (e-value692

= 5e-52), and if no match was found, the query was repeated with decreasingly strict e-values (5e-48693

5e-44 5e-40 5e-36 5e-33 5e-29 5e-25 5e-21 5e-17 5e-13). Other parameters were unchanged among694

repetitions (word size: 7; maximum matches: 1000; culling limit: 100; minimum percent identity:695

0). Each query sequence can be an equally good match to multiple taxa either because of invariabil-696

ity among taxa or errors in the database (e.g. human sequences are commonly attributed to other697

organisms when they in fact represent lab contamination). In order to guard against these spurious698

results, we used an algorithm to find the lowest common taxon for at least 80% of the matched699

taxa, implemented in the R package taxize 0.7.8 (Chamberlain and Szöcs, 2013; Chamberlain et al.,700

2016). Similarly, we repeated analyses using the dataset consolidated at the same taxonomic rank701

across all queries, for the rank of both family and order.702

Alternative distance decay model formulations703

Linear: We fit a straight line through the points after log-transforming the spatial distances704

to estimate the intercept and slope. This model ignores the bounds of our response variable of705

community similarity.706

Michaelis-Menten: We fit a Michaelis-Menten-like curve to our data. Our formulation can be707

thought of as a modification of the Michaelis-Menten equation, but with the addition of a parameter708

in the numerator which modifies the intercept.709

y =
AB + Cx

B + x
(2)

Where C is the asymptote of minimum similarity. This formulation allows us to estimate the710

maximum similarity in the system, and the rate at which it is achieved. If the value of the parameter711

(AB) is 0 (i.e. if the intercept is 0), the form is identical to the Michaelis-Menten equation:712
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y =
Cx

B + x
(3)

This is conceptually satisfying in that a fit through [0,1] reflects the theoretical expectation that713

samples at zero distance from one another are necessarily identical. Given an efficient sampling714

technique, replicate samples taken at the same position in space should be identical, and thus the715

intercept of the regression of similarity against distance should be 1, and deviation from 1 is an716

indicator of the efficiency of the sampling method.717

Finally, we considered a model which estimates an asymptote as the total change in similarity718

(D):719

y =
A+Dx

B + x
(4)

However, this model failed to converge and produced uninformative estimates of all parameters.720
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Supplemental Figures721
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Figure 8: Distance decay relationship of environmental DNA communities using a variety of models,

metrics, and data subsets. Each point represents the similarity of a site sampled along three parallel

transects comprising a 3000 by 4000 meter grid. Each row of plots represents a different data subset

indicated in the right margin, including the final filtered data reported in the main text (a-d), the

unfiltered data including all rare OTUs (e-h), log-transformed (log(x+1)) data (i-l), OTU abundance

scaled relative to within-taxon maximum (m-p), and exclusion of OTUs found at only one site (q-t).

Columns indicate the similarity index used (Bray Curtis or Morisita-Horn) and whether the input

was full abundance data or binary (0,1) transformed data. Lines and bands illustrate the fit and

95% confidence interval of both the main nonlinear model (red, dashed line) and a simple linear

model (blue, solid line). Results using the Jaccard distance are omitted because of its similarity to

Bray-Curtis.
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Figure 9: Aggregate diversity metrics of each site plotted against distance from shore. Both Simp-

son’s Index (top) and richness (bottom) are shown for a variety of data subsets and transformations

(left to right: mean, unfiltered mean, log(x + 1), transformed, scaled, spatially variable, and taxon

clustered). Lines and bands illustrate the fit and 95% confidence interval of a linear model. See

methods text for detailed data descriptions.
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